Skip to main content

 

Welcome to this online course and we wish you a fulfilling learning experience!

      • Course Code: QM202x
      • Course Name: Foundations of Data Science
      • Course Instructor: Prof. U Dinesh Kumar
      • There are no mandatory pre-requisites for this course.
      • Please follow the highest level of integrity and respectful online conduct for this course.

#

Module Title

Topics Covered

Content/Effort

Grading % Assessments

Release Date

 

0

 

Welcome to the Course

v  Welcome Message

v  Navigation in edX

v  Pre-Course Survey

v  Meet the Team!

v  Learning Aids

 

30 minutes

 

None

 

17/Mar/2021

4:30 UTC

 

1

 

Descriptive Statistics and Data Visualization

 

v  Introduction

v  Data Types and Scales

v  Population and Sample

v  Measures of Central Tendency

v  Measures of Variation

v  Measures of Shape

v  Data Visualization

v  Demo Using Excel and Tableau

 

13 Videos

19 Ungraded Quizzes

Effort - 4 Hours

  

5%

5 MCQs

  

24/Mar/2021

4:30 UTC

 

2

 

Probability Theory

 

v  Introduction

v  Probability Theory-Terminology

v  Axioms of Probability

v  Bayes’ Theorem

v  Random Variables

v  PDF& CDF of Continuous 

    Random Variable

v  Binomial Distribution

v  Poisson Distribution

v  Geometric Distribution

v  Uniform Distribution

v  Exponential Distribution

v  Normal Distribution

v  Chi-Square Distribution

v  Student’s t-Distribution

v  F-Distribution

v  Tutorials

 

33 Videos

35 Ungraded Quizzes

Effort - 6 Hours

  

5%

5 MCQs

 

7/April/2021

4:30 UTC

 

3

 

Sampling and Estimation

 

v  Introduction

v  Population Parameter & Sample Statistic

v  Sampling

v  Probabilistic Sampling

v  Non-Probability Sampling

v  Sampling Distribution

v  Central Limit Theorem

v  Sample Size Estimation for Mean of the Population

v  Estimation of Population Parameters

v  Method of Moments

v  Estimation of Parameters Using Maximum Likelihood Estimation

 

17 Videos

27 Ungraded Quizzes

Effort - 3 Hours

  

5%

5 MCQs

 

 21/April/2021

4:30 UTC

 

4

 

Confidence Intervals

 

v  Introduction

v  CI for Population Mean

v  CI for Population Proportion

v  CI for Population Mean when Standard Deviation is unknown

v  CI for Population Variance

 

7 Videos

Effort – 2 Hours

 

         5%

5 MCQs

  

5/May2021

4:30 UTC

 

5

 

Hypothesis Testing

 

v  Introduction

v  Setting up a Hypothesis Test

v  One-Tailed and Two-Tailed Test

v  Type I Error, Type II Error, and Power of the Hypothesis Test

v  Hypothesis testing for Population Mean with Known Variance: Z-Test

v  Hypothesis testing for Population Proportion: Z-Test

v  Hypothesis test for Population Mean under Unknown Population Variance: t-test

v  Paired Sample t-test

v  Two-Sample Z and t-test

v  Two-Sample Z-Test for Proportions

v  Effect Size: Cohen’s D

v  Hypothesis Test for Equality of Population Variances

v  Non-Parametric Tests: Chi-Square Tests

v  Tutorials

 

20 Videos

Effort – 4 Hours

  

5%

5 MCQs

 

19/May/2021

4:30 UTC

 

6

 

Analysis of Variance

 

v  Introduction

v  Multiple t-Tests for Comparing

    Several Means

v  One-way ANOVA

v  Two-way ANOVA

v  Tutorials

 

8 Videos

Effort - 3 Hours

 

5%

5 MCQs

  

02/Jun/2021

4:30 UTC

 

7

 

Correlation Analysis

 

v  Introduction

v  Pearson Correlation Coefficient

v  Spearman Rank Correlation

v  Point Bi-Serial Correlation

v  The Phi-Coefficient

 

6 Videos

Effort - 2 Hours

  

5%

5 MCQs

 

16/June/2021

4:30 UTC

 

8

 

Applied Linear Algebra

 

v  Why do we need Linear Algebra?

v  Matrix Algebra and Operations

v  Eigen Values and Eigen Vectors

v  Linear Algebra in Dimensionality Reduction

v  Linear Algebra in Natural Language Processing

v  Linear Algebra in Machine Learning

 

10 Videos

      Effort - 4 Hours

 

        5%

5 MCQs

 

30/June/2021

4:30 UTC

9

Final Exam

MCQs

        60%

40 MCQs 

07/July/2021

4:30 UTC

 

MCQs- Multiple Choice Questions; UTC – Coordinated Universal Time

 Points to Remember:

  • Course end date – 14/ July /2021, 4:30 UST
  • Last date to submit all graded assessments – 13/July /2021, 4:30 UST
  • To receive a verified certificate, you should get a score of 60% or higher. 
  • Please contact edX support team for all technical, platform, certification and payment related issues