Data Structures and Algorithms (12)

Instructor: Ming Zhang
Textbook Authors: Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (the "Eleventh Five-Year" national planning textbook)

https://courses.edx.org/courses/PekingX/04830050x/2T2014/
Chapter 12 Advanced Data Structure

- 12.1 Multidimensional array
 - 12.1.1 Basic Concepts
 - 12.1.2 Structure of Array
 - 12.1.3 Storage of Array
 - 12.1.4 Declaration of Array
 - 12.1.5 Special Matrices Implemented by Arrays
 - 12.1.6 Sparse Matrix
- 12.2 Generalized List
- 12.3 Storage management
- 12.4 Trie
- 12.5 Improved BST
Basic Concepts

• Array is an ordered sequence with fixed number of elements and type.
• The size and type of static array must be specified at compile time.
• Dynamic array is allocated memory at runtime.
Basic Concepts

- Multidimensional array is an extension of one-dimensional array (vector).
- Vector of vectors make up an multidimensional array.
- Represented as
 \[\text{ELEM } A[c_1..d_1][c_2..d_2]...[c_n..d_n] \]
- \(c_i \) and \(d_i \) are upper and lower bounds of the indices in the \(i \)-th dimension. Thus, the total number of elements is:
 \[
 \prod_{i=1}^{n} (d_i - c_i + 1)
 \]
2-dimensional array

d1[0..2], d2[0..3], d3[0..1] are the three dimensions respectively
Storage of Array

• Memory is one-dimensional, so arrays are stored linearly
 • Stored row by row (row-major)
 • Stored column by column (column-major)

\[
X= \begin{pmatrix}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & 9 \\
\end{pmatrix}
\]
Chapter 12
Advanced Data Structure

12.1 Multidimensional Array

Row-Major in Pascal

\[
\begin{array}{cccc}
 a_{111} & a_{112} & a_{113} & \ldots & a_{11n} \\
 a_{121} & a_{122} & a_{123} & \ldots & a_{12n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 a_{km1} & a_{km2} & a_{km3} & \ldots & a_{kmn}
\end{array}
\]

\[
a[1..k,1..m,1..n]
\]
12.1 Multidimensional Array

Column-Major in FORTRAN $a[1..k, 1..m, 1..n]$
• C++ multidimensional array

\[\text{ELEM } A[d_1][d_2][d_n]; \]

\[\text{loc}(A[j_1, j_2, \ldots, j_n]) = \text{loc}(A[0,0,\ldots,0]) \]

\[+ d \cdot [j_1 \cdot d_2 \cdots d_n + j_2 \cdot d_3 \cdots d_n \]

\[+ \ldots + j_{n-1} \cdot d_n + j_n] \]

\[= \text{loc}(A[0,0,\ldots,0]) + d \cdot [\sum_{i=1}^{n-1} j_i \prod_{k=i+1}^{n} d_k + j_n] \]
Special Matrices Implemented by Arrays

- Triangular matrix (upper/lower)
- Symmetric matrix
- Diagonal matrix
- Sparse matrix
Lower Triangular Matrix

- One-dimensional array: list[0.. (n^2+n)/2-1]
 - The matrix element a_{i,j} is stored in list[(i^2+i) /2 + j] (i>=j)

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
7 & 5 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
9 & 0 & 0 & 1 & 8 & 0 \\
0 & 6 & 2 & 2 & 0 & 7
\end{bmatrix}
\]
Symmetric Matrix

• Satisfies that \(a_{i,j} = a_{j,i} \), \(0 \leq i, j < n \)

 The matrix on the right is a (symmetric) adjacent matrix for a undirected graph

• Store the lower triangle in a 1-dimensional array

\[
\begin{bmatrix}
0 & 3 & 0 & 15 \\
3 & 0 & 4 & 0 \\
0 & 4 & 0 & 6 \\
15 & 0 & 6 & 0
\end{bmatrix}
\]

 \(\text{sa}[0..n(n+1)/2-1] \)

 • There is a one-to-one mapping between \(\text{sa}[k] \) and \(a_{i,j} \):

\[
k = \begin{cases}
 j(j+1)/2 + i, & i < j \\
 i(i+1)/2 + j, & i \geq j
\end{cases}
\]
Diagonal Matrix

- Diagonal matrix: all non-zero elements are located at diagonal lines.
- Band matrix: \(a[i][j] = 0 \) when \(|i-j| > 1\)
 - A band matrix with bandwidth 1 is shown as below

\[
\begin{pmatrix}
 a_{0,0} & a_{0,1} & \cdots & 0 \\
 a_{1,0} & a_{1,1} & a_{1,2} & \cdots \\
 \cdots & \cdots & \cdots & \cdots \\
 0 & a_{n-1,n-2} & a_{n-2,n-1} & a_{n-1,n-1}
\end{pmatrix}
\]
12.1 Multidimensional Array

Sparse Matrix

- Few non-zero elements, and these elements distribute unevenly

\[
A_{6 \times 7} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
• Sparse Factor
 • In a $m \times n$ matrix, there are t non-zero elements, and the sparse factor is:
 \[\delta = \frac{t}{m \times n} \]
 • When this value is lower than 0.05, the matrix could be considered a sparse matrix.
• 3-tuple (i, j, a_{ij}): commonly used for input/output
 • i is the row number
 • j is the column number
 • a_{ij} is the element value
Orthogonal Lists of a Sparse Matrix

- An orthogonal list consists of two sets of lists
 - pointer sequence for rows and columns
 - Each node has two pointers: one points to the successor on the same row; the other points to the successor on the same column

\[
\begin{bmatrix}
0 & 3 & 0 \\
0 & 5 & 6 \\
2 & 0 & 0
\end{bmatrix}
\]
Classic Matrix Multiplication

- \(A[c1..d1][c3..d3] \), \(B[c3..d3][c2..d2] \),
- \(C[c1..d1][c2..d2] \).

\[
C = A \times B \quad (C_{ij} = \sum_{k=c3}^{d3} A_{ik} \cdot B_{kj})
\]
Time Cost of Classic Matrix Multiplication

• \(p = d_1 - c_1 + 1 \), \(m = d_3 - c_3 + 1 \), \(n = d_2 - c_2 + 1 \);
• \(A \) is a \(p \times m \) matrix, \(B \) is a \(m \times n \) matrix, resulting in \(C \), a \(p \times n \) matrix
• So the time cost of the classic matrix multiplication is \(O(p \times m \times n) \)

```c
for (i=c1; i<=d1; i++)
    for (j=c2; j<=d2; j++){
        sum = 0;
        for (k=c3; k<=d3; k++)
            sum = sum + A[i,k]*B[k,j];
        C[i,j] = sum;
    }
```
12.1 Multidimensional Array

Sparse Matrix Multiplication

\[
\begin{bmatrix}
3 & 0 & 0 & 5 \\
0 & -1 & 0 & 0 \\
2 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 2 \\
1 & 0 \\
-2 & 0 \\
\end{bmatrix}
=
\begin{bmatrix}
0 & 6 \\
-1 & 0 \\
0 & 4 \\
\end{bmatrix}
\]
Time Cost of Sparse Matrix Multiplication

- A is a p×m matrix, B is a m×n matrix, resulting in C, a p×n matrix.
 - If the number of non-zero elements in a row of A is at most t_a
 - and the number of non-zero elements in a column of B is at most t_b
- Overall running time is reduced to $O((t_a + t_b) \times p \times n)$
- Time cost of classic matrix multiplication is $O(p \times m \times n)$
Applications of Sparse Matrix

Polynomial of one indeterminate

\[P_n(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n \]

\[= \sum_{i=0}^{n} a_i x^i \]
Data Structures and Algorithms

Thanks

the National Elaborate Course (Only available for IPs in China)
http://www.jpj.pku.edu.cn/pkujpk/course/sjjg/
Ming Zhang, Tengjiao Wang and Haiyan Zhao
Higher Education Press, 2008.6 (awarded as the "Eleventh Five-Year" national planning textbook)