
https://courses.edx.org/courses/PekingX/04830050x/2T2014/

Ming Zhang“ Data Structures and Algorithms “

Data Structures
and Algorithms（1）

Instructor: Ming Zhang

Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/

目录页

Ming Zhang “Data Structures and Algorithms”

2

目录页

Chapter 1

Overview

Chapter 1 Overview

• Problem solving

• Data structures and abstract data types

• The properties and categories of algorithms

• Evaluating the efficiency of the algorithms

目录页

Ming Zhang “Data Structures and Algorithms”

3

目录页 1.1 Problem solving

• Goal of writing computer programs？

– To solve practical problems

• Problem Abstraction

– Analyze requirements

 and build a problem model

• Data Abstraction

– Determine an appropriate data structure to

 represent a certain mathematical model

• Algorithm Abstraction

– Design suitable algorithms for the data model

• Data structures＋Algorithms => Programs

– Simulate and solve practical problems

Problem solving

Data structure

Design method Description language

Algorithm theory Data Model

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

4

目录页

Farmer Crosses River Puzzle

1.1 Problem solving

cabbage

sheep

wolf

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

5

目录页

Farmer Crosses River Puzzle
• Problem abstraction：FSWC crossing over the river

- Only the farmer can row the boat

-There are only two seats on the boat including the farmer

- “Wolf and sheep”, “sheep and cabbages” can not stay along without

the accompany of the farmer

• Data abstraction：graph model

- Unreasonable state：WS、FC、SC、FW、WSC、F

- The vertex represents the “original bank status”(10 states,

including“empty”）

- edge：state transition as the result of a reasonable operation

(cross over the river)

1.1 Problem solving

F

（FSC）
 S

（FWC）
C

（FSW）
 W

（FSC）
 S

（FSWC）
WC

F

FS

FW

FS

FC （FWC）
 WC

（FS）
 empty

FS
 （FWC）
 FSWC

FSWC FWC FSC

S

FS FSW

WC W C empty (succeed)

Chapter 1

Overview

Farmer is abbreviated as F

Sheep is abbreviated as S

Wolf is abbreviated as W

cabbage is abbreviated as C

目录页

Ming Zhang “Data Structures and Algorithms”

6

目录页

Farmer Crosses River Puzzle

• Data structure

- Adjacency matrix

• Algorithm abstraction：

- The shortest path

1.1 Problem solving

Chapter 1

Overview

FSWC FWC FSC

S

FS FSW

WC W C empty (succeed)

Farmer is abbreviated as F

Sheep is abbreviated as S

Wolf is abbreviated as W

cabbage is abbreviated as C

目录页

Ming Zhang “Data Structures and Algorithms”

7

• Farmer Crosses River Puzzle —— The shortest

path model

• Problem abstraction？

• Data abstraction?

• Algorithm abstraction？

• You may write programs to achieve it.

• Any other model？

目录页

Questions：process of problem solving

1.1 Problem solving

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

8

目录页

Chapter 1

Overview

Chapter 1 Overview

• Problem solving

• Data structures and abstract data types

• The properties and categories of algorithms

• Evaluating the efficiency of the algorithms

目录页

Ming Zhang “Data Structures and Algorithms”

9

目录页

• Structure: entity + relation

• Data structure :

• Data organized according to

logical relationship

• Stored in computer according

to a certain storage method

• A set of operations are

defined on these data

1.2 What is data structure 目录页

store logic

compute

Data

structure

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

10

目录页 1.2 What is data structure

Logical organization of data structure

• Linear Structure

• Linear lists（list，stack，queue，string, etc.）

• Nonlinear Structure

• Trees（binary tree，Huffman tree，

 binary search tree etc）

• Graphs（directed graph，undirected graph etc）

• Graph  tree  binary tree  linear list

4 5 6

2 3

1

1 2 3 4 5 6

1 2

3

4 5

6

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

11

目录页 1.2 What is data structure

Storage structure of data

• Mapping from logical structure to the physical storage space

Main memory（RAM）

• Coded in non negative integer address，set of

 adjacent unit

• The basic unit is the byte

• The time required to access different addresses

 are basically the same (random access)

0

A x

RAM

M-1

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

12

目录页 1.2 What is data structure

Storage structure of data

• For logical structure（K ，r），in which r∈R

• For the node set K, establish a mapping from K to M

memory unit：K→M，for every node j∈K , it corresponds

to a unique continuous storage area C in M

0 1 2 3

4

10 11

12 13 14 15

Main memory

4

10

Storage

mapping

8 8 9 9

7 7 6 6 5 5 int a[3]

a[0] a[1] a[2]

11 10

12 13 14 15

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

13

目录页 1.2 What is data structure

Storage structure of data

• Relation tuple（j
1 ，j

2
）∈r

 （j
1
， j

2
∈ K are nodes）

• Sequence：storage units of data are adjacent

• Link: a pointer points to the storage address, referring to a certain

connection

• Four kinds：Sequence, link, index, hash

0 2 1 3 6 5 4 7
S

…

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

14

目录页 1.2 What is data structure

Abstract Data Type

• Abbreviated as ADT (Abstract Data Type)

– A set of operations built upon a mathematical model

– Has nothing to do with the physical storage

structure

– The software system is built upon

 the data model (object oriented)

• The development of Modularization

– Hide the details of the implementation and

operations of the internal data structures

– Software reuse

Chapter 1

Overview

storage logic

operation

Data

structure

目录页

Ming Zhang “Data Structures and Algorithms”

15

目录页 1.2 What is data structure

ADT do not care about storage details

——for example，brackets matching algorithm of C++ version

void BracketMatch(char *str) {

 Stack<char> S; int i; char ch;

// The stack can be sequential

// or linked, both are referenced

// in the same way

 for(i=0; str[i]!='\0'; i++) {

 switch(str[i]) {

 case '(': case '[': case '{':

 S.Push(str[i]); break;

 case ')': case ']': case '}':

 if (S.IsEmpty()) {

 cout<<"Right brackets

excess!";

 return;

 }

 else {

 ch = S.GetTop();

 if (Match(ch,str[i]))

 ch = S.Pop();

 else {

 cout << " Brackets do not match!";

 return;

 }

 } /*else*/

 }/*switch*/

 }/*for*/

 if (S.IsEmpty())

 cout<<" Brackets match!";

 else cout<<“Left brackets

excess!";

}

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

16

目录页 1.2 What is data structure

 Sequential stack brackets matching algorithm of C version

(different from the linked stack)

void BracketMatch(char *str) {

 SeqStack S; int i; char ch;

 InitStack(&S);

 for(i=0; str[i]!='\0'; i++) {

 switch(str[i]) {

 case '(': case '[': case '{':

 Push(&S,str[i]); break;

 case ')': case ']': case '}':

 if (IsEmpty(&S)) {

 printf("\nRight brackets

excess!");

 return;

 }

 else {

 GetTop (&S,&ch);

 if (Match(ch,str[i]))

 Pop(&S,&ch);

 else {

 printf("\nBrackets don’t

match!");

 return;

 }

 } /*else*/

 }/*switch*/

 }/*for*/

 if (IsEmpty(&S))

 printf("\nBrackets match!”)

 else printf("\nLeft brackets

excess");}

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

17

目录页 1.2 What is data structure

Linked stack brackets matching algorithm of C version

(different from the sequential stack)

void BracketMatch(char *str) {

 LinkStack S; int i; char ch;

 InitStack(/*&*/S);

 for(i=0; str[i]!='\0'; i++) {

 switch(str[i]) {

 case '(': case '[': case '{':

 Push(/*&*/S, str[i]);

 break;

 case ')': case ']': case '}':

 if (IsEmpty(S)) {

 printf("\nRight brackets

excess!");

 return;

 }

 else {

 GetTop (/*&*/S,&ch);

 if (Match(ch,str[i]))

 Pop(/*&*/S,&ch);

 else {

 printf("\nBrackets don’t

match!");

 return;

 }

 } /*else*/

 }/*switch*/

 }/*for*/

 if (IsEmpty(/*&*/S))

 printf("\nBrackets match!”)

else printf("\nLeft brackets excess");}

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

18

目录页 1.2 What is data structure

Abstract Data Type

• Two-tuples of abstract data structure

 <Data object D，data operation P>

• Firstly, defines logical structure; then data

operations

• Logical structure： relationship between data

objects

• Operations：algorithms running on the data

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

19

目录页 1.2 What is data structure

Example：abstract data type of stack

• Logical structure：linear list

• Operation ： Restricted access

– Only allow for the insert, delete operation at the top of the stack

– push 、pop、top 、isEmpty

template <class T> // Element type of stack is T

class Stack {

public: // Stack operation set

 void clear(); // Turned into an empty stack

 bool push(const T item);// Push item into the stack，return true if succeed, otherwise false

 bool pop(T & item);// Pop item out of the stack， return true if succeed, otherwise false

 bool top(T& item); // Read item at the top of the stack, return true if succeed, otherwise false

 bool isEmpty(; // If the stack is empty return true

 bool isFull(); // If the stack is full return true

 };

Stack top

Stack bottom

pop push

k
1

...

K
i

K
i+1

k
0

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

20

目录页 1.2 What is data structure

Questions about abstract data type

• How to present a logical structure in an ADT？

• Is abstract data type equivalent to the class

definition ？

• Can you define a ADT without templates？

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

21

目录页

Chapter 1

Overview

Chapter 1 Overview

• Problem solving

• Data structures and abstract data types

• The properties and categories of algorithms

• Evaluating the efficiency of the algorithms

目录页

Ming Zhang “Data Structures and Algorithms”

22

目录页

Problem——Algorithm—— Program

Goal：problem solving

• Problem (a function)

• A mapping from input to output.

• Algorithm (a method)

• The description for specific problem solving process is a

finite sequence of instructions

• Program

• It is the algorithm implemented using a computer programming

language.

1.3 Algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

23

目录页

The properties of algorithms

• Generality

– Solve problems with parametric input

– Ensure the correctness of the computation results

• Effectiveness

– Algorithm is a sequence of finite instructions

– It is made up of a series of concrete steps

• Certainty

– In the algorithm description, which step will to be performed must be clear

• Finiteness

– The execution of the algorithm must be ended in a finite number of steps

– In other words, the algorithm cannot contain an endless loop

1.3 Algorithm

Q

Q

Q

Q

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

24

目录页

Queen problem（Four Queens)

1.3 Algorithm

1

2

4

3

5

6

7

4

3

9

8

10

11

12

2

4

4

2

3

14

13

15

16

17

2

3

3

2

4

X1=1

18

20

19

21

22

23

3

4

4

3

1

25

24

26

27

28

1

4

4

1

3

30

29

31

32

33

1

3

3

1

4

2

34

36

35

37

38

39

2

4

4

2

1

41

40

42

43

44

1

4

4

1

2

46

45

47

48

49

1

2

2

1

4

3

50

52

51

53

54

55

2

3

3

2

1

57

56

58

59

60

1

3

3

1

2

62

61

63

64

65

1

2

2

1

3

4

X2=2

X3=3

X4=4

Q

Q

Q

Q

 Solution<x1,x2,x3,x4>（ Place the column number ）

 Search space： quadtree

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

25

目录页
Basic classification of

algorithms

• Enumeration

– Sequential search for value K

• Backtracking、search

– Eight queens problem、traversal of trees

and graphs

• A recursive divide and conquer

– Binary search、quick sort、merge sort

• Greedy

– Huffman coding tree、 Dijkstra algorithm for shortest path、Prim algorithm for

minimum spanning tree

• Dynamic programming

– Floyd algorithm for shortest path

1.3 Algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

26

目录页

 Sequential Search
template <class Type>

class Item {

private:

 Type key; // the key field

 //other fields

public:

 Item(Type value):key(value) {}

 Type getKey() {return key;} // get the key

 void setKey(Type k){ key=k;} // set the key

};

vector<Item<Type>*> dataList;

template <class Type> int SeqSearch(vector<Item<Type>*>& dataList, int length, Type k) {

 int i=length;

 dataList[0]->setKey (k); // the zero-th element is a sentinel

 while(dataList[i]->getKey()!=k) i--;

 return i; // return the position of the element

}

1.3 Algorithm

18

0 1 2 3 4 5 6 7 8

 22 93 60 88 52 35 17

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

27

目录页

Binary search

For sequential linear list that is in order

• K
mid:

The value of the element that is in the middle

of the array

– If k
mid

 = k，the search is successful

– If k
mid

 > k , continue searching in the left half

– Otherwise，if k
mid

 < k， You can ignore the part that

before mid and search will go on in the right part

• Fast

– k
mid

 = k, the search ends up successfully

– K
mid

 k, reduce half of the searching range at least

1.3 Algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

28

目录页

Use binary search to find value K
template <class Type> int BinSearch (vector<Item<Type>*>& dataList,

int length, Type k){

 int low=1, high=length, mid;

 while (low<=high) {

 mid=(low+high)/2;

 if (k<dataList[mid]->getKey())

 high = mid-1; // decrease the upper bound of the search interval

 else if (k>dataList[mid]->getKey())

 low = mid+1; // decrease the lower bound of the search interval

 else return mid; // find value K and return the position

 }

 return 0; // fail to search and return 0

}

1.3 Algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

29

目录页

Search the key value 18 low=1 high=9 K=18

the first time：mid=5; array[5]=35>18

 high=4; (low=1)

the second time：mid=2; array[2]=17<18

 low=3; (high=4)

the third time：mid=3; array[3]=18=18

 mid=3；return 3

35

1 2 3 4 5 6 7 8 9

 15 22 51 60 88 93

low mid high

18 17

Illustration for binary search

1.3 Algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

30

目录页

Question： The time and space restrictions for algorithms

Design an algorithm that move the elements of the array A(0..n-1) to

the right place by k positions circularly. The original array is supposed

to be a
0
, a

1
, …, a

n-2
,a

n-1
；the array that has been moved will be a

n-k
, a

n-

k+1
, …, a

0
, a

1
, …, a

n-k-1
。You are required to just use an extra space that

is equivalent to an element, and the total number of moving and

exchanging is only linearly correlated with n. 。For example，n=10, k=3

The original array ： 0 1 2 3 4 5 6 7 8 9

The final array： 7 8 9 0 1 2 3 4 5 6

1.4 Algorithm complexity analysis

 i+k i … … i-k …

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

31

目录页

Chapter 1

Overview

Chapter 1 Overview

• Problem solving

• Data structures and abstract data types

• The properties and categories of algorithms

• Evaluating the efficiency of the algorithms

目录页

Ming Zhang “Data Structures and Algorithms”

32

目录页

Asymptotic analysis of algorithm

• f(n) is the growth rate as the data scale of n

gradually increases

• When n increases to a certain value, the item

with the highest power of n in the equation has

the biggest impact

– other items can be neglected.

1000nlog100nn)n(f 10

2 

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

33

目录页

 Asymptotic analysis of algorithm：Big O notation

• The definition domain of function f and g is nature numbers，the range

is non negative real numbers.

• Definition：If positive number c and n
0
 exists，which makes for any

nn
0
， f(n)  cg(n)，

• Then f(n) is said to be in the set of O(g(n)) ， abbreviated as f(n) is

O(g(n)) ，or f(n) = O(g(n))

• Big O notation：it represents the upper bound of the growth rare of a

function

– There could be more than one upper bounds of the growth rare of a function

• When the upper bound and the lower bound are the same , you can

use Big  notation.

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

34

目录页

Big O notation

• f(n) = O(g(n)) , only when

— There exists two parameters c > 0 ，n
0
 > 0, for any n  n

0
 ， f(n) 

cg(n)

• iff  c, n
0
 > 0 s.t.  n  n

0
: 0  f(n)  cg(n)

n

f(n)

cg(n)

n is large enough

g(n) is the upper bound of f(n)

n
0

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

35

目录页

Time unit of Big O notation

•Simple boolean or arithmetic operations

•Simple I/O

– Input or output of a function

 For example，operations such as read data from an

array

– Files I/O operations or keyboard input are not

excluded

•Return of function

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

36

目录页

• Rule of addition: f
1
(n)+f

2
(n)=Ｏ(max(f

1
(n), f

2
(n)))

– Sequential structure，if structure，switch structure

• Rule of Multiplication: f
1
 (n)·f

2
 (n) =Ｏ(f

1
(n)·f

2
 (n))

– for, while, do-while structure

for (i=0; j<n; i++)

 for (j=i; j<n; j++)

 k++;

in

 
   2

2
1

0 22

1
nO

nnnn
in

n

i












?

1.4 Complexity analysis of algorithm

Rules of operation of Big O notation

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

37

目录页

Asymptotic analysis of algorithm ：Big  notation

• If positive number c and n
0
 exists，which makes

for any nn
0
， f(n)  cg(n)，

• Then f(n) is said to be in the set of O(g(n)) ，

abbreviated as f(n) is O(g(n)) ，or f(n) = O(g(n))

• The only difference of Big O notation and Big 

notation is the direction of inequation.

• When you adopt the  notation， you’d better

find the tightest (largest) lower bound of all the

lower bound of the growth rate of the function.

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

38

目录页

 Big  notation
• f(n) = (g(n))

– iff  c, n
0
 > 0 s.t.  n ≥ n0 , 0 ≤ cg(n) ≤ f(n)

• The only difference with Big O notation is the direction

of inequation

f(n)

cg(n)

n

n is large enough

g(n) is the lower bound of f(n)

n
0

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

39

目录页

Asymptotic analysis of algorithm ： Big  notation

• When the upper bound and the lower bound are the

same, you can use  notation.

• Definition：

If a function is in the set of O (g(n)) and  (g(n)) ，it is

called  (g(n))。

• In other words， When the upper bound and the lower

bound are the same , you can use Big  notation.

• There exist c
1
, c

2
，and positive integer n

0
，which

makes for any positive integer n > n
0
， The following

two inequality are correct at the same time ：

 c
1
 g(n)  f(n)  c

2
 g(n)

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

40

目录页

Big  notation

• f(n) = (g(n))

– iff  c
1
, c

2
, n

0
 > 0 s.t. 0 ≤ c

1
g(n) ≤ f(n) ≤ c

2
g(n),  n ≥ n

0

• When the upper bound and the lower bound are the same

,you can use  notation.

f(n)

c
1
g(n)

n
0

c
2
g(n) n is large enough

g(n) has the same growth rate with f(n)

n

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

41

目录页

The growth rate curve of function

1.4 Complexity analysis of algorithm

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

n

f(
n
)

2
n

n
2

nlog
2
n

log
2
n

n

n

f(n)

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

42

目录页

Problem space vs time overhead

1.4 Complexity analysis of algorithm

Scale n

Time cost

worst

best

average

worst

best

The input data space of problem

Chapter 1

Overview

data space in
average situation

目录页

Ming Zhang “Data Structures and Algorithms”

43

目录页

Sequential Search

• You are required to find a given K in an array

with a scale of n sequentially

• Best situation

• The first element of the array is K

• You only need to check one element

• Worst situation

• K is the last element of the array

• You need to check all the n elements of the array.

1.4 Complexity analysis of algorithm

张铭《数据结构与算法》

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

44

目录页

Find value k sequentially——the average case

• If value is distributed with equal probability

- The probability that K occurs in every position is

1/n

• The average cost is O(n)

 2

1n

n

n...21 




1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

45

目录页

Find value k sequentially——the average case

• Distributed with different probability

– Probability that K occurs in position 1 is 1/2

– Probability that K occurs in position 2 is 1/4

– Probability that K occurs in other positions are all

• The average cost is O(n)

8

3n
1

)2n(8

6)1n(n
1

)2n(4

n...3

4

2

2

1 












)2n(4

1

2n

4/12/11








1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

46

目录页

Binary search

For sequential linear list that is in order

• K
mid:

The value of the element that is in the middle

of the array

– If k
mid

 = k，the search is successful

– If k
mid

 > k，the search continues in the left half

– Otherwise，if k
mid

 < k， You can ignore the part that

before mid and search will go on in the right part

• Fast

– k
mid

 = k, search will be ended up

– K
mid

 k ,reduce half of the searching range at least

1.3 Algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

47

目录页

 Performance analysis of binary search

• The largest search length

• The search length of the situation that failed

is or

• The average cost is

• In complexity analysis of algorithm

– The base of log n is 2

– When the base changed , the magnitude

of algorithm will not change

 ）1（log2 n ）（ 1log2 n

 ）（ 1log 2 n

15 18

22

51

7

8

9

2

1 3

4

88

60

93

35

17

5

6

1.4 Complexity analysis of algorithm

35

1 2 3 4 5 6 7 8 9

 15 22 51 60 88 93

low mid high

18 17

O(log)n

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

48

目录页

Time/Space tradeoff

• Data structure

– A certain space to store every data item

– A certain amount of time to perform a

single basic operation

• The cost and benefit

– limit of time and space

– Software engineering

1.4 Complexity analysis of algorithm

张铭《数据结构与算法》

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

49

目录页

• Increasing the space overhead may improve the

algorithm's time overhead

• To save space, often need to increase the operation

time

The space-time tradeoffs

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

50

目录页

Selecting data structure and algorithm

• You need to analyze the problem carefully

– Especially the logic relations and data types involved in

the process of solving problems—problem abstraction、
data abstraction

– Preliminary design of data structure often precede

the algorithm design

• Note the data structure of scalability

– Consider when the size of input data changes ， whether

data structure is able to adapt to the evolution and

expansion of problem solving

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

51

目录页

Question：Selecting data structure and algorithm

• Goal of problem solving？

• Process of choosing data structure and

algorithm？

1.4 Complexity analysis of algorithm

Chapter 1

Overview

目录页

Ming Zhang “Data Structures and Algorithms”

52

目录页

Question：three elements of data structure

Which of the structures below are logical structure and

has nothing to do with the storage and operation().

 A. Sequential table B. Hash table

 C. Linear list D. Single linked list

The following terms （ ） has nothing to do with

the storage of data.

 A. Sequential table B. Linked list

 C. Queue D. Circular linked list

1.4 Complexity analysis of algorithm

Chapter 1

Overview

Ming Zhang“ Data Structures and Algorithms “

Data Structures and
Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)

http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao

Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)

