Data Structures
and Algorithms (8)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (the “Eleventh Five-Year” national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/
Overview

- 8.1 Basic Concepts of Sorting
- **8.2 Insertion Sort (Shell Sort)**
- 8.3 Selection Sort (Heap Sort)
- 8.4 Exchange Sort
 - 8.4.1 Bubble Sort
 - 8.4.2 Quick Sort
- 8.5 Merge Sort
- 8.6 Distributive Sort and Index Sort
- 8.7 Time Cost of Sorting Algorithms
- Knowledge Summary on Sorting
8.2 Insertion Sort

- 8.2.1 Direct insertion Sort
- 8.2.2 Shell Sort
Chapter 8
Internal Sort

8.2 Insertion Sort

Animation of Insertion Sort

45 34 78 12 34' 32 29 64
8.2 Insertion Sort

Algorithm of Insertion Sort

template <class Record>
void ImprovedInsertSort (Record Array[], int n)
//Array[] is the unsorted sequence, n is its length
Record TempRecord; // temporary variable
for (int i=1; i<n; i++) // insert the ith record in turn
TempRecord = Array[i];
 //find the correct position for i from i
 int j = i-1;
 //move the records bigger than or equal to i backwards
while ((j>=0) && (TempRecord < Array[j])){
 Array[j+1] = Array[j];
 j = j - 1;
}
 //now the one after j is the correct position of i, fill it in
Array[j+1] = TempRecord;
8.2 Insertion Sort

Algorithm Analysis

- Stable
- Space Cost: \(\Theta(1) \)
- Time Cost:
 - Best Case: \(n-1 \) comparisons, \(2(n-1) \) movements, \(\Theta(n) \)
 - Worst Case: \(\Theta(n^2) \)
 - Comparisons: \(\sum_{i=1}^{n-1} i = n(n-1)/2 = \Theta(n^2) \)
 - Movements: \(\sum_{i=1}^{n-1} (i + 2) = (n-1)(n+4)/2 = \Theta(n^2) \)
 - Average: \(\Theta(n^2) \)
8.2.2 Shell Sort

- Two features of direct insertion sort:
 - In the best case (sequence is in order), time cost is $\Theta(n)$
 - For short sequence, direct insertion sort is effective
- Shell Sort takes full advantage of these two features of direct insertion sort.
8.2.2 Shell Sort

Algorithm of Shell Sort

- Transform the sequence into small sequences, do insertion sort in these small sequences.
- Increase the scale of small sequences gradually and reduce the number of small sequences to make the sequence in a more ordered state.
- At last, do the direct insertion sort for the whole sequence for rounding off to complete.
8.2.2 Shell Sort

The Animation of Shell Sort

29 12 34 32 45 34 78 64
Shell Sort with Increment Decreasing by being divided by 2

```cpp
template <class Record>
void ShellSort(Record Array[], int n) {
    // Shell Sort, Array[] is the unsorted array, n is its length
    int i, delta;
    // The increment delta decreases by being divided by 2
    for (delta = n/2; delta > 0; delta /= 2)
        for (i = 0; i < delta; i++)
            // do the insertion sort for the delta subsequences
            // "&" passes the address of Array[i], the length of array is n-i
            ModInsSort(&Array[i], n-i, delta);
    // If the increment sequence can not guarantee the last
    // delta is 1, the following insertion for rounding off can be
    // used: ModInsSort(Array, n, 1);
}
```
8.2.2 Shell Sort

Insertion Sort Modified for Increment

```
template <class Record> // delta means current increment
void ModInsSort(Record Array[], int n, int delta) {
    int i, j;
    // For the ith record of subsequence, find appropriate position
    for (i = delta; i < n; i += delta)
        // j find the reversed pair forward in step of delta
        for (j = i; j >= delta; j -= delta) {
            if (Array[j] < Array[j-delta]) // reversed pair
                swap(Array, j, j-delta); // exchange
            else break;
        }
}
```
Algorithm Analysis

- Unstable
- Space Cost: $\Theta(1)$
- Time Cost
 - Increment decreased by being divided by 2, $\Theta(n^2)$
- Choose appropriate increment sequence
 - Make the time approximate to $\Theta(n)$
8.2.2 Shell Sort

Choose Increment Sequence for Shell Sort

- Increment decreased by dividing by 2
 - Efficiency is still $\Theta(n^2)$
- Problem: Increments chosen are not coprime
 - Subsequences with interval 2^{k-1}, are all made up of the subsequences with interval of 2^k
 - These subsequences are all in order in the last sort, which makes the efficiency low.
Hibbard Increment Sequence

- Hibbard Increment Sequence
 - \(\{2^k - 1, 2^{k-1} - 1, \ldots, 7, 3, 1\} \)

- Shell(3) and Shell Sort with Hibbard Increment Sequence can reach the efficiency of \(\Theta(n^{3/2}) \).

- Select other increment sequences can reduce the time cost much further.
8.2.2 Shell Sort

The Best Cost of Shell

- a series of integer in the form of 2^p3^q:
 - 1, 2, 3, 4, 6, 8, 9, 12
- $\Theta(n (\log_2 n)^2)$
Thinking

1. Variation of insertion sort
 - Exchange as soon as reversed pairs is found
 - Find the position for insertion, use binary search

2. What is the increment of Shell Sort used for? Which one is better, the sequence with increment 2 or increment 3? Why?

3. Can other methods be used for the sort of subsequence in each round of Shell sort?
Data Structures and Algorithms

Thanks

The National Elaborate Course (Only available for IPs in China)
http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the “Eleventh Five-Year” national planning textbook)