

4 Linear Homogeneous Recurrence Relation

4-1 Fibonacci Rabbits

The delta of the $\boldsymbol{n}^{\text {th }}$ month and $\boldsymbol{n}-\boldsymbol{1}^{\text {th }}$ month is given birth by the rabbits in $\boldsymbol{n - 2}$ month. So

$$
F_{n}=F_{\mathrm{n}-1}+F_{n-2}
$$

In the first month there's a pair of newly-born rabbits;
If a pair of rabbits could give birth to a new pair every month (one male, one female);
New rabbits could start giving birth since the third month; The rabbits never die;
How many rabbits would there be in the $50^{\text {th }}$ month?

Fibonacci number

$11235813213455 \ldots . .$.

Recurrence Relation: $F(\mathrm{n})=F(n-1)+F(n-2) \quad n \geq 2$
Initial values: $F(0)=0, F(1)=1$

- In 1150, Indian mathematicians researched the number of arrangements to package items with length 1 and width 2 into boxes. And they described this sequence for the first time.
- In the western world, Fibonacci mentioned a problem about the reproduction of rabbits in Liber Abbaci in 1202.
- Fibonacci, Leonardo 1175-1250
- Member of the Bonacci family.
- Travelled to Asia and Africa at 22 with his father and learned to calculate with Indian digits;
- Played an important role in the recovery of Western Mathematics. And connected Western and Oriental mathematics.
- G.Cardano: "We could assume that all mathematics we know except the Ancient Greek ones are gotten by Fibonacci.

Fibonacci number
$11235813213455 \ldots .$.
coser

Trillium - 3 Petals

Bloodroot-8 Petals

Devil'sPrinitbrush-21 Petals

Surflower - 55 Petals

St. Johnswort - 5 Petals

Black-eyed Susan- 13 Petals

Ox-eyed Drisy - 34 Petals

DaisyFleabane - 89 Petals

Fibonacci Numbers

The Fibonacci Quarterly founded in 1963 especially publish the newest researches on this sequence. Which includes:
-The last digit loops every 60 numbers; the last 2 digits loops every 300 numbers; the last 3 digits loops every 1500 numbers; the last 4 digits loops every 15000 numbers; the last 5 digits loops every 150000 numbers.

- Every $3^{\text {rd }}$ number could be divided by 2 . Every $4^{\text {th }}$ number could be divided by 3 . Every $5^{\text {th }}$ number could be divided by 5 . Every $6^{\text {th }}$ number could be divided by 8, etc. These divisors can also construct a Fibonacci Sequence.

Fibonacci prime (Sequence A005478 in OEIS)

-In the Fibonacci Sequence, there are primes: 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497 ,
-Except $n=4$, the indexes of all Fibonacci Primes are primes.
-However, not all prime index Fibonacci Numbers are primes.
-Conjecture: Are there infinite primes among Fibonacci Numbers?
-The largest known prime is the $81839^{\text {th }}$ Fibonacci Number, which has 17103 digits.

Area of the rectangle $=$ Sum of multiple quadrates
Proof without words vs Logic deduction

$$
F_{0}=0, F_{1}=1, F_{2}=1 .
$$
 $$
F_{n}=F_{n-1}+F_{n-2}
$$

Prove the identity: $F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$
Proof: $F_{1}^{2}=F_{2} F_{1}$

Recurrence Relation

$$
\begin{aligned}
& F_{0}=\mathbf{0}, \boldsymbol{F}_{1}=\mathbf{1}, \boldsymbol{F}_{2}=\mathbf{1} \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

$$
F_{1}+F_{2}+\cdots+F n=F n+{ }_{2}{ }^{2}
$$

Proof:

$$
F_{1}=F_{3}-F_{2}
$$

$$
F_{2}=F_{4}-F_{3}
$$

$$
F_{n-1}=F_{n+1}-F_{n}
$$

$$
\text { +) } \quad F_{n}=F_{n+2}-F_{n+1}
$$

$$
F_{1}+F_{2}+\cdots+F n=F n+{ }_{2}{ }_{-1}
$$

Recurrence Relation

$$
\begin{aligned}
& \boldsymbol{F}_{0}=\mathbf{0}, \boldsymbol{F}_{1}=\mathbf{1}, \boldsymbol{F}_{2}=\mathbf{1} \\
& \boldsymbol{F}_{n}=\boldsymbol{F}_{n-1}+\boldsymbol{F}_{n-2}
\end{aligned}
$$

$$
F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}
$$

Proof:

$$
\begin{aligned}
& F_{1}=F_{2} \\
& F_{3}=F_{4}-F_{2} \quad \text { Detailed Expressions? }
\end{aligned}
$$

$$
F_{5}=F_{6}-F_{4}
$$

$$
\text { +) } \quad F_{2 n-1}=F_{2 n}-F_{2 n-2}
$$

$\therefore \quad F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}$

4－2 Expressions of Fibonacci Numbers

组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation

Magic

- There's a $80 \mathrm{~cm} \times 80 \mathrm{~cm}$ quadrate tablecloth. How to convert it to a $1.3 \mathrm{~m} \times 50 \mathrm{~cm}$ one?

$$
0,1,1,2,3,5,8,13,21, \ldots \ldots \ldots .
$$

$$
\begin{aligned}
& F(n)^{*} F(n)-F(n-1) F(n+1)=(-1)^{n} \\
& n=0,1,2
\end{aligned}
$$

Larger tablecloths?
$F(100)=$?
Direct expressions?

$\tan \alpha=\frac{8}{3} \cong 2.67, \tan \beta=\frac{5}{2}=2.5$

Fibonacci Recurrence

$$
\begin{aligned}
& F_{0}=0, \quad F_{1}=1, \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

Assume $G(x)=F_{1} x+F_{2} x^{2}+\cdots$

$$
\begin{aligned}
& x^{3}: F_{3}=F_{2}+F_{1} \\
& x^{4}: F_{4}=F_{3}+F_{2}
\end{aligned}
$$

+)
$G(x)-x^{2}-x=x(G(x)-x)+x^{2} G(x)$
$\therefore \quad\left(1-x-x^{2}\right) G(x)=x$

$$
\therefore G(x)=\frac{x}{1-x-x^{2}}=\frac{x}{\left(1-\frac{1-\sqrt{5}}{2} x\right)\left(1-\frac{1+\sqrt{5}}{2} x\right)}=\frac{A}{1-\frac{1+\sqrt{5}}{2} x}+\frac{B}{1-\frac{1-\sqrt{5}}{2} x}
$$

Fibonacci Recurrence

$$
\left.\begin{array}{l}
\left\{\begin{array} { l }
{ A + B = 0 } \\
{ \frac { \sqrt { 5 } } { 2 } (A - B) = 1 }
\end{array} \left\{\begin{array}{l}
A+B=0 \\
A-B=\frac{2}{\sqrt{5}}
\end{array} \quad A=\frac{1}{\sqrt{5}}, \quad B=-\frac{1}{\sqrt{5}}\right.\right.
\end{array}\right\} \begin{aligned}
& \therefore \quad G(x)=\frac{1}{\sqrt{5}}\left[\frac{1}{\left.1-\frac{1+\sqrt{5}}{2} x-\frac{1}{1-\frac{1-\sqrt{5}}{2} x}\right]=\frac{1}{\sqrt{5}}\left[(\alpha-\beta) x+\left(\alpha^{2}-\beta^{2}\right) x^{2}+\cdots\right]} \begin{array}{c}
\alpha=\frac{-2}{1-\sqrt{5}}=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{2}{1+\sqrt{5}}=\frac{1-\sqrt{5}}{2}
\end{array}\right. \\
& \mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left(\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}\right) \\
& \frac{F_{n}}{F_{n-1}}=\frac{1+\sqrt{5}}{2} \approx 1.618
\end{aligned}
$$

Fibonacci Sequence

$$
\boldsymbol{F}_{n}=\boldsymbol{F}_{n-1}+\boldsymbol{F}_{n-2} \quad \mathrm{~F}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left(\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}\right)
$$

$$
\frac{F_{n}}{F_{n-1}}=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

$$
\varphi=[1 ; 1,1,1, \ldots]=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}}
$$

Applications in Optimization Methods

Assume that function $f(x)$ reaches its maximum at $x=$

ξ ．，Design an optimization algorithm to find the extreme point to a certain extent within finite iterations．The simplest way is to trisect the interval (a, b) ．

$$
x_{1}=a+\frac{1}{3}(b-a), \quad x_{2}=a+\frac{2}{3}(b-a)
$$

如下图：

§ 2.4 Applications in Optimization Method

Discuss according to the sizes of $f(1), f(2)$
When $f\left(x_{1}\right)>f\left(x_{2}\right)$, the maximum ξ must be in (a, x_{2}), interval (x_{2}, b) could be removed.

$$
f\left(x_{1}\right)>f\left(x_{2}\right)
$$

§ 2.4 Applications in Optimization Method

When $f\left(x_{1}\right)<f\left(x_{2}\right)$, the maximum ξ must be in $\left(x_{1}, b\right)$, the range (a, x_{1}) could be removed.

$$
f\left(x_{1}\right)<f\left(x_{2}\right)
$$

§ 2.4 Application in Optimization Method

When $f\left(x_{1}\right)=f\left(x_{2}\right)$, the maximum ξ must be in $\left(x_{1}, x_{2}\right)$, so both (a, x_{1}) and (x_{2}, b) could be removed.

${ }^{0}$ So with 2 tests, at least we could reduce the range to $2 / 3$ of the origin domain. For example $f\left(x_{1}\right)>$ $f\left(x_{2}\right)$ and we find the maximum in (a, x_{2}).
If continue using threefold division method, it's a fact that x_{1} is not used. So we image to have 2 symmetrical point $x, l-x$ in $(0,1)$ to test. 。

$$
\begin{array}{llll}
0 & 1-x & x & 1
\end{array}
$$

$$
\begin{array}{llll}
0 & 1-x & x & 1
\end{array}
$$

If keep $(0, x)$, then we keep testing at points x^{2}, ($1-x$) x in $(0, x)$. If

$$
x^{2}=(1-x)
$$

Then the test at $(1-x)$ could be used again. So we save one test. We have:

\[

\]

Application in Optimization Method

This is the 0.618 optimization method. When finding unimodal maximums in $(0,1)$, we could test at:

$$
x_{1}=0.618, \quad x_{2}=1-0,618=0.3832
$$

points. For example keep $(0,0.618)$, as
$(0.618)^{2}=0.3,28 \mathrm{e}$ only need to test once at

$$
0.618 \times 0.328=0.236
$$

Applications in Optimization Method

We could use Fibonacci Sequence in Optimization Method. Its difference from 0.618 method is to decide the number of tests before testing. We introduce in 2 situations.
(a) The possible testing number is some F n。

\circ	0	\circ	\circ	F_{n-2}
0	1	F_{n-1}	F_{n}	

- At this point testing points are division points F_{n-1} and F_{n-2}.
-If F_{n-1} is better, remove the part smaller than F_{n-2};
-The remained part contains $F_{n}-F_{n-2}=F_{n-1}$ division points, -In which test pints $\mathrm{F}_{\mathrm{n}-2}$ and $\mathrm{F}_{\mathrm{n}-3}$ are correspondent to former index $\mathrm{F}_{\mathrm{n}-2}+\mathrm{F}_{\mathrm{n}-2}=2 \mathrm{~F}_{\mathrm{n}-2}$ and $\mathrm{F}_{\mathrm{n}-3}+\mathrm{F}_{\mathrm{n}-2}=\mathrm{F}_{\mathrm{n}-1}$. Just right, $\mathrm{F}_{\mathrm{n}-1}$ has been tested in the previous round.

$$
\begin{array}{lcl}
\mathrm{F}_{\mathrm{n}-3}+\mathrm{F}_{\mathrm{n}-2}=\mathrm{F}_{\mathrm{n}-1} & \mathrm{~F}_{\mathrm{n}-2}+\mathrm{F}_{\mathrm{n}-2}=2 \mathrm{~F}_{\mathrm{n}-2} \\
\mathrm{~F}_{n-2} & F_{n-1} & 0 \\
& F_{n}
\end{array}
$$

-If F_{n-2} is better, remove the part larger than F_{n-1}.

- In the remained part there are F_{n-1} division points, in the next step among test points F_{n-2} and F_{n-3}, F_{n-2} has been tested.。 So among the F_{n} possible tests, we could find the extreme with at most $n-1$ tests.

One difference between the Fibonacci Method and 0.618 method is that Fibonacci Method could be used when the parameters are all integers. If the number of possible tests are smaller than F_{n} but larger than F_{n-1}, we could add several imagine points to make it F_{n} points. We could assume these image points to be worse than any other points without actually compare them.

Elliott wave

A complete loop includes 8 waves (5 increase. 3 decrease)
A complete period includes 8 waves, in which 5 are increasing, 3 are decreasing. They are all Fibonacci Numbers. In details we could get 34 waves and 144 waves, they are also Fibonacci Numbers.

Common retracement ratio are $0.382, ~ 0.5$ and 0.618 . It mainly reflects the psychology of investors.

Fibonacci retracement

USDIJPY, Daily, \# $60 / 401$

4 Linear Homogeneous Recurrence Relation

4－3 Linear Homogeneous Recurrence Relation

组合数学 Combinatorics
ry

Summary

- Linear summation
- RHS $=0$
- Coefficients are constants

Def If sequence $\left\{a_{n}\right\}$ satisifies:

$$
a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0,
$$

$$
a_{0}=d_{0}, a_{1}=d_{1}, \cdots, a_{k-1}=d_{k-1},
$$

$C_{1}, C_{2}, \cdots, C_{k}$ and $d_{0}, d_{1}, \cdots, d_{k-1}$ are constants, $C_{k} \neq$ 0 , so this expression is called a $\mathrm{k}^{\text {th }}-$ order linear homogeneous recurrence relation of $\left\{a_{n}\right\}$.

$$
\begin{gathered}
h(n)=2 h(n-1)+1, h(1)=1 \\
\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{\boldsymbol{n}-\mathbf{1}}+\boldsymbol{a}_{\boldsymbol{n - 2}} \boldsymbol{a}_{\boldsymbol{n}-\mathbf{3}} \boldsymbol{a}_{\boldsymbol{n}-\mathbf{1}}=\boldsymbol{a}_{\boldsymbol{n}-\mathbf{2}}=\boldsymbol{a}_{\boldsymbol{n}-\mathbf{3}}=\mathbf{1}
\end{gathered}
$$

Fibonacci Recurrence
 $$
F_{n}=F_{n-1}+F_{n-2} \quad F_{0}=0, F_{1}=1
$$

Assume $G(x)=F_{1} x+F_{2} x^{2}+\cdots \quad \therefore\left(1-x-x^{2}\right) G(x)=x$
$\therefore G(x)=\frac{x}{1-x-x^{2}}=\frac{x}{\left(1-\frac{1-\sqrt{5}}{2} x\right)\left(1-\frac{1+\sqrt{5}}{2} x\right)}=\frac{A}{1-\frac{1+\sqrt{5}}{2} x}+\frac{B}{1-\frac{1-\sqrt{5}}{2} x}$

$$
(1-a x)^{-1}=1+a x+a^{2} x^{2}+\ldots \cdot \quad\left(1-x-x^{2}\right)=\left(1-\frac{1-\sqrt{5}}{2} x\right)\left(1-\frac{1+\sqrt{5}}{2} x\right)
$$

(Factor Theorem) If a is a root of linear polynomial $f(x)$, which means $f(a)=0$, then polynomial $f(x)$ has a factor $x-a$. We need factor ($1-a x$), If a is a root of linear polynomial $f\left(x^{-1}\right)$, which means $f(a)=0$, then polynomial $f\left(x^{-1}\right)$ has a factor $x^{-1}-a=(1-a x) / x$.
$(1-a x)^{-1}=1+a x+a^{2} x^{2}+\ldots . \quad\left(1-x-x^{2}\right)=\left(1-\frac{1-\sqrt{5}}{2} x\right)\left(1-\frac{1+\sqrt{5}}{2} x\right)$
$\left(1-x-x^{2}\right)=x^{2}\left(\left(x^{-1}\right)^{2}-x^{-1}-1\right)=x^{2}\left((m)^{2}-m-1\right)$
Let $m=x^{-1} \quad C(m)=m^{2}-m-1=(m-\alpha)(m-\beta)$
Substitute $m=x^{-1}$ in, get $F_{n}=F_{n-1}+F_{n-2}$

$$
\alpha=\frac{-2}{1-\sqrt{5}}=\frac{1+\sqrt{5}}{2}
$$

$$
F(x)=x^{2}\left(x^{-1}-\alpha\right)\left(x^{-1}-\beta\right)=(1-\alpha x)(1-\beta x)
$$

$$
\beta=\frac{2}{1+\sqrt{5}}=\frac{1-\sqrt{5}}{2}
$$

Linear Homogeneous Recurrence Relation

- The recurrence expression of Fibonacci Sequence

$$
\begin{aligned}
& \boldsymbol{F}_{\mathbf{0}}=\mathbf{0}, \quad \boldsymbol{F}_{\mathbf{1}}=\mathbf{1}, \quad \therefore \quad G(x)=\frac{x}{\boldsymbol{F}_{n}=\boldsymbol{F}_{\boldsymbol{n}-\mathbf{1}}+\boldsymbol{F}_{n-2}} \quad 1 \quad \frac{1}{1-x^{2}-\underline{x}^{2}-1}
\end{aligned}
$$

Denominator becomes $F(x)=x^{2}\left(\left(x^{-1}\right)^{2}-x^{-1}-1\right)=x^{2}\left((m)^{2}-m-1\right)$ Let $m=x^{-1}$
$C(m)=m^{2}-m-1=(m-\alpha)(m-\beta) \quad \alpha=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{1-\sqrt{5}}{2}$
Substitute $m=x^{-1}$ in, get

$$
\begin{aligned}
& F(x)=x^{2}\left(x^{-1}-\alpha\right)\left(x^{-1}-\beta_{x}\right)=(1-\alpha x)(1-\beta x) \\
& G(x)=\frac{A_{x}}{\left(1-\frac{1-\sqrt{5}}{2} x\right)\left(1-\frac{1+\sqrt{5}}{2} x\right)}=\frac{B}{1-\frac{1+\sqrt{5}}{2} x}+\frac{B}{1-\frac{1-\sqrt{5}}{2} x}
\end{aligned}
$$

- Recurrence expression of Hanoi Tower

$$
a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0
$$

Linear Homegeneous Recurrence Relation

Assume $G(x)$ is a generating function of $\left\{a_{n}\right\}$:

$$
\begin{array}{r}
G(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}+\cdots \\
x^{k}\left(a_{k}+C_{1} a_{k-1}+C_{2} a_{k-2}+\cdots+C_{k} a_{0}\right)=0 \\
x^{k+1}\left(a_{k+1}+C_{1} a_{k}+C_{2} a_{k-1}+\cdots+C_{k} a_{1}\right)=0
\end{array}
$$

$$
x^{n}\left(a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}\right)=0
$$

Adds up both sides of these equations, get

$$
\begin{gathered}
G(x)-\sum_{i=0}^{k-1} a_{i} x^{i}+C_{1} x\left(G(x)-\sum_{i=0}^{k-2} a_{i} x^{i}\right) \\
+\cdots+C_{k} x^{k} G(x)=0
\end{gathered}
$$

Linear Homegeneous Recurrence Realtion

$$
\left(1+C_{1} x+C_{2} x^{2}+\cdots+C_{k} x^{k}\right) G(x)=\sum_{j=0}^{k-1} C_{j} x^{j} \sum_{i=0}^{k-1-j} a_{i} x^{i}
$$

Let $P(x)=\sum_{j=0}^{k-1} C_{j} j^{j} \sum_{i=0}^{k-1-j} a_{i} x^{i}$, the order of polynomial $P(x) \leq k-1$.

$$
G(x)=\frac{P(x) \quad(1-a x)^{-1}=1+a x+a^{2} x^{2}+\ldots \ldots}{\left(1+C_{1} x+\cdots+C_{k} x^{k}\right)}
$$

$$
\begin{gathered}
a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0, \quad C(m)=\left(m-a_{1}\right)^{k_{1}}\left(m-a_{2}\right)^{k_{2}} \cdots\left(m-a_{i}\right)^{k_{i}} \\
C(m)=m^{k}+C_{1} m^{k-1}+\cdots+C_{k-1} m+C_{k}
\end{gathered} \quad k_{1}+k_{2}+\cdots+k_{i}=k
$$

$$
m=x^{-1}=\frac{P(x)}{\left(1-a_{1} x\right)^{k_{1}}\left(1-a_{2} x\right)^{k_{2}} \cdots\left(1-a_{i} x\right)^{k_{i}}}
$$

Linear Homogeneous Recurrence Relation

$$
\begin{array}{cc}
F_{n}-F_{n-1}-F_{n-2}=0 & h(n)-3 h(n-1)+2 h(n-2)=0 \\
x^{2}-x-1=0 & x^{2}-3 x+2=0
\end{array}
$$

Def if sequence $\left\{a_{n}\right\}$ satisfies:

$$
\begin{aligned}
& \quad a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0, \\
& a_{0}=d_{0}, a_{1}=d_{1}, \cdots, a_{k-1}=d_{k-1},
\end{aligned}
$$

$C_{1}, C_{2}, \cdots C_{k}$ and $d_{0}, d_{1}, \cdots d_{n-1}$ are constants, $C_{k} \neq 0$, then this expression is called a $\mathrm{k}^{\text {th }}$-order linear homogeneous recurrence relation of $\left\{a_{n}\right\}$.

$$
C(x)=x^{k}+C_{1} x^{k-1}+\cdots+C_{k-1} x+C_{k}
$$

Characteristic Polynomial

$$
F_{n}-F_{n-1}-F_{n-2}=0 \quad h(n)-3 h(n-1)+2 h(n-2)=0
$$

Def if sequence $\left\{a_{n}\right\}$ satisfies:

$$
\begin{aligned}
& \quad a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0, \\
& a_{0}=d_{0}, a_{1}=d_{1}, \cdots, a_{k-1}=d_{k-1},
\end{aligned}
$$

$C_{1}, C_{2}, \cdots C_{k}$ and $d_{0}, d_{1}, \cdots d_{n-1}$ are constants, $C_{k} \neq 0$, then this expression is called a $\mathrm{k}^{\text {th }}$-order linear homogeneous recurrence relation of $\left\{a_{n}\right\}$.

$$
C(x)=x^{k}+C_{1} x^{k-1}+\cdots+C_{k-1} x+C_{k}
$$

Characteristic Polynomial

Linear Homegeneous Recurrence Relation

Now we discuss the calculation by situations
(1) Characteristic Polynomial $C(x)$ has distinct real roots

Assume $C(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{k}\right)$
$G(x)$ could be simplified as $l_{1}, l_{2}, \cdots, l_{k}$ could be solved by

$$
\begin{aligned}
G(x) & =\frac{l_{1}}{1-\alpha_{1} x}+\frac{l_{2}}{1-\alpha_{2} x}+\cdots+\frac{l_{k}}{1-\alpha_{k} x} \\
& =\sum_{i=1}^{k} \frac{l_{i}}{1-\alpha_{i} x} \quad a_{n}=\sum_{i=1}^{k} l_{i} \alpha_{i}^{n}
\end{aligned}\left\{\begin{array}{c}
l_{1}+l_{2}+\cdots+l_{k}=d_{0} \\
l_{1} \alpha_{1}+l_{2} \alpha_{2}+\cdots+l_{k} \alpha_{k}=d_{1} \\
\cdots \cdots \\
l_{1} \alpha_{1}^{k-1}+l_{2} \alpha_{2}^{k-1}+\cdots+l_{k} \alpha_{k}^{k-1}=d_{k-1}
\end{array}\right.
$$

$$
(1-a x)^{-1}=1+a x+a^{2} x^{2}+\ldots .
$$

Linear Homegeneous Recurrence Relation

- Fibonacci Sequence Linear Homogeneous Recurrence Relation

$$
\begin{aligned}
& F_{0}=0, \quad F_{1}=1, \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

Def If sequence $\left\{a_{n}\right\}$ satisfies:

$$
a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0
$$

Characteristic Polynomial $\quad a_{0}=d_{0}, a_{1}=d_{1}, \cdots, a_{k-1}=d_{k-1}$,

$$
C(x)=x^{2}-x-1=(x-\alpha)(x-\beta)
$$

$C_{1}, C_{2}, \cdots C_{k}$ and $d_{1}, d_{2}, \cdots d_{n-1}$ are constants.
Characteristic Polynomial

$$
C(x)=x^{k}+C_{1} x^{k-1}+\cdots+C_{k-1} x+C_{k}
$$

1) Characteristic polynomial has distinct real roots, k different real roots

$$
F_{0}=0, \quad F_{1}=1
$$

$$
\begin{aligned}
C(x) & =\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right) \\
a_{n} & =l_{1} a_{1}^{n}+l_{2} a_{2}^{n}+\cdots+l_{k} a_{k}^{n}
\end{aligned}
$$

$\left\{\frac{\sqrt{5}}{2}(A-B)=1\right.$

$$
\mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left(\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}\right)=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}\right)
$$

Generating Function

Def 2-1 For sequence $a_{0}, a_{1}, a_{2} \ldots$, construct function

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

$G(x)$ is the generating function of $a_{0}, a_{1}, a_{2} \ldots$

Laplae 1812 AD

Seems to be functions but ? it's actually a mapping

Berelli
1705-AD

Integer Segmentation

$$
C(x)=x^{k}+C_{1} x^{k-1}+\cdots+C_{k-1} x+C_{k}
$$

Recurrence $a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0$,

Generating function $\boldsymbol{G}(\boldsymbol{x})$ as a bridge $a_{n}=l_{1} a_{1}^{n}+l_{2} a_{2}^{n}+\cdots+l_{k} a_{k}^{n}$

Linear Homogeneous Recurrence Relation

Def If sequence $\left\{a_{n}\right\}$ satisfies:

$$
\begin{array}{ll}
a_{n}+C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k}=0, & (2-5-1) \\
a_{0}=d_{0}, a_{1}=d_{1}, \cdots, a_{k-1}=d_{k-1}, & (2-5-2)
\end{array}
$$

$C_{1}, C_{2}, \cdots C_{k}$ and $d_{0}, d_{1}, \cdots d_{k-1}$ are constants
Characteristic Polynomial $C(x)=x^{k}+C_{1} x^{k-1}+\cdots+C_{k-1} x+C_{k}$

1) Characteristic polynomial has k distinct real roots

$$
\begin{gathered}
C(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right) \\
a_{n}=l_{1} a_{1}^{n}+l_{2} a_{2}^{n}+\cdots+l_{k} a_{k}^{n}
\end{gathered}
$$

In which $l_{1}, l_{2}, \cdots l_{k}$ are undetermined coefficients.

$$
(1+x)^{\alpha}=\sum_{n=0}^{\infty} \frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!} x^{n} \quad \alpha \in R \quad \sum_{k=0}^{\infty}(k+1) x^{k}=\frac{1}{(1-x)^{2}}
$$

- Characteristic Polynomial has multiple roots
- Eg $\quad a_{n}-4 a_{n-1}+4 a_{n-2}=0, a_{0}=1, a_{1}=4$
- Generating Function Method Characteristic Equation Method

$$
\begin{aligned}
& x^{2}: a(2)=4 a(1)-4 a(0) \\
& x^{3}: a(3)=4 a(2)-4 a(1) \\
& \pm) \\
& A(x)=\frac{1}{1-4 x+4 x^{2}} \\
& A(x)=\frac{1}{1-4 x+4 x^{2}}=\frac{1}{(1-2 x)^{2}} \\
& =(1-2 x)^{-2}=\sum_{k=0}^{\infty} C(k+1, k) 2^{k} x^{k} \\
& =\sum_{k=0}^{\infty}(k+1) 2^{k} x^{k} \\
& a_{n}=(n+1) 2^{n}
\end{aligned}
$$

Characteristic Equation: $x^{2}-4 x+4=(x-2)^{2}$
Generating Function Form: $A(x)=\frac{a x+b}{(1-2 x)^{2}}$

$$
\begin{aligned}
& \text { ons: } A(x)=\frac{A}{(1-2 x)}+\frac{B}{\left(1-y^{2 x}\right)^{2}} \\
& a_{n}=A \times 2^{n}+B(n+1) 2^{n}=\left(A^{\prime}+B n\right) 2^{n} \\
& a_{0}=A^{\prime}=1, \quad a_{1}=(1+B) 2=4 \\
& A^{\prime}=1, \quad B=1 \\
& a_{n}=(n+1) 2^{n}
\end{aligned}
$$

$$
G(x)=\sum_{i=1}^{t} \sum_{j=1}^{k_{i}} \frac{A_{i j}}{\left(1-\alpha_{i} x\right)^{j}}
$$

$$
(1+x)^{\alpha}=\sum_{n=0}^{\infty} \frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!} x^{n} \quad \alpha \in R
$$

(2) Characteristic Polynomial $C(x)$ has multiple roots

Assume β is a k-multiple root of $\mathrm{C}(\mathrm{x})$, it could be simplified as $\sum_{j=1}^{k} \frac{A_{j}}{(1-\beta x)^{j}}$

$$
\begin{gathered}
x^{n} \text { s coefficients } a_{n}=\sum_{j=1}^{k} A_{j}\binom{j+n-1}{n} \beta^{n}, \text { in which } \\
\binom{j+n-1}{n}=\binom{j+n-1}{j-1}
\end{gathered}
$$

is a j - l-order polynomial of n . So a_{n} is the product of β and a k - l-order polynomial of n . The term related to the solution of recurrence relation is:

$$
\left(A_{0}+A_{1} n+\cdots+A_{k-1} n^{k-1}\right) \beta^{n}
$$

in which $A_{0}, A_{1}, \cdots, A_{k-1}$ are k undetermined coefficients.

- Eg $a_{n}-4 a_{n-1}+4 a_{n-2}=0, a_{0}=1, a_{1}=4$

Characteristic Equation is : $\boldsymbol{x}^{2}-4 \boldsymbol{x}+4=(\boldsymbol{x}-2)^{2}$

$$
\begin{gathered}
\boldsymbol{a}_{\boldsymbol{n}}=\left(\boldsymbol{A}_{1}+\boldsymbol{A}_{2} \boldsymbol{n}\right) 2^{\boldsymbol{n}} \\
\boldsymbol{a}_{0}=\boldsymbol{A}_{1}=1 \\
\boldsymbol{a}_{1}=\left(\mathbf{1}+\boldsymbol{A}_{2}\right) 2=4, \quad \boldsymbol{A}_{2}=1 \\
\boldsymbol{a}_{\boldsymbol{n}}=(1+\boldsymbol{n}) 2^{\boldsymbol{n}}
\end{gathered}
$$

Distinct real roots Multiple real roots Conjugate complex roots?

$$
x^{2}-x+1=0
$$

Conjugate Complex Roots

- Quadratic Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- When $b^{2}-4 a c<0$, there's no real root, two complex roots.

$$
x_{1,2}=\frac{-b \pm i \times \sqrt{4 a c-b^{2}}}{2 a}
$$

$$
\begin{aligned}
& z=\rho(\cos \theta+i \sin \theta) \\
& \rho=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Trigonometrical form of complex number $z=a+b i$:

§ 2.5 Linear Homogeneous Recurrence Relation

(3) Characteristic Polynomial $C(x)$ has conjugate complex roots Assume that a_{1}, a_{2} are a pair of conjugate complex roots of $C(x)$.

$$
\alpha_{1}=\rho(\cos \theta+i \sin \theta), \alpha_{2}=\overline{\alpha_{1}}=\rho(\cos \theta-i \sin \theta)
$$

In $\frac{\boldsymbol{A}_{1}}{1-\boldsymbol{\alpha}_{1} \boldsymbol{x}}+\frac{\boldsymbol{A}_{2}}{1-\boldsymbol{\alpha}_{2} \boldsymbol{x}}$ the coefficient of x^{n} is:

$$
A_{1} \alpha_{1}^{n}+A_{2} \alpha_{2}^{n}
$$

$$
\begin{aligned}
& A_{1} \alpha_{1}^{n}+A_{2} \alpha_{2}^{n} \\
& =\left(A_{1}+A_{2}\right) \rho^{n} \cos n \theta+i\left(A_{1}-A_{2}\right) \rho^{n} \sin n \theta \\
& =A \rho^{n} \cos n \theta+B \rho^{n} \sin n \theta
\end{aligned}
$$

In which $A=A_{1}+A_{2}, \quad B=(i)\left(A_{1}-A_{2}\right)$
When calculating in reality, we could solve the conjugate complex roots at first, then calculate undetermined coefficients A, B to avoid the intermediate complex number calculations.

$$
\boldsymbol{A}_{1} \alpha_{1}^{n}+A_{2} \alpha_{2}^{n}=\boldsymbol{A} \rho^{n} \cos n \theta+B \rho^{n} \sin n \theta
$$

- Eg $\boldsymbol{a}_{\boldsymbol{n}}=\boldsymbol{a}_{n-1}-\boldsymbol{a}_{n-2}, \boldsymbol{a}_{1}=1, \boldsymbol{a}_{2}=0$

Characteristic equation: $x^{2}-\boldsymbol{x}+1=0$

$$
\begin{gathered}
x=\frac{1 \pm \sqrt{-3}}{2}=\cos \frac{\pi}{3} \pm i \sin \frac{\pi}{3}=e^{+\frac{\pi_{i}}{3}} \\
a_{n}=A_{1} \cos \frac{\boldsymbol{n} \boldsymbol{\pi}}{3}+\boldsymbol{A}_{2} \sin \frac{\boldsymbol{n} \boldsymbol{\pi}}{3} \\
\boldsymbol{a}_{1}=\frac{1}{2} A_{1}+\frac{\sqrt{3}}{2} A_{2}=1 \\
a_{2}=-\frac{1}{2} A_{1}+\frac{\sqrt{3}}{2} A_{2}=0 \\
a_{n}=\cos \frac{\boldsymbol{n} \boldsymbol{\pi}}{3}+\frac{\sqrt{3}}{3} \sin \frac{\boldsymbol{n} \boldsymbol{\pi}}{3}
\end{gathered}
$$

Summary of Linear Recurrence Relation

According to the non-zero roots of $\mathrm{C}(x)$

1) k distinct non- 0 real roots $C(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right)$

$$
a_{n}=l_{1} a_{1}^{n}+l_{2} a_{2}^{n}+\cdots+l_{k} a_{k}^{n}
$$

In which $l_{1}, l_{2}, \cdots, l_{k}$, are undetermined coefficients.
2)A pair of conjugate complex root $\alpha_{1}=\rho e^{i \theta}$ and $\alpha_{2}=\rho e^{-i \theta}$:

$$
a_{n}=A \rho^{n} \cos n \theta+B \rho^{n} \sin n \theta
$$

In which A, B are undetermined coefficients.
3)Has root α_{1} with multiplicity of k .

$$
\left(A_{0}+A_{1} n+\cdots+A_{k-1} n^{k-1}\right) \alpha_{1}^{n}
$$

In which $A_{0}, A_{1}, \cdots, A_{k-1}$ are k undetermined coefficients.

4 Linear Homogeneous Recurrence Relation

4-4 Applications

Linear Homogeneous Recurrence Relation

Eg: Solve $S_{n}=\sum_{k=0}^{n} k$

$$
\begin{aligned}
& S_{n}=1+2+3+\cdots+(n-1)+n \\
& S_{n-1}=1+2+3+\cdots+(n-1) \\
& \therefore \quad S_{n}-S_{n-1}=n
\end{aligned}
$$

Similarly $\quad S_{n-1}-S_{n-2}=n-1$
Subtract, get $S_{n}-2 S_{n-1}+S_{n-2}=1$
Similarly

$$
S_{n-1}-2 S_{n-2}+S_{n-3}=1
$$

$$
\begin{aligned}
\therefore & S_{n}-3 S_{n-1}+3 S_{n-2}-S_{n-3}=0 \\
& S_{0}=0, \quad S_{1}=1, \quad S_{2}=3
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad & S_{n}-3 S_{n-1}+3 S_{n-2}-S_{n-3}=0 \\
& S_{0}=0, \quad S_{1}=1, \quad S_{2}=3
\end{aligned}
$$

Corresponding Characteristic Equation is

$$
m^{3}-3 m^{2}+3 m-1=(m-1)^{3}=0
$$

$m=1$ is a 3-multiple root

$$
\begin{aligned}
\therefore \quad & S_{n}=\left(A+B n+C n^{2}\right)(1)^{n}=A+B n+C n^{2} \\
& S_{0}=0, \therefore A=0 \\
& S_{1}=1, B+C=1 \\
& S_{2}=3,2 \boldsymbol{B}+4 C=3, \therefore B=C=\frac{1}{2} \\
& \text { So } \quad S_{n}=\frac{1}{2} n+\frac{1}{2} n^{2}=\frac{1}{2} n(n+1)
\end{aligned}
$$

This proves $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$

$$
1^{2}+2^{2}+3^{2}+\cdots+\mathrm{n}^{2}=\frac{1}{3} \mathrm{n}\left(\mathrm{n}+\frac{1}{2}\right)(\mathrm{n}+1)
$$

Linear Homogeneous Recurrence Relation

Eg2: Calculate $S_{n}=\sum_{k=0}^{n} k^{2}$

$$
S_{n}=1+2^{2}+3^{2}+\cdots+(n-1)^{2}+n^{2} \quad \therefore S_{n}-S_{n-1}=n^{2}
$$

$$
S_{n-1}=1+2^{2}+3^{2}+\cdots+(n-1)^{2} \text { Similarly } S_{n-1}-S_{n-2}=(n-1)^{2}
$$

Subtract, get $S_{n}-2 S_{n-1}+S_{n-2}=2 n-1$
Similarly $\quad S_{n-1}-2 S_{n-2}+S_{n-3}=2(n-1)-1$
Subtract, get $S_{n}-3 S_{n-1}+3 S_{n-2}-S_{n-3}=2$
Similarly $\quad S_{n-1}-3 S_{n-2}+3 S_{n-3}-S_{n-4}=2$
$\therefore S_{n}-4 S_{n-1}+6 S_{n-2}-4 S_{n-3}+S_{n-4}=0$

$$
S_{0}=0, \quad S_{1}=1, \quad S_{2}=5, \quad S_{3}=14
$$

$$
\begin{aligned}
\therefore & S_{n}-4 S_{n-1}+6 S_{n-2}-4 S_{n-3}+S_{n-4}=0 \\
& S_{0}=0, \quad S_{1}=1, \quad S_{2}=5, \quad S_{3}=14
\end{aligned}
$$

Correspondent characteristic equation is:

$$
r^{4}-4 r^{3}+6 r^{2}-4 r+1=(r-1)^{4}=0
$$

$r=1$ is a 4-multiple root

$$
\therefore S_{n}=\left(A+B n+C n^{2}+D n^{3}\right)(1)^{n}
$$

As $S_{0}=0, S_{1}=1, S_{2}=5, S_{3}=14$ we have a equation group about A, B, C, D:

$$
\left\{\begin{array}{l}
A=0 \\
B+C+D=1 \\
2 B+4 C+8 D=5 \\
3 B+9 C+27 D=14
\end{array}\right.
$$

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+\cdots+\mathrm{n}^{2}=\frac{1}{3} \mathrm{n}\left(\mathrm{n}+\frac{1}{2}\right)(\mathrm{n}+1) \quad D_{n}=\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & & \vdots
\end{array}=\prod_{n \ggg>1}\left(x_{i}-x_{j}\right) . \\
& \left\{\begin{array}{l}
A=0 \\
B+C+D=1 \\
2 B+4 C+8 D=5
\end{array}\right. \\
& 3 B+9 C+27 D=14 \\
& \boldsymbol{B}=\frac{1}{12}\left|\begin{array}{ccc}
1 & 1 & 1 \\
5 & 4 & 8 \\
14 & 9 & 27
\end{array}\right|=\frac{1}{6} \\
& \boldsymbol{C}=\frac{1}{12}\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 5 & 8 \\
3 & 14 & 27
\end{array}\right|=\frac{1}{2} \\
& \boldsymbol{D}=\frac{1}{12}\left|\begin{array}{llc}
1 & 1 & 1 \\
2 & 4 & 5 \\
3 & 9 & 14
\end{array}\right|=\frac{1}{3}
\end{aligned}
$$

ne Applications of generating function and recurrence relation

Eg: There's a point P on the plane. It's the cross of n fields $D_{1}, D_{2}, \cdots D_{n}$. Color these n fields with k colors. We require the color of two adjacent areas to be different. Calculate the number of arrangements.

Let a_{n} be the number of arrangement to color these areas. There are 2 situations:

(10 Applications of generating function and recurrence relation

(1) D_{l} and D_{n-1} have the same color;
D_{n} has k-1 choices, which is all colors except the one used by D_{l} and D_{n-1}; the arrangements for D_{n-2} to D_{1} 的 are one-to-one correspondent to the arrangements for $n-2$ areas.

(2) D_{1} and D_{n-1} have different colors.
D_{n} has $k-2$ choices; the arrangements from D_{1} to D_{n-1} are one-to-one correspondent to the arrangements for

$$
\begin{aligned}
& n-1 \text { areas. } \\
& \therefore a_{n}=(k-2) a_{n-1}+(k-1) a_{n-2}, \\
& \quad a_{2}=k(k-1), a_{3-1}=k(k-1)(k-2) .
\end{aligned}
$$

60

$$
\begin{aligned}
& \therefore a_{n}=(k-2) a_{n-1}+(k-1) a_{n-2} \text {, } \\
& a_{2}=k(k-1), a_{3}=k(k-1)(k-2) . \\
& a_{1}=0, a_{0}=k . \\
& x^{2}-(k-2) x-(k-1)=0 \text {, } \\
& x_{1}=k-1, \quad x_{2}=-1 . \\
& \begin{array}{l}
a_{n}=A(k-1)^{n}+B(-1)^{n} \\
\left\{\begin{array} { l }
{ A + B = k , } \\
{ (k - 1) A - B = 0 . }
\end{array} \left\{\begin{array}{l}
A=1, \\
B=k-1 .
\end{array}\right.\right.
\end{array} \\
& \therefore \quad a_{n}=(k-1)^{n}+(k-1)(-1)^{n}, n \geq 2 \text {. } \\
& a_{1}=k \text {. }
\end{aligned}
$$

Def 2-1 For sequence $a_{0}, a_{1}, a_{2} \ldots$, construct a function

$$
G(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots
$$

Then $G(x)$ is called the generating function of $a_{0}, a_{1}, a_{2} \ldots \ldots$

Laplace
1812 AD

Generating functions are a hanger to hang a serires of numbers. - Herber

