Data Structures and Algorithms (6)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/
Chapter 6 Trees

- General Definitions and Terminology of Tree
 - Trees and Forest
 - Equivalent Transformation between a Forest and a Binary Tree
 - Abstract Data Type of Tree
 - General Tree Traversals

- Linked Storage Structure of Tree

- Sequential Storage Structure of Tree

- K-ary Trees
6.1 General Definitions and Terminology of Tree

Trees and Forest

- A tree \(T \) is a finite set of one or more nodes:
 - there is one specific node \(R \), called the root of \(T \)
 - If the set \(T\{R\} \) is not empty, these nodes are partitioned into \(m > 0 \) disjoint finite subsets \(T_1, T_2, \ldots, T_m \), each of which is a tree. The subsets \(T_i \) are said to be subtrees of \(T \).
 - Directed ordered trees: the relative order of subtrees is important
 - An ordered tree with degree 2 is not a binary tree
 - After the first child node is deleted
 - The second child node will take the first child node’s place
6.1 General Definitions and Terminology of Tree

Logical Structure of Tree

- A finite set \(K \) of \(n \) nodes, and a relation \(r \) satisfying the following conditions:
 - There is a unique node \(k_0 \in K \), who has no predecessor in relation \(r \).
 - Node \(k_0 \) is called the root of the tree.
 - Except \(k_0 \), all the other nodes in \(K \) has a unique predecessor in relation \(r \)
- An example as in the figure on the right
 - Node set \(K = \{ A, B, C, D, E, F, G, H, I, J \} \)
 - The relation on \(K \): \(r = \{ <A, B>, <A, C>, <B, D>, <B, E>, <B, F>, <C, G>, <C, H>, <E, I>, <E, J> \} \)

\[A \]
\[B \]
\[C \]
\[D \]
\[E \]
\[F \]
\[G \]
\[H \]
\[I \]
\[J \]
6.1 General Definitions and Terminology of Tree

Terminology of Tree

- **Node**
 - **Child node, parent node**, the first child node
 - If \(\langle k, k' \rangle \in r \), we call that \(k \) is the parent node of \(k' \), and \(k' \) is the child node of \(k \)
 - **Sibling node**, previous/next sibling node
 - If \(\langle k, k' \rangle \in r \) and \(\langle k, k'' \rangle \in r \), we call \(k' \) and \(k'' \) are sibling nodes
 - **Branch node, leaf node**
 - Nodes who have no subtrees are called leaf nodes
 - Other nodes are called branch nodes
Terminology of Tree

- **Edge**
 - The ordered pair of two nodes is called an edge

- **Path, path length**
 - Except the node \(k_0 \), for any other node \(k \in K \), there exists a node sequence \(k_0, k_1, ..., k_s \), s.t. \(k_0 \) is the root node, \(k_s = k \), and \(<k_{i-1}, k_i> \in r \) \((1 \leq i \leq s)\).
 - This sequence is called a path from the root node to node \(k \), and the path length (the total number of edges in the path) is \(s \)

- **Ancestor, descendant**
 - If there is a path from node \(k \) to node \(k_s \), we call that \(k \) is an ancestor of \(k_s \), and \(k_s \) is a descendant of \(k \)
6.1 General Definitions and Terminology of Tree

Terminology of Tree

- **Degree**: The degree of a node is the number of children for that node.

- **Level**: The root node is at level 0
 - The level of any other node is the level of its parent node plus 1

- **Depth**: The depth of a node M in the tree is the path length from the root to M.

- **Height**: The height of a tree is the depth of the deepest node in the tree plus 1.
Different Representations of Trees

- Classic node-link representation
- Formal (set theory) representation
- Venn diagram representation
- Outline representation
- Nested parenthesis representation
Node-Link Representation
Formal Representation

The logical structure of a Tree is:
Node set:
\[K = \{A, B, C, D, E, F, G, H, I, J\} \]
The relation on \(K \):
\[N = \{<A, B>, <A, C>, <B, D>, <B, E>, <B, F>, <C, G>, <C, H>, <E, I>, <E, J>\} \]
Venn Diagram Representation
Nested Parenthesis Representation

\[(A(B(D)(E(I)(J))(F))(C(G)(H))))\]
The conversion from Venn diagram to nested parenthesis

\[
(A(B(D)(E(I)(J))(F))(C(G)(H)))
\]
Chapter 6
Trees

6.1 General Definitions and Terminology of Tree

Outline Representation

A
B
D
E
I
J
F
C
G
H
6 Trees

6.1 General Definitions and Terminology of Tree

6.1.1 Tree and Forest
6.1.2 Equivalence Transformation between a Forest and a Binary Tree
6.1.3 Abstract Data Type of the Tree
6.1.4 General Tree Traversals

6.2 Linked Storage Structure of Tree

6.2.1 List of Children
6.2.2 Static Left-Child/Right-Sibling representation
6.2.3 Dynamic representation
6.2.4 Dynamic Left-Child/Right-Sibling representation
6.2.5 Parent Pointer representation and its Application in Union-Find Sets

6.3 Sequential Storage Structure of Tree

6.3.1 Preorder Sequence with rlink representation
6.3.2 Double-tagging Preorder Sequence representation
6.3.3 Postorder Sequence with Degree representation
6.3.4 Double-tagging Levelorder Sequence representation

6.4 K-ary Trees

6.5 Knowledge Conclusion of Tree
Equivalent Transformation between a Forest and a Binary Tree

- **Forest**: A forest is a collection of one or more disjoint trees. (usually ordered)
- The correspondence between trees and a forests
 - Removing the root node from a tree, its subtrees become a forest.
 - Adding an extra node as the root of the trees in a forest, the forest becomes a tree.
- There is a one-to-one mapping between forests and binary trees
 - So that all the operations on forests can be transformed to the operations on binary trees
How to map a forest to a binary tree?
The transformation from a forest to a binary tree

- Ordered set \(F = \{ T_1, T_2, ..., T_n \} \) is a forest with trees \(T_1, T_2, ..., T_n \). We transform it to a binary tree \(B(F) \) recursively:
 - If \(F \) is empty (i.e., \(n=0 \)), \(B(F) \) is an empty binary tree.
 - If \(F \) is not empty (i.e., \(n\neq0 \)), the root of \(B(F) \) is the root \(W_1 \) of the first tree \(T_1 \) in \(F \);
 - the left subtree of \(B(F) \) is the binary tree \(B(F_{W_1}) \), where \(F_{W_1} \) is a forest consisting of \(W_1 \)'s subtrees in \(T_1 \);
 - the right subtree of \(B(F) \) is the binary tree \(B(F') \), where \(F' = \{ T_2, ..., T_n \} \).
Convert a forest to a binary tree

1st step: Add a connection between all sibling nodes in the forest.

2nd step: For each node, delete all the connections between the node and its children, except the first child.

3rd step: Adjust the position of the forest nodes to make them a binary tree.

Diagram:

- Original forest:
 - A
 - B1 C E
 - K H
 - J

- Adjusted binary tree:
 - A
 - B1 C
 - K
 - J
 - E
 - F
 - G
The transformation from a binary tree to a forest

Assume B is a binary tree, r is the root of B, B_L is the left sub-tree of r, B_R is the right sub-tree of r. We can transform B to a corresponding forest F(B) as follows,

- If B is empty, F(B) is an empty forest.
- If B is not empty, F(B) consists of trees \(\{T_1\} \cup F(B_R) \), where the root of \(T_1 \) is r, the subtrees of r are \(F(B_L) \).
Convert a binary tree to a forest

3rd step: Adjust the position of node \(x \) when \(x \) is the left child of its parent. Adjust connections between parents and their right children.

1. If the node \(x \) is the left child of its parent \(y \), then:
 - Connect the right child of \(x \), the right child of the right child of \(x \), ..., to \(y \).

2. Delete all connections between parents and their right children.

3. Adjust the position of node \(x \) when \(x \) is the left child of its parent.
Questions

1. Is a tree also a forest?

1. Why do we establish the one-to-one mapping between binary trees and forests?
Data Structures and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujp/course/sjjg/
Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)