
Vision Res. Vol. 32, No. 7, pp. 1271-1284, I992 0042.6989192 $5.00 + 0.00 

Printed in Great Britain. All rights reserved Copyright CT: 1992 Pergamon Press Ltd 

The Optics of the Spherical Fish Lens 
W. S. JAGGER* 

Received I7 October 1991 

The optical design of the fish eye is particularly simple because immersion renders the cornea optically 
ineffective and the lens is nearly spherical in shape. Measurements have shown that an approximately 
parabolic gradient of refractive index exists within the lens. If full internal and external spherical 
symmetry of the lens applies, the geometrical-optical. behaviour of the lens is then a function only of 
the refractive index of the surrounding medium, that of the lens core and cortex, and of the form of 
the index gradient. The theoretical optical performance of models of the spherical fish lens is calculated 
by means of the ray-tracing program Drishti as a basis for understanding the optical design of real 
fish and aquatic eyes. Models based on the gradients proposed by earlier workers are shown to be 
unable to predict reported spherical aberration and image quality. A model of the fish lens with a 
poiynomial gradient is proposed that yields spherical aberration, image quality and chromatic 
aberration similar to that reported for the fish. 

Fish Lens Optics Model Refractive index gradient Image quality Spherical aberration Chromatic 
aberration 

INTRODUCTION 

In the fish eye, the lens alone must perform the task of 
producing a good retinal image because immersion 
renders the cornea optically ineffective. The fish lens 
accomplishes this with two types of refractive processes. 
First, rays are refracted at the boundary of the lens with 
its surrounding homogeneous medium, at which a step 
of refractive index occurs. Second, rays within the lens 
follow curved paths, concave to the lens centre, as a 
result of its internal refractive index gradient. The first 
process is a function of the lens surface shape, and of the 
indices of the lens cortex and of the surrounding 
medium. The second process is a function of the cortical 
and core indices, and of the form of the gradient of 
refractive index. Compared to a homogeneous lens of 
the same paraxial power, this second process allows use 
of material of lower index, and it introduces additional 
degrees of design freedom that can allow the formation 
of an image of suitable quality. 

The relative simplicity of the optics of the fish eye was 
recognised in the last century, and several treatments of 
a spherical inhomogeneous lens have appeared since. 
Maxwell (1854) considered a spherically symmetric lens 
of infinite size with an index gradient of the form: 

n(u) = n(0)*aZ/(a’ + 72) 

where n is refractive index, r is the distance from the 
centre, and a is a constant. He showed that this lens 
images points within it perfectly onto conjugate points 
opposite the centre such that object and image points lie 
on a diameter, the product of the object and image 
distances from the centre equals a’, and all rays within 
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the lens follow circular paths. Although this lens is quite 
different from a fish lens, Maxwell conjectured that a 
finite sphere of this kind placed in water would offer a 
minimum of aberration, and that it might be possible to 
correct it chromatically. 

Luneburg (1944) found a similar solution for a finite 
spherical lens, although he did not suggest it might apply 
to the fish lens. This lens, of unit radius, immersed in a 
homogeneous medium of index matching that of the lens 
cortex, forms a perfect image of a distant external object 
on the posterior surface of the lens. The Luneburg lens 
gradient has the form: 

n(r)=J_ 

Fletcher, Murphy and Young (1954) found special 
solutions for the fish lens gradient, with infinite object 
distance and image placement outside the lens at various 
positions corresponding to the range observed in the fish 
eye. However, they also required that the cortical index 
match that of the surrounding medium. The gradients 
they present are solutions to an integral equation, and 
are expressed numerically. 

Mattheissen (1882) measured the focal length (FL) of 
the lenses of ten fish species, and found that it averaged 
2.55 times the lens radius (R), with variation between 
2.40 and 2.82. This average value of the ratio FL/R, 
which corresponds to a relative aperture orf number of 
about f/l .275, has become known as Mattheissen’s ratio, 
and has generally been confirmed by others (Sadler, 
1973), although Sroczyfiski (1975, 1976, 1977, 1978, 
1979) found lower values for five species of fresh water 
fish between 2.19 for the roach and 2.44 for the pike. The 
full reported range of values of this ratio is therefore 
from 2.19 to 2.82, with individual species exhibiting 
smaller ranges. Mattheissen’s measurements (1880) of 
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index distribution within a lens of radius R by means of 
a refractometer on small samples showed an increase 
towards the centre that followed an approximately 
parabolic rule of the form: 

n (r) = X0,, - (NC,,, - Nctx) . (r/R)* 

Typical values he reported are 1.336 for the eye media 
(Nmed), 1.38 for the cortical index (No), and 1.51 for the 
core index (IV,,,). Mattheissen used the concept of total 
index, which is that index a homogeneous lens would 
require to have the same paraxial focal length as an 
inhomogeneous lens of the same shape. He showed 
mathematically that a spherical lens with a parabolic 
gradient of index can achieve the same power as a 
homogeneous lens of the same shape if the value of its 
core index lies halfway between the cortex index and the 
total index. When applied to real lenses, Mattheissen’s 
ray formulas did not predict aplanatic performance, and 
he (Mattheissen, 1893) explored means to improve their 
predictive ability. He suggested an elliptical gradient 
form which yielded less spherical aberration than the 
parabolic gradient, but still showed strong undercorrec- 
tion for rays incident near the edge of the lens. 

Fernald and Wright (1983) claimed that the fish lens 
had a large homogeneous index core of 0.674 of the lens 
radius on the basis of the behaviour of laser beams 
refracted by intact and partially peeled lenses. However, 
Campbell and Sands (1984) disputed their conclusions, 
and argued that such a lens would be afflicted with 
unacceptably large spherical aberration. They showed by 
means of ray tracing that a gradient of refractive index 
should exist throughout the lens. Axelrod, Lerner and 
Sands (1988) measured the entrance and exit apertures 
of a series of laser beams passing through goldfish lenses. 
They concluded that the refractive index gradient inside 
the lens was smooth, with a form similar to the parabola 
of Mattheissen. Their estimates of core and cortical 
indices lay in the range 1.55-1.57 and 1.36-1.38. 

Further detailed measurements of focal length and 
spherical aberration for rays incident at six zones, or 
distances from the central incident ray (Sroczynski, 
1975, 1976, 1977, 1978, 1979) show that the isolated fish 
lens is well corrected except for the outer zones, which 
tend toward over-correction, and then swing sharply 
toward undercorrection at the highest zones. He found 
the entrance aperture radius of fish lenses to be about 
0.95 of the radius. Sivak and Kreuzer (1983), on the basis 
of measurements at two or three zones, found undercor- 
rection in goldfish and perch and better correction in the 
rock bass. Pumphrey (1961) reported he was unable to 
detect chromatic aberration in the fish, but measure- 
ments by Sroczynski show a large paraxial chromatic 
focal length difference between 436 and 630 nm of about 
4.5% for the brown trout (Sroczynski, 1978) and the 
perch (Sroczynski, 1979), and 5% for the rainbow trout 
(Sroczynski, 1976). Mandelman and Sivak (1983) also 
reported strong chromatic aberration in the rock bass. 
The highest reported behaviourally determined visual 
acuity measurements show that the tuna can discrimi- 
nate a grating of 8 c/deg (Nakamura, 1968), while the 

range of acuities reported for other fish decreases from 
this to about one-quarter this value (Douglas & 
Hawryshyn, 1990). 

This work presents calculations of the optical proper- 
ties of the spherically symmetric model fish lens with 
realistic values of core, cortex and surrounding medium 
indices as a basis for understanding the optical design of 
real fish and aquatic eyes. 

METHODS 

The general case of the optics of a gradient index lens 
in a homogeneous medium is too complex to allow exact 
analytic solutions describing ray trajectories to be found, 
although Mattheissen (1880, 1893) found approximate 
solutions for the case of the spherical fish lens with 
parabolic, Maxwellian and elliptical index gradients in a 
medium of index below that of the lens cortex. However, 
numerical methods used to trace ray paths through the 
lens can predict the optical behaviour of specific cases to 
any desired accuracy. The program Drishti (Sands, 
1984), developed to calculate the optical properties of 
eyes (Hughes, 1986), was used to trace rays through the 
inhomogenous spherical model fish lens of unit radius. 
This program has been used to calculate optical 
properties of models of the rat eye (Campbell & Hughes, 
1981), the cat lens (Jagger, 1990), the cat eye (Jagger, 
Sands & Hughes, 1992) and the human eye (Jagger & 
Hughes, 1989). Correct function of this program was 
assured by conventional checks, including the prediction 
of zero aberration of the original Luneburg lens. Spheri- 
cal aberration was calculated by tracing a meridional fan 
of incident rays through the lens. Aberrations that 
are functions of field angle, such as third-order coma, 
third-order oblique astigmatism, and lateral chromatic 
aberration do not occur in a spherically symmetric 
system, and can be neglected when treating the lens 
alone. The size of the image at best focus is found by 
minimising the root-mean-square radius (R,,) of a 
pencil of rays. This radius is a measure of the width of 
the point spread function (if this function is a Gaussian, 
R,, is equal to 0.86 of the radius at half-maximum), and 
is an inverse measure of image quality. Terminology 
used is that of modern optical engineering (Smith, 1966). 
According to this usage, the spherical aberration of a 
biconvex glass lens is negative, or undercorrected. This 
sign convention differs from that of some optometric 
literature. 

RESULTS 

The image surface of the spherical fish lens is spherical 
and concentric with the lens (although some real fish 
retinas deviate from this shape), and the important 
aberrations are spherical aberration and longitudinal 
chromatic aberration. Spherical aberration is expressed 
here as longitudinal spherical aberration. This is 
measured as the distance from the paraxial focus to the 
crossing of two rays that are parallel before encountering 
the lens, the first of which passes through the lens centre 
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and is undeviated, while the second ray is incident upon 
the lens at a zone located height h from the central ray. 

Refractive index values within the fish lens have been 
measured by Mattheissen (1880, 1885) and Axelrod et al. 
(1988), and typical values at 589 nm to be used here for 
a model lens are N,&, 1.336; N,,,, 1.38; and I?,,, 1.52. 

The gradients proposed by Maxwell (1854), Luneburg 
(1944) and Fletcher et al. (1954) can be adapted to the 
case of the fish lens, although the fish lens differs from 
the original conditions for which these gradients were 
derived. Maxwell’s infinite lens did not consider refrac- 
tion at the fish lens boundary. Also, an infinitely distant 
object would have been imaged infinitesimally small, as 
the rule of image formation of the Maxwell lens differs 
from that of more conventional lenses. The Luneburg 
lens also does not account for refraction at the lens 
boundaries, and its image lies on the lens posterior 
surface. The gradient of Fletcher et al. places object and 
image at appropriate locations, but the lens cortical 
index is that of the surrounding medium. 

Model fish lenses of unit radius incorporating the 
Maxwell, Luneburg, Fletcher et al. and Mattheissen 
(I 880, 1893) gradients must inco~orate boundary con- 
ditions requiring the index at r = 0 to equal the core 
index, and that at Y = 1 to be equal to the cortical index. 
The final forms of these gradients are then: 

Maxwell 

n(r) = X0,*[1/(1 f KlZl.X-r*)l 

where K,,, = (NC,, /NC,, ) - 1; 

Luneburg 

n (r ) = [NC,, . $--Tc7li,ii- 

where i(l,,,, = J2-11 - (~~~~/~~~~~~I; 

Fletcher, Murphy and Young 

n(r) = N,.,,;(l + 0.6218*K*r2 + 1.8075eK*r4 

- 7.2453.K# + 14.2087.K.r* 

- 12.7280.K.ri0 + 4.3353.K.r12). 

The numerical solution these authors present for a focal 
length of 2.5 times the lens radius has a core index 1.1371 
times the cortical index, which equals the medium index. 
The more realistic case examined here, of core and 
cortical indices 1.52 and 1.38, with medium index 1.336, 
demands this ratio to be 1.1014. To achieve this, their 
gradient was truncated at radius 0.9404, and fit to a 
twelfth-degree polynomial where the polynomial co- 
efficients were found by least squares fitting and 

K = (X,, PC,,) - 1. 

Mattheissen parabola 

n(r) = N,,,.(l + K.r2). 

Mattheissen ellipse (fit to an eighth-degree polynomial) 

n(r) = N,,,;(l + 0.85683+K.r’+ 0.08978.K.r’ 

+ 0.04495.K.r6 + 0.00841*K,r81. 

u 
Lens radius 

1 .o 

FIGURE 1. Fish lens model refractive index gradients. The ordinate 

is refractive index, and the abscissa is distance from the centre of a lens 

of unit radius. From left to right, the curves represent the Maxwell, 

Mattheissen parabola, Luneburg, Mattheissen ellipse, improved poly- 

I 

It is possible to find, by an optimisation procedure 
adjusting polynomial coefficients, an improved fish lens 
index gradient that takes surface refraction into account, 
with realistic object and image distances. This gradient, 
expressed as a polynomial, reduces the total spherical 
aberration to a small value up to the 0.95 zone for the 
index values given above: 

n(r) = N,,,,(l + 0.8200.K*r” 

+ 0.3000.K*rh - 0.1200*K+rx) 

where K = (NC,, /IV,,,,) - 1. 

Spherical symmetry requires that these gradients be 
independent of the sign of r and hence only even powers 
of r appear in their poIynomia1 expressions. While the 
parabolic gradient proposed by Mattheissen can be 
described as 100% second-degree polynomial, the im- 
proved gradient consists of 82% second-degree, 30% 
sixth-degree, and 12% eighth-degree polynomial terms. 
The gradient of Fletcher et al. (1954) is described by a 
twelfth-degree polynomial, with large coe~cients of both 
signs. 

Figure 1 shows the shapes of the various gradients 
treated here. From left to right, in order of increasing 
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nomial, and Fletcher el al. gradients. 
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FIGURE 2. Individual curves of longitudinal spherical aberration up to incident ray height 0.975 for various values of core 
and cortical index of the model fish lens. For each curve. the unit length calibration bars for aberration (horizontal) and lens 
zone (vertical) are identical (lower left), and the circular outline of the lens of unit radius to which they apply is also shown 
below at the same scale. This set of curves is plotted in the plane of core index (ordinate) and cortical index (abscissa). Dashed 
lines indicate constant paraxial focal length. Refractive index gradients used in each lens model are: (a) Maxwell, (b) 

Mattheissen parabola, (c) Luneburg, (d) Mattheissen ellipse, (e) improved polynomial gradient, (f) Fletcher et al. 

area under each curve, they are the gradients of 
Maxwell, Mattheissen (parabola), Luneburg, Mattheis- 
sen (ellipse) the improved polynomial, and Fletcher et al. 
If a particular gradient form and surrounding medium 
index is assumed, only the lens parameters N,, and NC,, 
are free, and it is possible to map the spherical aberration 
curves for each gradient as a function of these two 
parameters in the plane they define (Fig. 2). Also shown 
in these figures are lines defining constant paraxial focal 
lengths. 

The general behaviour of spherical aberration over 
this plane is similar for these gradients. At low Nftx, 
overcorrection of spherical aberration occurs, while at 
high NC,, , this aberration becomes undercorrected. In the 
intermediate region, however, instead of complete 
correction, complex curves appear for each gradient. As 
N EOE is increased, the magnitude of the aberration 
decreases, although complete correction does not occur 
for any pair of NC,, and N,,,, . However, for the improved 
polynomial gradient, this complex curve is nearly 
straight at the index values of interest, except for the 
highest zone, indicating better image quality. The lines 
of constant paraxial focal length show that the focal 
length decreases as N,,, increases, and increases as NC,, 
increases. 
VR 3217-E 

For the core and cortical indices 1.52 and 1.38, the 
paraxial focal length for each gradient increases during 
the progression of curves from left to right in Fig. 1: 2.38 
(Maxwell), 2.44 (Mattheissen parabola), 2.48 
(Luneburg), 2.55 (Mattheissen ellipse), 2.59 (improved 
polynomial) and 2.68 (Fletcher et cd.). Also, the spherical 
aberration at a specific value of core and cortical index 
shifts from overcorrection to undercorrection as the area 
under the gradient curve increases, During this 
progression, the lines of constant paraxial focal length 
shift upward. 

Figure 3 shows ray paths through models of a spheri- 
cal homogeneous lens of paraxial focus length 2.5 and 
index 1.67 (the total index of Mattheissen) and of 
spherical lenses possessing Maxwell, Mattheissen, 
Luneburg, improved polynomial, and Fletcher et al. 
gradients for NCOre 1.52 and NC, 1.38. Mattheissen’s 
prediction that the core index (1.52) lies halfway between 
the total index (1.67) and the cortical index (1.38) is 
nearly confirmed. Image quality for the homogeneous 
lens is clearly very poor and for the Maxwell, Mattheis- 
sen parabola, and Luneburg gradients it is poor, 
although somewhat better for the Mattheissen ellipse 
and the gradient of Fletcher et al. The best imaging 
occurs for the improved polynomial gradient lens. 
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(a) 

Homogeneous 

(b) 

Maxwell 

FIGURE 3. (a, b) Caption on p. 1279 
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Mattheissen parabola 

(d 1 

Luneburg 

FIGURE 3. (c, d) ~~pti~~ on p. 1279 
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(e) 

Mattheissen ellipse 

Improved polynomial 

FIGURE 3 (e, f) Caprion on facing page. 
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(cl) 

Fletcher et al. 

FIGURE 3. Ray paths through model lenses incorporating different refractive index gradients. Rays are spaced at incident 
ray height intervals of 0.05, up to 0.95. The lens model core index is I .52, and the cortical index is 1.38, except for the 
homogeneous model, of index 1.67. (a) Homogeneous; (b) gradient of Maxwell; (c) parabolic gradient of Mattheissen; (d) 
gradient of Luneburg; (e) elliptical gradient of Mattheissen; (f) improved polynomial gradient; (g) gradient of Fletcher et nl. 

Figure 4(a) is a logarithmic plot of the rms radius 
(R,,) of the focussed image of an infinitely distant point 
object as a function of pupil radius up to 0.95 for the 
improved polynomial gradient, and for those of 
Maxwell, Luneburg, ~attheissen and Fletcher er al. The 
horizontal line at R,, 2 min of arc corresponds to the 
estimated R,, required to permit the highest reported 
acuity for the fish, 8 c/deg in the tuna. This estimate is 
based on equating twice the R,, to one-half the period 
of the grating detected. This is somewhat arbitrary, and 
a larger R,, may also be acceptable, depending on the 
contrast discrimination ability of the animal. The 
improved polynomial gradient offers this R,, at 0.93 and 
smaller pupil radius, while the other gradients permit 
this resolution only for pupils stopped to much smaller 
diameters. 

As the object moves closer, the size of the best 
focussed image for pupil size 0.95 increases and hence 
image quality decreases for the six gradients considered 
[Fig. 4(b)]. The fractional increase is small for the 
Naxwell, ~attheissen and Luneburg gradients as the 
object moves in to 10 times the lens radius. The 
improved polynomial gradient shows a more rapid 
increase in focussed image size as the object distance 
becomes small, but its curve still remains well below 
those of the other gradients. 

Figure 5(a) shows the longitudinal spherical aberra- 
tion curve of the improved polynomial gradient lens 
model, while Fig. 5(b) shows the change to this curve 
upon increase of the index of the surrounding medium 
by 0.003 to 1.339. This increase in index corresponds 
approximately to a doubling of solute concentration. 
Overcorrection of the lens results, with degradation of 
the focussed R,, at 0.95 pupil aperture from 2.7 to 
5.4min of arc. 

A small shape change in the lens has little effect on its 
optical behaviour. Figure 5(c) shows the longitudinal 
spherical aberration of a lens shortened axially by 2%, 
becoming an oblate spheroid. In a plane containing the 
axis, the originally circular surface curves and internal 
isoindicial curves become ellipses. The R,, at 0.95 pupil 
dia increases slightly from 2.7 to 2.8 min of arc. 

The curve of Fig. 5(d) is the spherical aberration of the 
improved polynomial lens with a model fish cornea of 
constant thickness 0.2 {in units of the lens radius), 
anterior radius 2.0, located 0.3 anterior of the lens and 
having index 1.4. This cornea causes slight overcorrec- 
tion, and the curve is coincident with that of the lens 
flattened axially by 2%. The R,, at the 0.95 zone also 
increases from 2.7 to 2.8 min of arc. 

The chromatic aberration of the fish lens is a function 
of the dispersion of the surrounding medium and of the 
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FIGURE 4. (a) Root-mean-square image radius (R,) of each model as a function of pupil radius for each lens model type. 
The horizontal line indicates R,, = 2 arc min. the approximate value required for the highest acuity reported for a fish, 8 c,/deg 
(tuna, Nakamura. 1968). (b) R,, as a function of object distance (expressed in lens radii) for each lens model gradient for 

a pupil radws of 0.95. 
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FIGURE 5. Sensitivity of the longitudinal spherical aberration of the 
fish lens model with the improved polynomial gradient to small 
changes in the index of the medium, to a small axial shortening, and 
to the presence of a cornea. (a) Unaltered improved polynomial model. 
(b) Immersed in medium of index 1.339, an increase of 0.003. (c) 

1 I I 

Shortened axially by 2%. (d) With a cornea of index 1.4. 

lens substance. Jagger (1990) measured the dispersion 
curves of cat lens substance, which do not extend to the 
high index of the fish lens core. Sivak and Mandelman 
(1983) also measured lens dispersion for various animals. 
Srocyznski (1976) measured the longitudinal chromatic 
aberration of the rainbow trout, and found a difference 
in focal length of about 5% between 440 and 640nm. 
Assuming that the dispersion of fish lens cortical 
substance is the same as that of the cat, it is possible to 
find the dispersion curve of fish lens core substance that 
results in the chromatic aberration found by Srocyznski. 
Figure 6(a) shows the dispersion curves of the surround- 
ing medium, of cat lens cortical substance of index 1.38 
at 589 nm, and of fish lens core material of index 1.52 at 
589 nm calculated to yield the chromatic aberration 
observed by Sroczynski. The Abbe number, an inverse 
measure of dispersion (Smith, 1966), is 55 for the 
medium, 50 for the cortex, and 38 for the lens core. 
Using a similar procedure, it is possible to calculate the 
hypothetical lens core dispersion curve that would yield 
a lens free of longitudinal chromatic aberration. The 
broken line shows this dispersion curve, with Abbe 
number 68. 

Figure 6(b) shows the curve of longitudinal chromatic 
aberration calculated for a model lens possessing these 
dispersions. The chromatic aberration reported by 
Scroczynski (1976) for the rainbow trout lens is indicated 
by points on this curve. The broken line shows the 

variation of paraxial focal length with wavelength of a 
lens with the hypothetical dispersion of Fig. 6(a) chosen 
to correct chromatic aberration. 

DISCUSSION 

Image quality of the lens models 

The lens gradients of Maxwell and Luneburg fail to 
produce a sharp image when applied to a realistic model 
of the fish lens. Because they were originally conceived 
for other object and image locations, and do not con- 
sider the refraction at the boundary of the lens with the 
surrounding medium, the resulting spherical aberration 
causes poor image quality. Fletcher et al. (1954) claimed 
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FIGURE 6. (a) Dispersion curves for the model fish lens with the 
improved polynomial gradient. The curve of the bathing medium is 
that of water at 20°C (Houstoun, 1934), increased by 0.003 to account 
for salt content, yielding 1.336 at 589 nm. The dispersion curve of the 
lens cortex is a second-order fit to data measured on the cat lens from 
Jagger (1990), with value 1.38 at 589 nm. The core dispersion curve is 
calculated to yield the fish longitudinal chromatic aberration reported 
by Sroczynski (19X), whose measured points are shown in (b). The 
dashed line is the dispersion curve of core substance that would be 
required to correct lon~tudinal chromatic aberration. The solid curve 
of(b) is the paraxial focal length of the model fish lens calculated using 
the dispersion curves of (a). Points shown on this curve are those 
measured by Sroczynski (1976) for the rainbow trout. The dashed line 
is the paraxial focal length of a model lens with the hypothetical core 
dispersion curve shown in (a) that results in correction of longitudinal 

chromatic aberration 
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that their own gradient offered good image quality for 
a fish lens with realistic object and image locations, with, 
however, cortical index equal to that of the medium. 
This neglect of refraction at the step of index at the 
boundary of the real lens also results in uncorrected 
spherical aberration and inadequate image quality. 
Mattheissen (1880) chose his parabolic gradient because 
it offered a simple description of his limited data. 
However, this gradient also fails to produce adequate 
image quality, either because his data were insufficiently 
accurate or his fit to the data was not good enough. It 
would be a remarkable coincidence if a simple parabolic 
gradient produced good image quality in this complex 
system; in general more degrees of design freedom would 
be required. Mattheissen (1893) realised this, and 
explored the optics of an elliptical gradient. This 
gradient yields better image quality than the parabolic 
gradient, but still leaves room for improvement. 

The form of the improved polynomial index gradient, 
which yields acceptable image quality, differs relatively 
little from these other gradients (Fig. 1). and high 
precision index measurements would be required to 
distinguish between them. The improved polynomial 
gradient was found by using the additional degrees of 
freedom offered by a polynomial function of higher 
degree to minimise spherical aberration. Although the 
power contributed by refraction at the lens surface is 
only about one-sixth the power contributed by the 
gradient, the components of spherical aberration from 
each process are of similar magnitude and opposite sign 
and result in a small total abe~ation. However, spherical 
aberration becomes undercorrected even for this gradi- 
ent near the edge of the lens. Because this aberration 
changes so rapidly near the lens edge, light is spread over 
a large area, causing broad veiling rather than widening 
of the point image. In addition, internal reflection and 
scattering can be expected to minimise the effects of these 
edge rays, limiting the entrance pupil radius to about 
0.95 (Sroczynski, 1975). The fish iris is usually immobile, 
and the pupil is nearly the same size as the lens. If the 
iris were slightly smaller than the lens diameter, it would 
also cut off these edge rays. 

Measured spherical aberration and focal length, and the 
behaviour of the lens model with the improved polynomial 
gradient 

Several features of the optical behaviour of the model 
fish lens with the improved gradient agree with detailed 
measurements reported by Sroczynski for five species of 
fresh water fish (pike, 1975; rainbow trout, 1976; Roach, 
1977; brown trout, 1978; perch, 1979). All the spherical 
aberration curves he measured show a sharp hook to 
undercorrection near the highest zone (about 0.95), and 
all but the pike show overcorrection at high zones (about 
0.7-0.95). This behaviour is displayed by the model fish 
lens [Fig. 5(a)], The size of the deviation of the measured 
spherical aberration curves from a straight line is about 
2% of the focal length (excepting the undercorrected 
hook at high zones). The model fish lens exhibits a figure 
about a third this size, and corresponds to the high 

acuity reported for the tuna; a larger aberration is 
readily produced by altering the model gradient slightly 
to degrade its performance. In addition, Sroczynski 
found that as the measured ratio FL/R decreases, the 
correction of spherical aberration improves, and the 
sharp hook to undercorrection occurs at a higher zone. 
The value of FL/R is inversely related to the size of the 
animal (pike) and to the lens size (perch). 

These relations between FL/R, spherical aberration 
and the zone at which the undercorrected hook occurs 
can be understood in terms of the model lens if it is 
assumed that lens core index increases as the animal 
grows, as has been observed in the cat (Jagger, unpub- 
lished observations), perhaps as a result of increasing 
core dehydration. Figure 2(e) then shows that as the core 
index of the model fish lens increases, FL/R also 
decreases, its spherical aberration becomes better 
corrected, and the hook towards undercorrection occurs 
at higher zones. Sroczynski (1979) found that as the 
perch lens grew from 1.7 to 5.7 mm dia, FL/R decreased 
from 2.5 to 2.3, with a decrease in spherical aberration. 
Figure 2(e) indicates that in the model fish lens, this 
decrease in FL/R with concomitant improvement in 
spherical aberration would result from an increase in 
NC,, of about 0.025. 

Sensitivity of lens performance to optical parameters 

The spherical aberration and hence image quality of 
the model fish lens is very sensitive to index gradient 
shape and cortical index, while it is less sensitive to core 
index, a small variation in lens shape, realistic variation 
in medium index, and the presence of a cornea (Figs 2 
and 5). For the model lens of core index 1.52 and cortical 
index 1.38, the progression through the gradient forms 
of Fig. 1 in the direction of curves with increasing 
convexity (from left to right) results in overcorrected 
spherical aberration progressing to undercorr~tion~ 
with an optimal intermediate form, the improved poly- 
nomial gradient. A feedback mechanism sensing retinal 
image quality and controlling lens refractive structure 
may exist, and it is possible to speculate about how this 
might function. The relatively dense core of the fish lens 
would be expected to hold a nearly constant index over 
periods short compared to the animal’s life, while the 
metabolically more active cortical layers would also 
maintain a constant cortical index by active control of 
their water content. If the cortical cells perform a 
gatekeeper role to control the total amount of water 
within the lens, this water might be partitioned by a 
radially increasing concentration of hydrophilic groups 
in the concentric fibre layers of the lens to form the 
smooth gradient of index. Decreasing the total amount 
of water in the lens would cause the curve to become 
more convex and vice versa, allowing fine tuning of the 
gradient shape and hence image quality. Fine tuning of 
lens image quality in this manner would require a control 
signal originating in the retinal mosaic, with the goal of 
maintaining some degree of cone undersampling 
throughout growth (Snyder, Bossomaier & Hughes, 
1986). 
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Although the improved polynomial gradient described 

here was optimised for only one set of medium, core and 

cortical indices, its spherical aberration and hence image 

quality is relatively insensitive to core index [Fig. 2(e)], 
and it is reasonable to expect that the medium index does 
not change greatly in different cases. Different optimal 
gradients for real fish lenses need then only occur for 
different values of cortical index. Slightly different gradi- 
ents for other index values have been found that offer 
similar optical performance, and it is likely that a 
gradient offering adequate image quality exists for any 

set of realistic index values. 

Chromatic aberration and the resulting image degradation 

The chromatic aberration of the fish lens is quite large, 
in contradiction to Maxwell’s speculation that it might 
be corrected. Correction of longitudinal chromatic 
aberration could be achieved if, instead of a core Abbe 
number of 38, as calculated to yield the observed 
chromatic focus difference, the core substance had much 
less dispersion, with Abbe number about 68 (Fig. 6). 
This would require lens material dispersion to decrease 
with index. The large magnitude of the aberration is 

apparently the result of lens material whose dispersion 
increases with index. Similar increase in dispersion with 
increasing index was reported for various animals (Sivak 
& Mandelman, 1983) and for the cat (Jagger, 1990). 

Although the core substance is solid, its index value of 
1.52 and Abbe number 38 place it outside the range of 

glasses (Smith, 1966). The retinal image of a white point 
of light can be focussed for only one wavelength. Its 
image will consist of a series of concentric disks 
corresponding to each out-of-focus wavelength. The 
effect of this image degradation will depend upon ocular 
absorbing pigments (Muntz, 1976) and photoreceptor 
pigment absorption spectra of the animal, and its central 
integration of colour information. Sunlight that reaches 
fish at any significant depth becomes more blue and 
narrowed in spectral bandwidth because of absorption 
and scattering (Lythgoe, 1979) and this effect will also 
decrease the impact of high lens chromatic aberration. 

Focal length and image quality of the lens during growth 

The design of the spherical fish lens is independent of 
its absolute size; that is, the lens of unit radius treated 
here may be of any real dimension, and its geometrical- 
optical behaviour will remain the same, offering the same 
image quality, expressed in c/deg. However, as a real lens 
grows, it does not necessarily scale perfectly, and the 
ratio of the focal length to the lens radius (FL/R), and 
the image quality may not remain constant. In addition, 
the spacing of the retinal receptor elements may change 
during growth. 

Baerends, Bennema and Vogelzang (1960) reported 
that during growth of a cichlid fish, linear cone spacing 
remained nearly constant, behavioural acuity increased, 
while lens size increased and FL/R decreased somewhat. 
This decrease in FL/R is similar to that reported by 
Sroczynski (1975, 1979) discussed above. Hairston, Li 
and Easter (1982) also found that the linear spacing of 

sunfish cones changed little during growth, while 

behaviourally measured acuity increased. Apparently 

the growing fish uses the increasing focal length and 

hence increasing linear image size of the growing eye 
together with constant linear cone spacing to improve its 

acuity. However, during growth in the cat, potential 
acuity measured by angular subtense of retinal beta- 
ganglion cell dendritic trees remains constant outside the 

area centralis, but increases within the area centralis 
(Wong & Hughes, 1988). 

Less is known about image quality during growth. In 

the cat, Bonds and Freeman (1978) found that image 
quality increased rapidly during the first weeks of life 
before stabilising at the adult value. Some undersam- 

pling by the cone mosaic might be expected in the adult 
animal (Snyder et al., 1986). In the fish, if the image 
quality (expressed in c/deg) remains constant during 

growth, and the cone linear spacing does not change, 
young fish must tolerate much more cone undersam- 
pling, and photoreceptors would be more readily visible 

(Jagger, 1985; Land & Snyder, 1985) in young animals 
than in older animals. 

If image quality is controlled during growth by an 

open loop system (with no feedback), this case may 
apply. However, if information from the cone mosaic is 
used in a closed loop system to control image quality and 
maintain constant retinal sampling, the image quality of 
the lens may improve with growth. This follows because 
of the coarse angular spacing of the mosaic 
(in cones/deg) in the young animal, and the finer spacing 
in the older animal. Information required to produce a 
lens of high image quality in the young lens would not 
be available because of the coarse cone spacing. 

Very small lenses will be affected by diffraction, a 
physical-optical effect, which limits angular resolution to 
about 30 c/deg per mm of entrance aperture diameter. A 
fish lens able to resolve 8 c/deg would be diffraction 
limited if it were less than about 0.3 mm in diameter. 
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