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2 INTRODUCTION TO EFFECTIVE FIELD THEORY

1 Introduction

These lecture notes provide reading material on Effective Field Theory following the course 8.851, which
is taught as an advanced graduate course at MIT, and its EdX counterpart 8.EFTX.

The big picture is that there is interesting physics at all scales:

For most of your physics career you’ve been moving up this graph toward more and more general theories.
As we move up, it becomes harder to compute (e.g. hydrogen energy Levels with quantum field theory
rather than nonrelativistic quantum mechanics, elliptic orbits of planets with general relativity rather
than Newtonian gravity). In this class we’ll be going in the other direction - toward finding the simplest
framework that captures the essential physics in a manner that can be corrected to arbitrary precision (e.g.
an expansion in v/c� 1 to construct a nonrelativistic quantum field theory). This is the guiding principal
of Effective Field Theory (EFT).

2 Introduction to Effective Field Theory

2.1 Effective Field Theory Ideas

To describe a physical system, the following questions should be addressed in order to design an appropriate
quantum field theory, on both a technical and a physical level:

- Fields → Determine the relevant degrees of freedom.

- Symmetries → What interactions? Are there broken symmetries?

- Power counting → Expansion parameters, what is the leading order description?

These are the key concepts that arise when one wants to build an Effective Field Theory (EFT). Note that
in an EFT the power counting is a very fundamental ingredient, it is just as important as something like
gauge symmetry.

The key principle of EFT is that to describe the physics at some scale m, we do not need to know the
detailed dynamics of what is going on at much higher energy scales ΛL � m. This is good, since it allows
us to focus on the relevant degrees of freedom and interactions, and therefore simplify calculations. On the
other hand, this insensitivity to high energy scales implies that we must work harder (to higher precision)
in order to probe short distance physics at low energies.
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2.1 Effective Field Theory Ideas 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

Let’s exhibit some of the key concepts of an EFT with an example.

Example: We don’t have to learn about bottom quarks to describe hydrogen. The hydrogen ground
state binding energy is

Eo =
1

2
meα

2

(
1 +O

(m2
e

m2
b

))
,
m2
e

m2
b

∼ 10−8 (2.1)

so the correction from b-quarks enters as a tiny perturbation.

There is a subtlety here: mb does effect the electromagnetic coupling α in MS since the coupling runs
(e.g. α(mW ) ≈ 1

128 , α′ = α(0) ≈ 1
137). More precisely, if α is a parameter of the Standard Model, which is

fixed at high energy, then the low energy parameter α′ that appears for hydrogen in Eq. (2.1) does depend
on mb. However, we can simply extract α′ = α(Λ2

L) from low energy atomic physics at an energy scale ΛL
and then use this coupling for other experiments and calculations at the same energy scale. In such an
analysis no mention of b-quarks is required. We can summarize this by writing

L(p, e−, γ, b;α,mb) = L(p, e−, γ;α′) +O
( 1

m2
b

)
Beyond neglecting b-quarks and other heavy standard model particles, there are various expansions

that go into our leading order description for the energy levels of hydrogen atom:

• Insensitive to quarks in the proton since meα� (proton size)−1 ∼ 200MeV, so protons rather than
quarks are the right degrees of freedom.

• Insensitive to the proton mass since meα � mp ∼ 1 GeV, so the proton acts like a static source of
electric charge .

• A nonrelativistic Lagrangian L for e− suffices since meα� me. Here ve = |pe|/me ∼ α� 1.

Note that the typical momenta in the bound state are p ∼ meα and typical energies are E ∼ meα
2. The

above conclusions hold despite the presence of UV divergences that appear when we consider various higher
order terms induced by the above expansions.

Unregulated diagrams:
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2.1 Effective Field Theory Ideas 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

Such divergences are handled by the process of regulating and renormalizing the EFT. This procedure is
needed to properly define the parametters in the EFT in the first place, and the divergences can even be
exploited to track information that appears in a more complicated manner without the EFT framework.
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2.1 Effective Field Theory Ideas 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

In general, EFT’s are used in two distict ways, either from the top-down or from the bottom-up:

i. Top down - Here the high energy theory is understood, but we find it useful to have a simpler theory at
low energies.

• We integrate out (remove) heavier particles and match onto a low energy theory. This procedure
yields new operators and new low energy couplings. More specifically, we expand the full Lagrangian

as a sum of terms of decreasing relevance Lhigh ≈
∑

n L
(n)
low. The phrase “integrate out” comes from

Kenneth Wilson and corresponds to explicitly integrating out the high energy field modes in the path
integral formulation.

• The Lagrangians Lhigh and Llow will agree in the infrared (IR), but will differ in the ultraviolet (UV).

• The desired precision will tells us where to stop the expansion → how far we go with the sum on n.

Some examples of top-down EFT’s are:

– Integrate out heavy particles, like the top quark, W, Z, and Higgs bosons from the Standard Model.

– Heavy Quark Effective Theory (HQET) for charm and bottom quarks at energies below their masses.

– Non-relativistic QCD or QED (NRQCD or NRQED) for bound states of two heavy particles.

– Soft-Collinear Effective Theory (SCET) for QCD processes with energetic hadrons or jets.

Note that for effective theories built from Quantum Chromodynamics (QCD), a separation of scales is
needed to distinguish physics that is perturbative in the coupling αs(µ) evaluated at the scale µ = Q from
effects that are non-perturbative in the coupling evaluated at a scale close to ΛQCD � Q.

Also note that the
∑

n L
(n)
low is an expansion in powers of the power counting parameter, but there are

also logarithms which will appear with arguments that are the ratio of mass scales or the power counting

parameter. In a perturbative EFT with a coupling like αs the renormalization of L(n)
low allows us to sum the

large logs αs ln (m1
m2

) ∼ 1 when m2 � m1. Indeed any logarithms that appear in QFT should be related to
renormalization in some EFT.

ii. Bottom up - Here the underlying theory is unknown. In this bottom-up case we construct the EFT
without reference to any other theory. Even if the underlying theory is known, we can also consider
constructing the EFT from the bottom-up if the matching is difficult, for example if the matching would
have to be nonperturbative in a coupling and hence is not possible analytically.

• Construct
∑

n L(n) by writing down the most general set of possible interactions consistent with all
symmetries, using fields for the relevant degrees of freedom.

• Couplings are unknown but can be fit to experimental or numerical data (e.g. lattice QCD)

• Desired precision tells us where to stop the expansion→ How high do we go in the sum over n before
stopping.

Some examples of bottom-up EFT’s are:

– Chiral Perturbation Theory for low energy pion and kaon interactions.

– The Standard Model (SM) of particle and nuclear physics.

– Einstein Gravity made Quantum with graviton loops.
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2.1 Effective Field Theory Ideas 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

Comment: The
∑

n expansion is in powers, but there are also logs. Renormalization of L(n)
low allows

us to sum large logs ln (m1
m2

) (m2 � m1). It’s true even when m1 and m2 are not masses particles - it’s
usually the case that logs in QFT are summed up with some EFT.
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2.2 Standard Model as an EFT 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

Figure 1: Fermion content of the Standard Model

2.2 Standard Model as an EFT

Lets look at the Standard Model of particle and nuclear physics as a bottom up EFT with
∑

n L
(n)
low =

L(0) + L(1) + .... The 0’th order is the Standard Model Lagrangian studied in MIT’s 8.325 class: QFT III
(refer to the supplement notes for more details). This Lagrangian already involves the relevant degrees of
freedom. The gauge symmetry of the Standard Model is SU(3)color×SU(2)weak×U(1)Y with the following
vector gauge boson content: (8 gluons AAµ )× (3 weak bosons W a

µ )× (1 U(1) boson Bµ). The fermionic and
bosonic content of SM is described in the table below (and further detail can be found from the Particle
Data Group website at http://ptg.lbl.gov).

The question we would like to answer is What is L(1)? Before doing that lets review some things about
the 0’th order term. The 0th order Lagrangian is L(0) = Lgauge + Lfermion + LHiggs + LNR . Let us write
down the first 2 terms explicitly (Y , T a, TA are U(1), SU(2), SU(3) representation):

Lgauge = −1

4
FµνFµν −

1

4
W aµνW a

µν −
1

4
GAµνGAµν

Lfermion =
∑
ΨL

Ψ̄LiD/ΨL +
∑
ΨR

Ψ̄RiD/ΨR

iDµ = i∂µ + g1BµY + g2W
a
µT

a + g3A
A
µT

A

The power counting for the SM as an EFT must be based on what we’ve left out: a new mass scale at
the higher energy Λnew. The expansion parameteter (power counting factor) should be a mass ratio of the
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2.2 Standard Model as an EFT 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

form ε = mSM
Λnew

, where mSM is the particle mass in the SM (e.g. mW , mZ , mt). Higher mass dimension
operators OD (dimension [OD] = D > 4) can be built out of SM degrees of freedom with couplings to the
order of Λ4−D

new .

Before moving on further, Let us review the meaning of renormalizability in the context of an EFT:

i. Traditional Definition - A theory is renormalizable if at any order of perturbation, divergences from
loop integrals can be absorbed into a finite set of parameters.

ii. EFT Definition - A theory must be renormalizable order by order in its expansion parameters:

- This allows for an infinite number of parameters, but only a finite number at any order in ε.

- If an L(0) is traditionally renormalizable, it does not contain any direct information on Λnew.

Next we will look at a simple example of renormalizability in an EFT. Example: Let us look at an
example in a scalar field theory, in the case where mass dimension determines power counting. Consider a
d dimensional theory:

S[φ] =

∫
ddx
(1

2
∂µφ∂µφ−

1

2
m2φ2 − λ

4!
φ4 − τ

6!
φ6
)

From the definition of mass dimension,
[
S[φ]

]
= 0 and [x] = −1. It is then straightforward to find

[φ] = d−2
2 , [m2] = 2, [λ] = 4 − d and [τ ] = 6 − 2d. Assuming we want to study < φ(x1)...φ(xn) > at

large distance xµ = sx′µ (controlling s → ∞ while keeping x′µ fixed - same value of x′µ but cover more
distance as s goes up), then to normalize the kinetic term one can redefine the large distance scalar field

to be φ′(x′) = s
d−2

2 φ(x):

S′[φ′] =

∫
ddx′

(1

2
∂µφ′∂µφ

′ − 1

2
m2s2φ′2 − λ

4!
s4−dφ′4 − τ

6!
s6−2dφ′6

)
The correlation function:

< φ(x1)...φ(xn) >= s
n(2−d)

2 < φ′(x′1)...φ′(x′2) >

Taking d = 4, as s → ∞ we find m2 becoming more and more important, λ being equally important
and the τ term becoming less important at large distance. Therefore, the operator φ2 is relevant since its
mass dimension is [φ2] < d as the coupling [m2] > 0, the operator φ2 is marginal since its mass dimension
is [φ4] = d as the coupling [λ] = 0 and the operator φ6 is irrelevant since its mass dimension is [φ2] > d
as [τ ] < 0. Large distance means small momenta, therefore the energy scale decrease. If m is the mass of
a particle in a the theory at a high energy scale ΛE � m, then the φ2 operator is a small perturbation,
and in some sense can be neglected. In the low energy scale ΛE � m, this term represents some non-
perturbative description. Let m ∼ Λnew be the mass of an unknown particle for a theory at a low energy
scale ΛE � Λnew, then in terms of mass scale m2 ∼ Λ2

new, λ ∼ Λ0
new and τ ∼ Λ−2

new. Since EFT looks
toward the IR of the underlying theory, the mass term of the heavy particle will not be included. The φ4

and φ6 terms are included and they can usually be integrated out, leaving an EFT that contains only light
degrees of freedom.

Note that relevant operators can upset power counting through kinetic terms (e.g. Higgs fine-tuning).

To demonstrate the ideas of traditional renormalization and EFT renormalization we will take m = 0
(or small m such that m2s2 ∼ 1) and calculate the divergences through Feynman loop diagrams (d = 4
and cut-off Λ):

∼ λ2

∫
ddk

(k2 −m2 + io)((k + p)2 −m2 + io)
∼
∫ Λ

0

ddk

k4
∼ ln Λ
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2.2 Standard Model as an EFT 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

This λφ4 divergence renormalizes λ by the counter-term

∼ λτ ln Λ divergence renormalizes τφ6

∼ τ2 ln Λ divergence renormalizes ∼ φ8

Since φ8 is not included in S[φ] the theory is non-renormalizable in the traditional sense, but if τ ∼
Λ−2
new is small and p2τ � 1, the theory can be renormalized order by order in Λnew (to the non-positive

power). From the above equation, the given scalar field theory is renormalizable up to Λ−2
new. To have a

renormalizable EFT up to Λ−4
new, one should add a φ8 operator. In general, to include all corrections up to

Λ−rnew (or s−r, with r non-negative), one has to consider all operators with mass dimension ≤ d + r. This
is an important relation between power counting and mass dimension.

Although the above argument seems to be generic, can you think of what assumption might change
that would lead to non-dimensional power counting? Hint: look at the properties of coordinates rescaling
xµ → sx′µ

The SM Lagrangian L(0) is renormalizable in the traditional sense, since all operators have mass
dimension ≤ 4. To get the L(1) correction for the SM, one can add a mass dimension 5 operator O5:
L(1) = c5

Λnew
O5 with the D = [O5] = 5 Wilson coefficient c5 ∼ 1 and [c5] = 0 and Λnew explicit. Since

nothing in L(5) contains Λnew, one is free to take Λnew � mSM . Indeed, from experimental data, L(1)

seems to give a very small corrections.

Let us now continue with the SM as an EFT and consider the corrections to L(0) = LSM (e.g. for
energy scale ΛE ∼ mt). Toward the IR of the underlying theory:

L = LSM + L(1) + L(2) + ... = (∼ Λ0
new) + (∼ Λ−1

new) + (∼ Λ−2
new) + ...

Assume Lorentz invariance and gauge invariance are still unbroken, then each L(n) is Lorentz invariant
and SU(3)×SU(2)×U(1) invariant (take the Higgs vacuum expectation value to be v = 246 GeV, for the
energy scale ΛE � v one can see the full gauge symmetry). These L(n) should be constructed from the
same degrees of freedom as LSM . Furthermore assume that no new particles are introduced at Λ. With
that construction, one expects to see new physics from those corrections.

Example 1: L(1) = c5
Λnew

εijL̄
ci
LH

jεklLL
kH l is the only D = 5 operator consistent with symmetry, with

the Higgs doublet H =

(
h+

ho

)
and the lepton doublet LL =

(
νL
eL

)
. As one can see, this Lagrangian is

a singlet under SU(3), SU(2) and carries zero U(1) hypercharge. Setting H =

(
0
v

)
gives the Majorana

mass term for observed neutrinos 1
2mνεabν

a
Lν

b
L + h.c. with mν = c5v2

2Λnew
. From experimental data mν ≤

0.5(eV ) so one expects the energy scale for new physics (new massive particle) to be around Λnew ≥
6 × 1014(GeV ) as c5 ∼ 1. Note that the Majarana mass term in the Lagrangian violates lepton number
conservation.

Example 2: D = 6 operators exist that violate baryon number conservation.

Example 3: With the number of leptons and baryons imposed there are 80 mass dimension 6 operators

L(2) = Λ−2
new

∑80
i=1 c6iO6i. For any observable only a few terms contribute and for any new theory at Λnew

a particular pattern of c6i is predicted. Here’s a reminder of SM charges as a reference:

10



2.2 Standard Model as an EFT 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

There are terms contributing to the muon anomalous magnetic moment O6ω = L̄Lσ
µνσaeRHW

a
µν

and O6F = L̄Lσ
µνeRHFµν . The contribution can be calculated to be (g − 2)µ = (contribution from

LSM ) + 4c
mµv
Λ2
new

, and from it one extracts Λnew > 100(TeV ) if c ∼ 1. For the remaining operators, see

W. Buchmuler, D. Wyler: Nucl. Phys. B268 (1986) p621-653 for details and Grzadkowski, B., et al.
”Dimension-six terms in the standard model lagrangian.” Journal of High Energy Physics 2010.10 (2010):
1-18 for a more up to date discussion.

When enumerating these operators, the classical equations of motion derived from LSM can be used
to reduce the number of operators - this is known as the integrating out at tree level (for more detail, see
the papers mentioned above). This is obviously fine at lowest order since external lines are put on-shell
in Feynman rules, and actually the same can be applied even with loops and propagators. To see this,
consider the following theorems:

i. Representation Independence Theorem: Consider a scalar field theory and let φ = χF (χ)
with F (0) = 1 (so that one can Taylor expand the field around φ = 0 with the leading term being φ = χ,
which can be shown to be the 1-particle representation of quantized φ and quantized χ at the same time).
Calculations of observables with L(φ) and quantized field φ give the same results as with L′(χ) = L(χF (χ))
and quantized field χ.

Example: Consider the d = 4 scalar field theory with η � 1 as the power counting factor:

L =
1

2
∂µφ∂µφ−

1

2
m2φ2 − λφ4 + ηg1φ

6 + ηg2φ
3�φ+O(η2)

The last term can be dropped from the equation of motion �φ+m2φ+ 4λφ3 +O(η) = 0 or by making
a field redefinition φ→ φ+ ηg2φ

3. The new Lagrangian is:

L′ = 1

2
∂µφ∂µφ−

1

2
m2φ2 − λ′φ4 + ηg′1φ

6 +O(η2)

Explicit computation of the 4-point and 6-point tree level Feynman graphs to O(η) with L(φ) and
quantized φ or L′(χ) and quantized χ can be shown to give the same results. This holds even if one
considers loops.
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2.2 Standard Model as an EFT 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

ii. Generalized theorem : Field redefinitions that preserve symmetries and have the same 1-particle
states allow classical equations of motion to be used to simplify a local EFT Lagrangian without changing
observables. For more detail regarging on-shell EFT, refer to C. Arzt: hep-ph/9304230 and H. Georgi:
Nucl. Phys. B361, p339-350 (1991).

A sketchy derivation for this theorem in a field theory with complex scalar φ can be shown as follows.
Starting from LEFT =

∑
n η

nL(n) (η � 1, as the power counting factor) consider removing a general first
order term 1

2ηT [ψ]D2φ from L(1) that preserves symmetries of the theory, with T [ψ] being a local function
of various fields ψ (basically, removing linear terms D2φ in the EFT). The Green’s function with sources
J can be obtained by functional derivatives of the partition function with respect to sources (one can see
that with this approach, use of dimensional regularization is convenient):

Z[J ] =

∫ ∏
i

Dψi exp
(
i

∫
ddx
(
L(0) + η(L(1) − TD2φ) + ηTD2φ+

∑
k

Jkψk +O(η2)
))

Removing the term 1
2ηT [ψ]D2φ is relevant to redefining the field φ∗ = φ′∗ + ηT in the path integral:

Z[J ] =

∫ ∏
i

Dψ′i
δφ∗

δφ′∗
exp

(
i

∫
ddx
(
L(0) +

1

2
ηT (

δL(0)

δφ∗
− ∂µ

δL(0)

δ∂µφ∗
)

+η(L(1) − 1

2
TD2φ′) +

1

2
ηTD2φ′ +

∑
k

Jkψ
′
k +

1

2
Jφ∗ηT +O(η2)

)
From here, one can see that there are 3 changes: the Lagrangian, the Jacobian and the source term

Jφ∗ . The claim is that without changing the S-matrix, we can remove the change in Jacobian and the
source, therefore we only need change of variable in L:

δL needs φ∗ + ηT to transform like φ∗, in order to respect the symmetries of the theory:

L =
1

2
(Dµφ)∗(Dµφ)− 1

2
m2φ∗φ+ (...)

=
1

2
(Dµφ′)∗(Dµφ)− 1

2
m2φ′∗φ′ +

1

2
ηT (−D2φ′ −m2φ′) + (...)′ (2.3)

The −1
2ηTD

2φ′ term from L(0) after redefining the field cancels 1
2ηTD

2φ′, as expected. Since the EFT
Lagrangian at all orders η contains all terms allowed by symmetries, all operators in (...)′ are already
present in (...) as the field redefinition also respects the symmetries. Thus couplings are simply redefined,
and this poses no problem, since the values of couplings of an EFT aren’t fixed. We therefore still have
the same EFT.

The redefinition of φ differs from the original one at first order, so first order corrections of L(0) (which
are also symmetry-preserving) can be all absorbed into L(1) couplings. L(1) corrections go to higher orders
in the Lagrangian, and terms linear in D2φ can all be taken out from L(1). Using the same idea, one might
cancel D2φ to any power out of L(1) by replacing it using the equation of motion (because of the kinetic
term, D2φ should always be there in the theory). This is also relevant to redefining the fields.

Now let us turn our attention to the Jacobian. Recall that det(∂µDµ) =
∫
DcDc̄ exp

(
i
∫
ddxc̄(−∂µDµ)c

)
(Fadeev-Popov method) and write δφ∗

δφ′∗ = 1+η δT
δφ′∗ which leads to c̄c+ηc̄ δTδφ′∗ c after including ghosts. Since

the EFT is valid for the energy scale ΛE � η−
1
2 (= Λnew), the ghosts will have mass ∼ Λnew and hence

decouple, just like other particles at this mass scale that were left out. Note that dropping ghosts can
change the couplings.

12
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Example: Consider T = �φ′∗ + λφ′∗(φ′∗φ′) → δφ∗

δφ′∗ = c̄(1 + η� + 2ηλφ′∗φ)c and rescale c → cη−
1
2 to

have the correctly normalized kinetic term. It then becomes c̄(η−1 +�+ 2λφ′∗φ′)c, with the mass term of

the ghost showing that it has a mass η−
1
2 = Λnew as expected. Note that one needs a single φ′∗ term in

the field redefinition for this argument, which means that a term like φ′∗ = �φ∗+λφ′∗(φ′∗φ′) would not be
acceptable. Since ghosts always appear in loops, they can be removed like heavy particles and contribute
some correction to the couplings.

We now look at the source term. Consider a Green’s function of n-points scalar fields:

G(n) = 〈0| T
(
φ(x1)...φ(xn)...

)
|0〉 = 〈0| T

((
φ′(x1) + ηT (x1)

)
...
(
φ(xn) + ηT (xn)

)
...
)
|0〉 .

Here the ... on the right stand in for other fields and we use real φ for notational simplicity. The change
of source can be shown to drop out of 〈S〉 from LSZ reduction (e.g. field rescaling and field renormalization
cancellation, no pole, no contribution to the scattering):∫ ∏

i

ddxie
ipixi 〈0| T

(
φ(x1)...φ(xn)...

)
|0〉 ∼

(∏
i

i
√
Z

p2
i +m2

i + io

)
〈p1p2...|S |pjpj+1...〉

∣∣∣
p0
i→
√

p2
i+m

2
i

Example 1: Consider a scalar field theory with the field redefinition φ′ = φ + ηφ = (1 + η)φ i.e.
T [φ] = φ∂2φ. The 4-point Green’s function gives a prefactor (1 + η)4 after redefining the field, and
it’s cancelled by the renormalization of the field

√
Z = 1 + η. This is the field redefinition and field

renormalization cancellation.

Example 2: Consider a scalar field theory with the field redefinition φ′ = φ + ηg2φ
3 i.e. T [φ] = gφ3.

The four point function will get extra terms, for example, the corrections coming from Feynman diagrams
similar to:

= ηg 〈0| T
(
φ′(x1)φ′(x2)φ′(x3)φ′3(x4)

)
|0〉

Here, the φ3 doesn’t give a single particle pole at x4, so it has no contribution for scattering (external
fields are taken on-shell), which means that the S-matrix stays the same after the field redefinition.

Example 3: Consider a scalar field theory with field redefinition φ = φ′+∂2φ′ = φ+ (∂2 +m2)φ−m2φ.
The second term gives no pole and therefore not contribute to the scattering, and the 3rd term can be
treated in the same way as in example 1 above.

3 Tree level, Loops, Renormalization and Matching

3.1 A toy model

To demonstrate the ideas behind the matching technique through tree level, loops and renormalization
with a simple calculation, consider a toy model with a heavy real scalar φ of mass M and a light fermion
ψ of mass m. The Lagrangian (call it theory 1) can be written down as:

L1 = ψ̄(i∂/−m)ψ +
1

2
∂µφ∂µφ−

1

2
M2φ2 + gφψ̄ψ

13



3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

If the energy scale of interest ΛE � M one can integrate out the massive degrees of freedom φ and
build a new theory of the light fermion ψ alone. Interaction terms in the theory of fermions (call it theory
2), can be written down under the requirement of preserving the gauge symmetry:

L2 = ψ̄(i∂/−m)ψ +
c1

M
ψ̄�ψ +

c2

M2
ψ̄ψψ̄ψ +

c′2
M2

ψ̄∂/�ψ +
c3

M3
ψ̄�2ψ +

c4

M4
ψ̄ψψ̄�ψ + ...

Let us look at the 4-point fermion interaction term in theory 2. One can immediately do the matching
to tree level (loops contribute corrections, and one should do the matching at relevant orders) of theory 1
and find that c2 = −c4 = g2:

= (ig)2 i

q2 −M2
≈ ig2

M2
+
ig2q2

M4
+ ...

Since the scalar propagator always comes with an even power contribution of 1
M , we can see that

c1 = c3 = 0 from tree level matching. Indeed, to match c1, c3 and even c′2 one should go through detailed
calculations with loops.

Another way to see this is using the classical equation of motion for φ to simplify the theory:

φ = gψ̄
1

�+M2
ψ ≈ gψ̄(

1

M2
− �
M4

+ ...)ψ

Plug this back into the Lagrangian and we find the same results for the Wilson coefficient c from matching
at tree level.

Calculations with loops require a lot more care. Let us briefly review some important concepts:

• Regularization is the technique to cut-off UV divergences in order to obtain finite results. Different
regularization methods introduce different cut-off parameters (e.g. hard cut-off Λ2

UV , dimensional
regularization d→ d− 2ε, lattice spacing).

• Renormalization is the technique used to pick a scheme to give definite meaning to each coefficient
and operator of the QFT. It might also introduce some renormalization parameter (e.g. µ in MS,
p2 = −µ2

R for off-shell subtraction scheme, Λ for Wilsonian). The relation between bare abare,
renormalized aren and counter-term δa coefficients a in different renormalization schemes (UV cut-off
with integrated momenta p, ΛUV ≤ |p| and MS dimensional regularization) are related:

abare(ΛUV ) = aren(Λ) + δa(ΛUV ,Λ) , abare(ε) = aren(µ) + δa(ε, µ)

Let us now show the difficulties with loop calculations and renormalization of coefficients:

i. Regularization and Power Counting: Consider in d = 4 the self interaction and mass correction

in theory 2 which corrects the fermion mass at order m2

M2 by ∆m ∼ ic2
M2

∫ d̄dk(γµkµ+m)
k2−m2+io

=

c2m
M2

∫
d̄4kE
k2
E+m2 (using a Wick rotation from Lorentzian to Eulidean signature k → kE). Before performing the

calculation, note that the higher dimension operator (which is suppressed at the low energy scale), should

give rise to a small correction. The physical part of the intergation
∫

d4kE
k2
E+m2 (at the very same order) at

that energy scale should be insensitive to M (since the contribution from that mass scale will disturb power

counting), and from dimensional analysis one can guess
∫

d4kE
k2
E+m2 ∼ m2, as the small correction must be

∆m ∼ am3

M2 with kE ∼ m domination. Doing the math in different regularization schemes gives:

14



3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

• UV cut-off with ΛUV ∼ M , since one excludes the physics at around that energy scale. This regu-
larization breaks Lorentz symmetry by imposing a hard cut-off momentum:

c2m

M2

∫ ΛUV

0

d̄4kE
k2
E +m2

=
c2m

(4π)2

(Λ2
UV

M2
+
m2

M2
ln (

m2

Λ2
UV

)− m4

M2Λ2
UV

+ ...
)

The first term in the bracket is in the power counting order of O(1) is dominated by kE ∼ ΛUV ,
which is not a correction coming out of the expected order. If one tries a normal way of absorbing
the physics from energy scale Λ to ΛUV with a piece c2m

M2

∫ ΛUV
0

d̄kE
k2
E+m2 in the fermion mass counter-term

δm(ΛUV ,Λ) to improve things, terms with different orders Λ2

m2 and ln (m
2

Λ2 ) will be present in 4-point
fermion interaction renormalization 〈(ψ̄ψ)2〉ren(Λ). To recover the right power counting, a counter-
term should be introduced to absorb the whole O(1) term instead. In this regularization the power
counting only applies to renormalized couplings and operators order by order, power counting breaks
down (the power counting factor m

M is incorrect because of the mass dependence of the regulator
ΛUV ).

• MS with dimensional regularization d = 4− 2ε:

c2m

M2

∫ ∞
0

d̄dkE
k2
E +m2

∣∣∣ε,µ
d→4−2ε

=
c2m

(4π)2

(m2

M2

(
− 1

ε
+ ln (

m2

µ2
)− 1

)
+O(ε)

)
The first term can be absorbed into the MS counter-term, and note that it can be related to a similar
term in UV cut-off regularization when ε = −ΛUV

m2 . The second term inside the bracket has the same
log behavior with the similar term in UV cut-off regularization if µ = ΛUV . The third term inside
the bracket corresponds to the domination of the integration around the Lorentzian pole k2 ∼ m2,
giving a small correction ∆m ∼ c2m3

M2 . The regularization does not break the power counting (the
m2

M2 term is still there, in front of a divergent term and non-divergent terms, keeping track of orders)
because the regulator doesn’t depend on the mass scale M (the infinitesimal dimensionless ε), and
one can still do power counting.

In principle any regulator is acceptable, but if one can choose the regulator to preserve symmetries (e.g.
gauge invariance, Lorentz symmetry, chiral symmetry) and also preserve power counting by not yielding
a mixing of terms of different orders in the expansion, the calculations become easier because, in general,
operators will always mix with other operators of the same dimension and same quantum numbers (with
a matrix of counter-terms). For power counting, this corresponds to using mass-independent regulators
(strictly speaking, a new mass scale may still appear but in a way that doesn’t directly change the power
counting factor, and it’s mass-independent in the sense that it doesn’t see the thresholds of particles’ masses
in the theory). If the regulator doesn’t have these desired properties (e.g. Supersymmetry is broken by
dimensional regularization), one can still use counter-terms to restore symmetries and power counting,
therefore simplifying the calculations.

Now Let us do the matching explicitly with 1 loop. Consider the self interaction diagram in theory 2
and absorb the mismatch with theory 1 by redefining the field and mass with δZψ and δm (counter-terms).
Note that the last term can be added into the mass counter-term, too:

= (1 + δZψ)p/− (m+ δm)− c2m
2

16π2M2
(1− ln

m2

µ2
)
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3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

A loop diagram in theory 1 that is relevant to the 1-loop self interaction in theory 2 should be used
(the calculation is taken in the limit when M � pE ∼ m):

= p/−m− g2

16π2

(
p/(

1

2
ln
M2

µ2
− 1

4
+

m2

2M2
− p2

6M2
) +m(ln

M2

µ2
− 1− m2

M2
ln
m2

M2
− p2

2M2
)
)

The terms in this loop calculation of theory 1 with p2 and p/p2 from the point of view in theory 2
come from the interaction c1 and c′2 and therefore can be matched to give non-zero results. c3 can also be
matched if one expands further to p4. Note that the matching shows that c1 and c3 are in the first order of
power counting m

M , so instead of redefining them to become operators at higher order of the form mψ̄�ψ
and mψ̄�2ψ which would make the Wilson coefficients be of order 1, one should think of the old Wilson
coefficients are zeroes plus some correction. The rest can be matched to the self-interaction calculation in
theory 2, with δZψ and δm defined as:

δZψ = − g2

16π2
(
1

2
ln
M2

µ2
− 1

4
+

m2

2M2
) = − c2

16π2
(
1

2
ln
M2

µ2
− 1

4
+

m2

2M2
)

δm =
g2

16π2
(ln

M2

µ2
− 1) =

c2

16π2
(ln

M2

µ2
− 1)

The final part of the matching is then m2

M2 ln m2

M2 = m2

M2 ln m2

µ2 , giving the unphysical mass scale in dimensional
regularization a physical meaning, µ = M , the mass of the heavy particle in the theory.

Example: Dimensional regularization in supersymmetric field theory breaks supersymmetry, and the
counter-term is usually chosen in a way that the renormalized results are supersymmetric.

ii. More on Dimensional Regularization:

Some useful axioms:

• Linearity (complex numbers a, b):
∫
d̄dp
(
af(p) + bg(p)

)
= a

∫
d̄dp+ n

∫
d̄dp

• Translation (vector q):
∫
d̄dpf(q + p) =

∫
d̄dpf(p), and also Rotation

• Scaling (complex number s):
∫
d̄f(sp)d = s−d

∫
d̄dpf(p)

These 3 axioms together give a unique definition to the integration up to normalization: dimensional
reqularization (see Collins p. 65 for ruther details of the proof).

In Euclidean space: ddp = dppd−1dΩd = dppd−1d cos θ sind−3 θdΩd−1 with
∫
dΩd = 2π

d
2

Γ( d
2

)

For spherical symmetric intergration d̄dp = pd−12

(4π)
d
2

Γ(d2)dp

Common integration:
∫
d̄dp (p2)α

(p2+A)β
= 1

(4π)
d
2
A
d
2

+α−β Γ(β−α− d
2

)

Γ(β)

Γ(α+ d
2

)

Γ( d
2

)
,
∫
d̄dp(p2)α = 0 (see Collins p71)

Feynman’s parametric integration formula: 1
AaBb

= Γ(a+b)
Γ(a)Γ(b)

∫ 1
0 dx

xa−1(1−x)b−1

(Ax+B(1−x))a+b

Dimensional regularization introduces d = 4 − 2ε, where ε > 0 will tame the UV and ε < 0 will tame
the IR (the sign does not depend on the sign of the divergence, it’s just a convention). The results are

always expressed using Gamma functions of the form Γ(−n+ ε) = (−1)n

n!

(
1
ε + ψ(n+ 1) +O(ε)

)
.

Example: The Euclidean Id(q, n) integration with dimensional regularization:

Id(q, n) =

∫
ddp

(p2 + 2pq +m2)n
=

(−1)2−n

(2− n)!

iπ
d
2

Γ(n)
(m2 − q2)

d
2
−n
(1

ε
+ ψ(3− n) +O(ε)

)
16



3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

Note that for the diagram of the massless scalar field loop =
∫
d̄dpp−4 = i

16π2 ( 1
εUV
− i
εIR

) = 0

at d = 4 (εUV = εIR), since the counter-term (always needed when there’s a UV divergence) is only meant

to cancel the UV divergence for physics at a high energy scale = − i
16π2

1
εUV

so

= − i
16π2

1
εIR

Dimensional regularization is well-defined even with both UV and IR divergences by separating the UV
and IR poles, using analytic continuation.

Example: Consider a well-defined spherical integral in the dimensional range 0 ≤ d ≤ dmax, to extend
to the lower limit −2 ≤ d ≤ dmax. First of all one can split these UV and IR parts by using the scale c:∫ ∞

0
dppd−1f(p2) =

∫ ∞
c

dppd−1f(p2) +

∫ c

0
dppd−1

(
f(p2)− f(0)

)
+
cd

d
f(0)

For −2 ≤ d < 0, take the above equation as an analytic continuation and using dimensional regular-
ization differently for these UV and IR parts with different values of d, then put them back together and
get the final result after regulating the divergent poles that should be independent of the scale c. Take
c→∞, then the integration can be simplified to

∫∞
0 dppd−1

(
f(p2)− f(0)

)
.

Now, let us look into renormalization after dimensional regularization:

• MS scheme: a mass scale µ is introduced in order to keep any renormalized couplings dimensionless.

Example: Consider the gauge coupling interaction gbareψ̄A/ψ. At d = 4 one has [gbare] = 4−d
2 = ε in

dimensional regularization. In term of the dimensionless renormalized coupling and the dimensionless
renormalized factor, the bare coupling should be equal to Zgµ

εg(µ) as g(µ) depends on the chosen
mass scale µ. Note that the µε factor is not associated with loop measure.

• MS scheme: The chosen mass scale is slightly different from the MS scheme µ2 → µ2e
γE
4π so that the

large universal constant is removed. The advantages of this scheme are that it preserves symmetries,
it is technically easy to calculate multiple loops and often gives manifest power counting. The
disadvantages are that the physical picture becomes less clear (e.g. we lose positive definiteness
for renormalized quantities), it can introduce renormalons (poor convergences) at large orders in
perturbation theory and it does not satisfy the decoupling theorem .

Decoupling Theorem: Consider building an EFT by integrating out the massive fields. If the remaining
low energy theory is renormalizable and we use a physical renormalization scheme (e.g. off-shell momentum
subtraction), then all effects due to heavy particles (of mass scale M) appear as a change in the couplings
or are suppressed as 1

M . Since the MS scheme is not physical, because it is mass independent (doesn’t
see the mass threshold), one must implement the decoupling argument of the theory by hand, removing
particles of mass M for µleqM .

Example: The MS scheme of QCD has β(g) = µ d
dµg(µ) = − g3

16π3 bo+O(g5) < 0 with bo = 11
3 cA−

4
3nFTF .

The QCD fine structure constant αs(µ) = g2(µ)
4π then runs as αs(µ) = αs(µo)

1+αs(µ) bo
2π

ln µ
µo

from the lowest order

solution, which behaves assymptotically free. Define an intrinsic mass scale ΛMS
QCD = µ exp(− 2π

boαs(µ)) (by

replacing αs(µ) one can show that it is independent of the choice for µ) to get the nice form αs(µ) =
2π

bo ln (µ/ΛMS
QCD)

, which specifies the energy scale when QCD becomes non-perturbative (∼ 200(MeV )). Note

that ΛMS
QCD depends on bo (and thus on the number of light fermionic flavors nF ), on the order of loop

expansion for β(g) and also on the renormalization scheme (beyond 2 loops).
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3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

The problem comes from heavy quarks (e.g. top, bottom) contributing to bo for any µ from the point
of view of the unphysical MS renormalization scheme and that contradicts the decoupling theorem at low
energy scale compare to these quarks’ masses. Therefore decoupling should be implemented by hand by
integrating out and changing the fermion number nF (allowed in the loop, effectively) as µ gets through a
quark mass threshold. Specifically, nF = 6 for µ > mt, nF = 5 for mb < µ < mt and so on.

The matching condition (perturbative diagrams and couplings) between effective theories after remov-
ing the heavy degrees of freedom should be based on the characteristics of the S-matrix (not the couplings):
at the transition mass scale m(∼ µm = µ(1) = µ(2)) the S-matrix elements with light external particles
should agree between theory 1 and 2. The leading order condition for couplings (which makes them

continuous at the mass threshold) can be shown to be α
(1)
s (µm) = α

(2)
s (µm).

Consider matching between theories, say nF = 4 and nF = 5 (for the number of active quark degrees

of freedom) at the bottom quark’s mass threshold. Then at leading order we get α
(4)
s (mb) = α

(5)
s (mb).

At higher order, more complicated Feynman diagrams contribute and create the mismatch (e.g. from the

effect of including the bottom quark in theory 5 gives contributions through loops of the form

at the next order):

α(4)(µ) = α(5)(µ)
(

1 +
α(5)(µ)

π

(
− 1

6
ln
µ2

m2
b

)
+ (

α(5)(µ)

π
)2
(11

72
− 11

24
ln
µ2

m2
b

+
1

36
ln2 µ

2

m2
b

)
+ ...

)∣∣∣
µ∼mb

The general procedure for matching EFT’s L(1) → L(2) → ... → L(n) top-down for mass thresholds
m1 � m2 � ...� mn (going from higher to lower energy scale) can be summed up as follows:

1. Match the theory L(1) at the scale m1 onto L(2) by considering the S-matrix.

18



3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

2. Compute the β-function and anomalous dimension in theory 2 (which does not have particle 1) to
run the couplings down from the evolution equations, then run them.

3. Match the theory L(2) at the scale m1 onto L(3) by considering the S-matrix.

4. Compute the β-function and anomalous dimension in theory 3 (which does not have particle 2) to
run the couplings down from the evolution equations, then run them.

5. Follow this procedure for any number of additional steps required.

If one is interested in the dynamics at a scale mn−1 > µ > mn, then one should stop at L(n) and do the
calculations for observables (e.g. matrix elements) using this Lagrangian.

3.2 Massive SM particles

Usually the heavy particles t, H, W and Z are removed simultaneously from the SM. The reason for
integrating them out together is because if one tries to firstly integrate out the top quark only, then

SU(2) × U(1) gauge invariant of SM breaks since the top-bottom quark doublet

(
tL
bL

)
loses the top

component (the problem can be solved by including Wess - Zumino terms). Also note that mZ
mt
∼ 1

2 is not
a very good expansion parameter. The disadvantage of removing these particles at the same step is that

one misses the running mt → mW , as the analysis treats αs(mW ) ln
m2
W

m2
t

perturbatively.

Example: Consider the process b→ cūd at tree level with LSM = g2√
2
W+
µ ūLγ

µVCKMdL + ... :

= (
ig2√

2
)2VcbV

∗
ud

(
ηµν − kµkν

m2
W

) −i
k2 −m2

W

(c̄γµPLb)(d̄γνPLu)

Expand the W boson propagator to −iη
µν

−m2
W

+O(
m2
b

m4
W

) at low energy scale ∼ mb:

= − i4GF√
2
VcbV

∗
ud(c̄γ

µPLb)(d̄γµPLu) , GF =

√
2g2

2

8m2
W

The EFT of electroweak interactions in the SM after removing t, H, W and Z is called the Electroweak
Halmiltonian. The above interaction from tree level matching can be written as:

Hew = −Lew =
4GF√

2
VcbV

∗
udC(c̄γµPLb)(d̄γµPLu)

The coefficient C is just equal to 1 at tree level. To go further with matching involves loops. First of
all one needs to build the most general basis of operators with symmetries (complete set of structures with
these degrees of freedom that can possibly occur). At the energy scale µ ∼ mW one can think of b, c, d and
u as effectively massless fields to get the coefficient C (which contains information about the removed mass
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3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

scales) since their masses only show up in the operators, and the massless treatment makes a connection
to chirality as QCD does not change the chiral nature from the original operators to the effective ones.

Example: Consider the c̄Xb part of a possible operator in the EFT, using chirality information we can
guess the X term in the middle: PL and an odd number of γ matrices. But since 3 γ matrices can be
reduced back to 1 γ matrix via the relation γαγβγδ = gαβγδ + gβδγα − gαδγβ − iεαβδτγτγ5, only c̄γµPLb
is left. Also spinor and color spinor Fierzing can be used to reduce the number of operators as they are
equivalent (e.g. (ψ̄1γ

µPLψ2)(ψ̄3γµPLψ4) = (ψ̄1γ
µPLψ4)(ψ̄3γµPLψ2) from Fierzing with fermionic fields).

A generalization for the D = 6 interaction term (Ci(µ) = Ci
( µ
mW

, αs(µ)
)
) with matching includes loops

and can be written down from those above arguments:

Hew =
4GF√

2
VcbV

∗
ud

(
C1(µ)O1(µ) + C2(µ)O2(µ)

)
Compared to the matching at tree level, one more operator can appear from a possible arrangement of

color indices:

O1(µ) = (c̄αγµPLb
α)(d̄βγµPLu

β) , O2(µ) = (c̄βγµPLb
α)(d̄αγµPLu

β)

The coefficents (at µ = mW from tree level) are:

C1

(
1, αs(mW )

)
= 1 +O

(
αs(mW )

)
, C2

(
1, αs(mW )

)
= 0 +O

(
αs(mW )

)
An interesting fact about the matching is its independence from the choice for states and IR regulators

as long as the same treatment is given for both theories. A clearer way to say this is that the UV matching
is independent from the IR physics. Even for hadronic bound states (e.g. B, D, π), the result is valid
through the use of free quark states - indeed, these stated are used because of the convenience to the
matching process in calculations.

Now let us carry out the matching for C1 and C2 in more detail at 1-loop in the MS scheme (d = 4−2ε).
First of all, renormalize the effective field theory (assume that the dynamical contents of SM are already

normalized) starting with the wavefunction ψ = ψren = Z
− 1

2
ψ ψbare (Zψ = 1 − αsCF

4πε with CF = N2
c−1

2Nc
).

Leave out the prefactor 4GF√
2
VcbV

∗
ud since it will always be there so one can add it again in the end of all

calculations.

The tree level matrix elements are S1 = 〈cūd|O1 |b〉
∣∣∣
tree

and S2 = 〈cūd|O2 |b〉
∣∣∣
tree

, and diagrams with

1-loop can be calculated based on the values of S1 and S2.

Let’s use off-shell momenta p as our IR regulator and assume the external particles’ masses vanish.
The calculations for bare operators with 1-loop corrections produce mixing of S1 and S2 since gluons carry
colors:

〈O1〉bare =
(

1 + 2CF
αs
4π

(
1

ε
+ ln

µ2

−p2
)
)
S1 +

3

Nc

αs
4π

(
1

ε
+ ln

µ2

−p2
)S1 −

3αs
4π

(
1

ε
+ ln

µ2

−p2
)S2 + ...

〈O2〉bare =
(

1 + 2CF
αs
4π

(
1

ε
+ ln

µ2

−p2
)
)
S2 +

3

Nc

αs
4π

(
1

ε
+ ln

µ2

−p2
)S2 −

3αs
4π

(
1

ε
+ ln

µ2

−p2
)S1 + ...
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The divergences can be killed by using wavefunction and coupling renormalization. There are 2 equiva-
lent methods to renormalize the interactions (for more details, refer to A. J. Buras http://arxiv.org/abs/hep-
ph/9806471):

1. Composite operator renormalization: Obare
i = ZijOj(ψ

bare) therefore 〈Oi〉bare = Z−2
ψ Zij〈Oj〉ren, with

〈Oj〉ren is a renormalized amputated Green’s function

2. Renormalize coefficient: 〈H〉 = Cbare
i 〈Oi(ψbare)〉 = (Z

(C)
ij Cren

j )(Z2
ψ〈Oi〉bare) = Cren

i 〈Oi〉bare+(Z2
ψZ

(C)
ij −

δij)C
ren
j 〈Oi〉bare. The last term is the counter-term chosen in such a way so that the final result is

〈H〉 = Cren
i 〈Oi〉ren.

The relation between these 2 ways can be understood by looking at the matrix elements:

Z2
ψZ

(C)
ji Cren

i 〈Oj〉bare = 〈H〉 = Cren
i Z2

ψZ
−1
ij 〈Oj〉

bare ⇒ Z−1
ij = Z

(C)
ji

In the MS scheme, the operator-mixing renormalization matrix can be read off (after absorbing the
most divergent terms 1

ε into the counter-terms and leaving the matrix elements of the renormalized 〈O1〉ren

and 〈O2〉ren to depend on S1, S2 and the renormalization scheme’s parameter ln µ2

p2 ) from detailed cal-

culations to be Z = 1 + αs
4π

1
ε

(
3/Nc −3
−3 3/Nc

)
. With this information, one can construct the anomalous

dimension matrix:

1. For method 1, the anomalous dimension matrix for operators is defined as µ d
dµOi = −γijOj :

0 = µ
d

dµ
Obare
i = (µ

d

dµ
Zij)Oj + Zij(µ

d

dµ
Oj)⇒ γij = Z−1

ik µ
d

dµ
Zkj

Note that αs also runs with µ d
dµαs = −2εαs + ..., therefore γ = −αs

2π

(
3/Nc −3
−3 3/Nc

)
2. For method 2, the anomalous dimension for the coefficients can be found from the independence of
Cbare
i Obare

i = CiOi on the energy scale µ (we drop the “ren” notation for convenience):

0 = µ
d

dµ
(Cbare

i Obare
i ) = µ

d

dµ
(CiOi) = (µ

d

dµ
Ci)Oi − CiγijOj ⇒ µ

d

dµ
Ci = Cjγji = γTijCj

In order to do the running, one can start by diagonalizing operators via O± = O1±O2 and coefficients
via C± = 1

2(C1 ± C2) (hence at tree level C±(mW ) = 1
2) and get the anomalous dimensions γ+ = γ++ =

−αs
2π ( 3

Nc
− 3), γ− = γ−− = −αs

2π ( 3
Nc

+ 3) and γ+− = γ−+ = 0 (for SM, Nc = 3). The running of coeficients

at µ� ΛQCD (β0 = 11
3 CA −

2
3nF ) is:

µ
d

dµ
C±(µ) = γ±

(
αs(µ)

)
C±(µ)⇒ µ

d

dµ
lnC±(µ) = γ±

(
αs(µ)

)
; µ

d

dµ
αs(µ) = β

(
αs(µ)

)
= −2β0α

2
s(µ)

Note that the anomalous dimension γ only depends on the couplings αs(µ) because of the EFT structure
in the UV region (e.g. poles, divergences). If we perform a change of variable µ→ αs (this trick can also
be used at higher orders) and dµ

µ = − 1
2β0

dαs
α2
s

, then (running down µW ∼ mW > µ):

ln (
C±(µ)

C±(µW )
) =

∫ µ

µW

dµ

µ
γ± = − 1

2β0

∫ αs(µ)

αs(µW )

dαs
α2
s

γ±(αs) = a± ln (
αs(µ)

αs(µW )
) ; a+ =

1

2πβ0
, a− = − 1

πβ0
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The boundary condition C±(µW ) is typically chosen at µW = mW , 2mW or mW
2 . One should think of

C±(µW ) as a fixed order series in αs(µW ). The evolution of coefficients is:

C±(µ) = C±(µW )e
a± ln (

αs(µW )

αs(µ)
)

= C±(µW )
(αs(µW )

αs(µ)

)a±
(3.6)

The decay process of interest is b→ cūd so the energy scale should be set to µ ∼ mb � mW . The answer
C±(µ) can be expressed as the sum of an infinite series of leading logs (LL) as αs(µW ) ln (µWµ ) ∼ O(1):

C±(µ) =
1

2
+ ...αs(µW ) ln(

µW
µ

) + ...α2
s(µW ) ln2 (

µW
µ

) + ...α3
s(µW ) ln3 (

µW
µ

) + ... (3.7)

The physical picture of the running can be seen as:

The above analysis is for γ± and β at the lowest order in αs. At higher order, the general structure for
the evolution of the coefficients is Ci(µ) = Cj(µW )Uji(µW , µ), where Uji(µW , µ) is the evolution matrix.
The effective electroweak Hamiltonian can therefore be written as Hew = Cj(µW )Uji(µW , µ)Oi(µ), relating
coefficients at high energy scale and operators at low energy scale. The order expansion of Ci(µ) is now
receiving a correction at higher order in αs (the first order is the leading log(LL), the second order is the
next leading log(NLL) and the next order is the next next leading log(NNLL)), which is a perturbative
improvement for the renormalization:

Ci(µ) = ...+ ...
∑
k

αs(µW ) ln (
µW
µ

) + ...αs(µW )
∑
k

αs(µW ) ln (
µW
µ

) + ...α2
s(µW )

∑
k

αs(µW ) ln (
µW
µ

) + ...

At the same log order, the matching Ci(µW ) is at 1 order diagrammatically higher than the calculation
for the running of γ. At LL the matching Ci(µW ) is at tree level while the running γ is at 1-loop, at NLL,
the matching Ci(µW ) is at 1-loop while the running γ is at 2-loop and at NNLL the matching Ci(µW ) is
at 2-loop while the running γ is at 3-loop and so on.
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The renormalization group flow induces the coefficient of operator O2 through perturbative improve-
ment at LL as the higher log order terms are of O(1), although the matching at tree level gives C2 = 0.
The value is C1(mb) = 1.12 and C2(mb) = −0.28.

The process b → cūd gives the decay B̄ → Dπ (or in quark components (ūb) → (ūc)(ūd)), and the
contribution to the scattering amplitude 〈Dπ|Hew

∣∣B̄〉 can be written in 2 ways:

〈Dπ|Hew

∣∣B̄〉 = Ci(µW ) 〈Dπ|Oi(µW )
∣∣B̄〉 = Ci(µ) 〈Dπ|Oi(µ)

∣∣B̄〉
The first way has large logs from the terms ∼ ln (mWmb ) and is therefore troublesome for analysis and

calculation via lattice quantum field theory. On the other hand, the second way has no large logs (these
are absorbed in the coefficients and summed by the renormalization group expression) and the operators
are at the same scale with the process ∼ mb. Physically, Ci(µ) and Oi(µ) are the right couplings and
operators to use.

Now, let us compare with the full theory in the SM. The EFT is already renomalized in the MS scheme,
and since the calculations in the full theory involve the weak conserved current, the UV divergences in
dressing vertex and the wavefunction cancel out to give UV finite results. The 1-loop diagrams in the full
theory are:

We now look at tree level S1 and log terms. The full theory and the EFT (at leading order C1 = 1 and
C2 = 0) give:

iA1−loop =
(

1 + 2CF
αs
4π

ln (
µ2

−p2
)
)
S1 +

3

Nc

αs
4π

ln (
m2
W

−p2
)S1 + ... (3.8)

〈O1〉1−loop =
(

1 + 2CF
αs
4π

ln (
µ2

−p2
)
)
S1 +

3

Nc

αs
4π

ln (
µ2

−p2
)S1 + ... (3.9)

where here the (...) contain non-logs and S2 terms. The above equations are almost the same, except
for a difference in m2

W and µ2. This can be understood as mW → ∞ from the point of view of the EFT,
therefore the role of mW and µ are similar (cut-off). The calculations for EFT involve only triangle loops
(since the W boson propagator is effectively shrunk to a point in the Feynman diagrams and all the physics
at the high energy scale is absorbed into the mass scale µ) so it’s much easier than the full theory (moreover
the 1

ε term is all that is required in the EFT to compute the anomalous dimension, which is a lot more
convenient than the SM). The ln (−p2) terms are matched between these theories, which means they agree
in the IR region. This check tells us that the EFT has the right degrees of freedom at the low energy scale
(it’s kind of obvious in the case here, but in other theories it can be non-trivial).

The difference of O(αs) gives the matching at 1-loop (at tree level, iA = Ci〈Oi〉 = S1):

0 = iA−
(
C1〈O1〉+ C2〈O2〉

)
= iA1−loop − C(1)

1 S1 − 〈O1〉O(αs) − C(1)
2 S2 − ...
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The index indicates the order in term of αs as C1 = 1+C
(1)
1 + ... and C2 = 0+C

(1)
2 + .... From the terms

S1 ln (...) one can find that C
(1)
1 = − 3

Nc
αsCF

4π ln ( µ2

m2
W

). One can also show that C
(1)
2 = 3αsCF

4π ln ( µ2

m2
W

) with

a similar calculation for the S2 ln (...) terms. The coefficient is independent of the IR regulator (IR region
diverges as the off-shell regulator −p2 → 0). At this point it is clear to see that µ separates the UV region
at scale ∼ mW and the IR region at scale −p2 → 0 in the full theory from the point of view of the EFT. In
other words, we can see the full theory as a cross between the EFT at large momentum and the EFT at

small momentum. The EFT large momentum part ln (
m2
W
µ2 ) is absorbed in the renormalized coeffients and

the EFT small momentum part ln ( µ2

−p2 ) is encoded in the renormalized operators with all light degrees

of freedom, and together they reproduce the full ln (
m2
W
−p2 ). Note that the multiplication becomes addition

through expansion at the same order in αs:

1 + αs ln (
m2
W

−p2
) =

(
1 + αs ln (

m2
W

µ2
)
)(

1 + αs ln (
µ2

−p2
)
)

Order by order in αs(µ) the lnµ terms cancel out. The µ dependence of Ci(µ) and 〈Oi(µ)〉 should be
gone since Ci(µ)〈Oi〉 = iA, which is µ-independent. The result is µ independence at any αs order one
works with, even that αs itself depends on µ (the cancellation for µ dependence of αs(µ) comes from higher
orders).

Now, let us do some sketchy calculations at NLL. Ignore the mixing for simplicity iAEFT = C(µ)〈O(µ)〉
and note that the coefficients, operators (matrix elements) at next leading order are scheme-dependent
(however, note that the 1-loop anomalous dimension is scheme-independent as long as the scheme is mass-
independent). The matching is:

iA = 1 +
αs
4π

(
− γ(0)

2
ln (

m2
W

−p2
) +A(1)

)
, iAEFT = C(µ)

(
1 +

αs
4π

(
− γ(0)

2
ln (

µ2

−p2
) +B(1)

))
Therefore C(µW ∼ mW ) = 1 + αs

4π

(
γ(0)

2 ln ( µ2

m2
W

) +A(1) −B(1)
)

. With β1 = 34
3 C

2
A −

10
3 CAnF − 2CFnF ,

the run at NLL originates from these evolution equations:

µ
d

dµ
lnC = γ(αs) = γ(0)αs(µ)

4π
+ γ(1)

(αs(µ)

4π

)2
; µ

d

dµ
αs(µ) = −2αs(µ)

(
β0
α(s)(µ)

4π
+ β1

(α(s)(µ)

4π

)2)
The trick µ → αs gives in general dµ

µ = dαs
β(αs)

, and an all orders solution for C(µ) is ln ( C(µ)
C(µW )) =∫ αs(µ)

αs(µW ) dαs
γ(αs)
β(αs)

. For NLL, with J = γ(0)β1

2β2
0
− γ(1)

2β0
(take µW = mW ):

U(mW , µ) = exp
(∫ αs(µ)

αs(mW )
dαs

γ(αs)

β(αs)

)
=
(
1 +

αs(µ)

4π
J
)(αs(mW )

αs(µ)

) γ(0)

2β0
(
1− αs(mW )

4π
J
)

Combining next order matching and NLL running:

C(µ) =
(

1 +
αs(µ)

4π
J
)(αs(mW )

αs(µ)

) γ(0)

2β0

(
1 +

αs(mW )

4π
(A(1) −B(1) − J)

)
Of the EFT scheme choice, in the above expression B(1), γ(1), J , C(µ) (and also 〈O(µ)〉) are scheme-

dependent. On the other hand β0, β1, γ(0), A(1), B(1) + J (and also C(µ)〈O(µ)〉) are scheme-independent.
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Example: A sketchy derivation for B(1) + J to be scheme-independent starts with 〈O〉′ = (1 + αs
4πs)〈O〉

in a “primed” and a “un-primed” scheme, with s being some constant. From this Z ′ = (1 − αs
4πs)Z and

therefore C ′ = (1− αs
4πs)C, B(1)′ = B(1) + s. Also γ(1)′ = γ(1) + 2β0s, and from the scheme independence

C(µ)〈O(µ)〉 = C ′(µ)〈O(µ)〉′ (or C(mW )U(mW , µ)〈O(µ)〉 = C ′(mW )U ′(mW , µ)〈O(µ)〉′):

U ′(mW , µ) = (1− αs(µ)

4π
s)U(mW , µ)(1 +

αs(mW )

4π
s)⇒ J ′ = J − s

It is then clear to see how B(1)′ + J ′ = B(1) + J , and therefore A(1) −B(1) − J is scheme-independent.

The LL result gives
(
αs(mW )
αs(µ)

) γ(0)

2β0 scheme-independent, and that means the scheme-dependent part(
1 + αs(µ)

4π J
)

of C(µ) should be cancelled by the scheme dependence of the operator 〈O(µ)〉 at the lower

end of the evolution (at µ).

Some remarks for the EFT of SM, in general:

• γ5 = iγ0γ1γ2γ3 is inherently 4-dimensional, and it must be treated carefully in dimensional regular-
ization.

• In 4 dimensions, the set of 16 matrices {1, γ5, γµ, γ5γµ, σµν} is a complete basis, but that’s not true in
general in d dimensions. Additional operators are called evanescent, and in dimesional regularization
one might need these operators, although they are vanish as ε→ 0.

From the electroweak Hamiltonian, one can do some phenomenology.

Example: Consider the b → sγ flavor changing neutral current process. Since this process doesn’t

appear at tree level, it is sensitive to loop corrections (e.g. ). Some of the effective operators

after integrating out the t quark and W boson contribute to this process:

O7γ =
e2

8π2
mbs̄σ

µν(1 + γ5)bFµν

O8G =
g

8π2
mbs̄T

aσµν(1 + γ5)bGaµν

O1 =
(
s̄γµ(1 + γ5)u

)(
ūγµ(1− γ5)d

)
, O2, O3, ..., O10

Let us go through some diagrams. At leading order CLO7γ = CLO7γ (mWmt ) ≈ −0.195, then

at 1-loop level = 0 (in the ’t HooftVeltman scheme for γ5) and 2-loop level

divergences give the leading order in the anomalous dimension γ(0) at first order αs. From all diagrams
and doing the matching, the LL evolution at µ = mb gives 50% bigger value (which means the branching
ratio Br(b→ sγ) is enhanced by (1.5)2 = 2.3 times):

C7γ(µ = mb) =
(αs(mW )

αs(µ)

) 16
23CLO7γ +

8

3

((αs(mW )

αs(µ)

) 14
23−

(αs(mW )

αs(µ)

) 16
23

)
CLO8G +

8∑
i=1

hi
(αs(mW )

αs(µ)

)aiCLO1 ≈ −0.300

QCD corrections are crucial for using b→ sγ to constrain new physics.
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4 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) is an example of a bottom up EFT, with non-linear symmetry repre-
sentations. In this EFT, loops are not suppressed by the couplings but by powers (in the power expansion),
therefore it has a non-trivial power counting (power counting theorem).

Let us briefly review QCD chiral symmetry for light quarks (approximately massless):

LQCD = ψ̄iD/ψ = ψ̄LiD/ψL + ψ̄RiD/ψR ; ψL → LψL , ψR → RψR

Under the unitary chiral transformation (L and R) the physics of the theory doesn’t change. In QCD,
the full chiral symmetry (with both left and right) is broken (the axial symmetry is broken and only the
vector remains) because of the mass terms:

4.1 SU(2) ChPT

The goal for ChPT is to find an effective field theory for the Goldstones (light degrees of freedom, bound
states of the quark fields in the original theory). The matching at ΛQCD is non-perturbative, so a better
approach for the EFT Lχ is just using the symmetry breaking pattern (and the degrees of freedom). The
Wilson coeffients for operators in the EFT can be fixed through experimental data or with numerical values
from lattice QFT. In the bottom up point of view, any theory with the same symmetry breaking pattern
will give the same Lχ but different coefficients (the high energy physics is encoded in the coefficients). For
now, Let us stick with ChPT for the bound states of u and down quarks, the 3 pions.

Consider a theory with a similar symmetry breaking pattern: a SU(2) linear σ model with π = σ+iτaπa

(τa is a Pauli matrix). The Lagrangian of the full theory is:

Lσ =
1

4
Tr (∂µπ∂µπ) +

µ2

4
Tr (π†π)− λ

16

(
Tr (π†π)

)2
+ ψ̄Li∂/ψL + ψ̄Ri∂/ψR − g

(
ψ̄LπψL + ψ̄Rπ

†ψR
)
,

where the first term is the kinetic term, the second is the mass term and the last 2 terms couple our
Goldstone with a fermion. The theory has a global SU(2)L × SU(2)R symmetry with the transformations
ψL → LψL, ψR → RψR and π → LπR† (explicitly, L = exp ( i2α

a
Lτ

a) and R = exp ( i2α
a
Rτ

a)). This

symmetry is spontaneously broken since the potential V = −µ2

2 (σ2 +πaπa) + λ
4 (σ2 +πaπa)2 has minimum

at σ2 + πaπa = µ2

λ . Take 〈0|σ |0〉 = v =
√

µ2

λ , σ̃ = σ − v and 〈0|πa |0〉 = 0 (so the vector part of the

symmetry is still unbroken). The new Larangian after the change in variables is:

Lσ̃ =
1

2
(∂µσ̃∂µσ̃ − 2µ2σ̃2) +

1

2
∂µπa∂µπ

a − λvσ̃(σ̃2 + πaπa)− λ

4
(σ̃2 + πaπa)2 +O(ψ)
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The unbroken symmetry is global SU(2)V with the transformations σ̃ → σ̃ and πa → V πaV † (as
L = R). The Goldstones πa are massless, the σ̃ field gets a mass mσ̃ = 2µ2 = 2λv2 and the ψ field gets a
mass mψ = gv. Take v to be large so that there is a clear separation between the low energy degrees of
freedom, the massless πa, and the other massive degrees of freedom. The EFT of interest deals with πa

without worrying about σ̃ and ψ.

Field redefinitions can be used as an organizational tool to produce a nice formulation for the EFT.

Example 1: The square root representation uses S =
√

(σ̃ + v)2 + πaπa − v(= σ̃ + ...) and φa =
vπa√

(σ̃+v)2+πaπa
(= π + ...) to produce the following Lagrangian:

LSqR =
1

2
(∂µS∂µS − 2µ2S2) +

1

2

(v + S

v

)2(
∂µφa∂µφ

a +
φa∂µφaφb∂µφ

b

v2 − φaφa
)

−λvS3 − λ

4
S4 + ψ̄i∂/ψ − g

(v + S

v

)
ψ̄
(√

v2 − φaφa − iφaτaγ5
)
ψ

Since the expansion of S and φa gives a term linear in σ̃ and πa, the representation independence
theorem can be used to quantize the theory and give the same results for observables.

Example 2: The exponential representation uses the same S as the square root representation in addi-

tion to σ + iτaπa = (v + S)Σ with Σ = exp ( iτ
aΠa

v ) to produce the following Lagrangian:

LExp =
1

2
(∂µS∂µS − 2µ2S2) +

(v + S)2

4
Tr (∂µΣ∂µΣ†)

−λvS3 − λ

4
S4 + ψ̄i∂/ψ − g(v + S)

(
ψ̄LΣψR + ψ̄RΣ†ψL

)
Once again, we see that representation independence theorem works for the fields S and Πa. Dropping

the massive S and ψ fields in the above Lagrangian (integrating them out in the lowest order is equivalent

to simply dropping them), one gets the non-linear σ model Lagrangian Lχ = v2

4 Tr (∂µΣ∂µΣ†). This action
is equivalent to the original one for low energy phenomenology of the pions. To see this, let us do a tree
level calculation for the scattering process of Goldstones π+π0 → φ+π0 with the momentum transferred
q = p′+ − p+ = p0 − p′0. We have 2 possible types of diagrams - direct scattering and exchange scattering:
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The quantum theories of these 4 Lagrangia all agree at O( q
2

v2 ). From the above results one can see
that the linear action is the most inconvenient since the derivative nature of the interactions is only seen
by cancellations between graphs, and the non-linear action is the most convenient since it only has the
appropriate low energy degrees of freedom Σ and contains the derivative couplings.

Under global SU(2)L × SU(2)R transformation we see S → S and Σ → LΣR† (since π → LπR†), so
the field Πa transforms non-linearly (while Σ and πa transform linearly). The infinitesimal transformations
of these fields are Πa → Πa + v

2 (αaL − αaR) +O(Π2).

Instead of going through all of the above analysis, one can write down Lχ from the start, in general.
Consider a symmetry breaking from G→ H and parametrize the coset G/H by Σ. It is in this coset that
the Goldstones transform. The transformation generator g = (L,R) ∈ G is broken to (V, V ) = h 3 H,
and the parametrization for the coset can be thought of as g = (gL, gR) = Ξh (the symmetry broken part
Ξ = Ξ(x) can have position dependence). The transformation is Ξ→ gΞh−1.

Example: For G = SU(N)L × SU(N)R and H = SU(N)V , look at the separation (gLgV , gRgV ) =

(gLg†R, 1)(gRgV , gRgV ) (using gRg
†
R = 1 as a SU(N) generator). Note that (gRgV , gRgV ) ∈ H, so the

broken symmetry (gLg†R, 1) can be parametrized by a SU(N)A matrix Σ = gLg
†
R which transforms as

Σ→ LΣR† (this can be read off from the form of Σ).

A good way to parametrize G/H is to use the components Πa(x) of the broken generators ta in Ξ(x)’s

exponential form Ξ(x) = exp ( it
aΠa(x)
v ). This is known as the Callan-Coleman-Wess-Zumino (CCWZ)

prescription. One has the freedom to pick a choice for ta.

Example 1: Pick ta = τaL, then Ξ(x) =
(

exp ( iτ
aΠa(x)
v ), e0

)
=
(
Σ(x), 1

)
. The transformation law

satisfies:

Ξ′ =

(
Σ′ 0
0 1

)
= gΞh−1 =

(
L 0
0 R

)(
Σ 0
0 1

)(
V 0
0 V

)−1

⇒ V = R , Σ′ = LΣR†

Example 2: Pick ta = τaL − τaR, then Ξ(x) =
(

exp ( iτ
aΠa(x)
v ), exp (− iτaΠa(x)

v )
)
. The transformation law
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satisfies:

Ξ′ =

(
Σ′ 0
0 Σ′−1

)
= gΞh−1 =

(
L 0
0 R

)(
Σ 0
0 Σ−1

)(
V 0
0 V

)−1

⇒ Σ′ = LΣV −1 = V ΣR†

For QCD, the common convention is v = f√
2

so that Σ(x) = exp (2iM(x)
f ) with M(x) = τaΠa(x)√

2
=

1√
2

(
Π0 Π1 − iΠ2

Π1 + iΠ2 −Π0

)
, and the chiral Lagrangian Lχ becomes:

Lχ =
f2

8
Tr (∂µΣ∂µΣ†) =

f2

8
Tr
∣∣∣ ∫ 1

0
exp

(2iM

f
s
)
∂(

2iM

f
)exp

(2iM

f
(1− s)

)∣∣∣2
=

1

2
Tr
∣∣∣∂M +

i

f
{M,∂M} − 2

3f2
(∂MM2 +M∂MM +M2∂M) + ...

∣∣∣2
=

1

2
Tr (∂µM∂µM) +

1

6f2
Tr
(
[M,∂µM ][M,∂µM ]

)
+ ...

=
1

2
δab∂µΠa∂µΠb − εabeεcde

3f2
Πa∂µΠbΠc∂µΠd + ...

, where the first term is the kinetic term and the second is the 4-point interaction.

The chiral symmetry is explicitly broken in the SM because of the quark mass terms −ψ̄LMqψR −
ψ̄RMqψL, so the Goldstones become pseudo-Goldstones. If we treat the quark mass matrix as a spurion
field and say Mq transforms as Mq → LMqR

†, the symmetry breaking terms become invariant under the
transformation. By fixing this term, Mq explicitly breaks the symmetry, and from the lowest order term
of the mass matrix in the effective Lagrangian one can find the masses of the pseudo-Goldstons :

Lmass
χ = µTr (MqΣ

† +M †qΣ) = −2µ

f2
(mu +md)Π

aΠa + ... ,

where we have used that Mq =

(
mu 0
0 md

)
. These Goldstones have therefore the same mass-squared

m2
Π = 4µ

f2 (m2
u +m2

d) at this level of analysis.

In QCD the left chiral current is calculated from JaLµ = ψ̄γµPLτ
aψ (with a similar equation for the

right current), and it can be coupled with a vector field lµ = τalaµ in the Lagrangian so that JaLµ = − δLχ
δlaµ

.

Similarly, with the spurion left and right vector field lµ = talaµ and rµ = taraµ, the EFT theory can be
made locally gauge invariant by using them to change the derivatives, with a specific transformation rule
lµ → L(x)lµL

†(x) + i∂µL(x) L†(x) and rµ → R(x)rµR
†(x) + i∂µR(x)R†(x). In detail, ∂µΣ → DµΣ =

∂µΣ + ilµΣ− iΣrµ. With this trick, one can find the left and right Noether currents to be JaLµ = − δLχ
δlaµ

=

− if2

4 Tr (taΣ∂µΣ†) and JaRµ = − δLχ
δlaµ

= − if2

4 Tr (taΣ†∂µΣ) respectively. Note that the axial current has the

expansion JaAµ = JaLµ− J
a
Rµ = −f

2∂µΠa + ..., hence the matrix element 〈0| JaAµ
∣∣Πb
〉

= if
2 δ

abpµ at tree level

gives the pion decay constant to be f
2 .

Next we turn to look at the Feynman rules, power counting and loops in ChPT. The lowest order
Lagrangian is given by:

L(0)
χ =

f2

8
Tr (∂µΣ†∂µΣ) + µTr (MqΣ

† +M †qΣ)

Here, ∂2 ∼ v0mq, so p2 ∼ m2
π. We will expand in the power counting factor p2

Λ2
χ
� 1 as well as

m2
π

Λ2
χ

. Notice that we have both a derivative and mass expansion simultaneously. Λχ is a (large) mass
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scale, and it is natural to choose Λχ ∼ f since the 4-point pions vertex is ∼ p2

f2 from the interaction

1
6f2 Tr

(
[M,∂µM ][M,∂µM ]

)
, and ∼ µ

f4Mq(∼
m2

Π
f2 ) from the interaction 3µ

6f4 Tr
(
MqM

4
)
. Also from experi-

mental data we get f � mΠ.

Now let us take a look at one of the 1-loop diagrams (e.g. ):

∼ 1

f4

∫
d̄dl

(p+ − l)2(l − p′+)2

(l2 −m2
Π)
(
(l − p+ − p0)2 −m2

Π

) + ... ∼
{p2,m2

Π}
f2

{p2;m2
Π}

(4πf)2
+ ...

In this equation, {p2,m2
π} indicates the power counting, as those two are equivalent. Additionally,

we used dimensional regularization to preserve chiral symmetry and power counting. The (4π)2 in the

denominator is the loop factor, and since
{p2,m2

Π}
f2 is the order of tree level, the loops are suppressed by

{p2;m2
Π}

(4πf)2 , hence Λχ is often chosen to be 4πf ∼ 1.6 GeV. Another choice for Λχ is the mass of ρ (the lightest

pseudo-Goldstones integrated out of this ChPT), with mρ ∼ 800 (MeV).

In the MS scheme [M ] = 1 − ε, [f ] = 1 − ε and [µ] = 2 − 2ε and therefore with the renormalized
mass scale parameter Λ one gets fbare = Λ−ε and µbare = Λ−2εµ (in ChPT the loops do not renormalize
the leading order Lagrangian, so counter-terms aren’t needed). There’s no Λ dependence in Mq and mΠ

since µbare

fbare = µf2. The loops have UV divergences of the form 1
ε + ln (Λ2

p2 ) and 1
ε + ln ( Λ2

m2
Π

) which enter

at O(p4, p2m2
Π,m

4
Π), and counter-terms for these poles should come from the Lagrangian at higher orders.

These new operators are:

L(2)
χ = L1

(
Tr (∂µΣ∂µΣ†)

)2
+ L2Tr (∂µΣ∂νΣ†)Tr (∂µΣ∂νΣ†) + ... (4.2)

Let f2

8 χ = µMq. The equation of motion, (�Σ)Σ† − Σ(�Σ†) − χΣ† + Σχ† + 1
2Tr (χΣ† − χ†Σ) = 0,

can be used to remove � terms, and with SU(2) identities the Lagrangian can be further simplified (e.g.

Tr (∂µΣ∂µΣ†∂νΣ∂νΣ†) = 1
2

(
Tr (∂µΣ∂µΣ†)

)2
). At O(p4) one can include both loops with p4 ln Λ2

p2 terms

and p4Li(Λ) terms from higher order interaction to eliminate the divergence by the counter-terms δLi
(the Λ dependence, by construction, is cancelled between these contributions). Λ can be thought of as a
cut-off dividing UV and IR physics between the low energy physics from the Λ-dependent matrix elements
of the loops (with pion fields as light degrees of freedom) and high energy physics from the coefficients

Li(Λ). The expectation value for couplings can be guessed as Li(µ)
f2 = 1

(4πf)2

(
ai ln ( Λ

Λχ
) + bi

)
, with ai and bi

encoding high energy physics. From naive dimensional analysis, because changing the mass scale Λ moves
pieces between the loops and the coefficients Li(Λ), one expects them to be at the same order of magnitude
ai ∼ bi ∼ 1.

In practice one has to pick a value for Λ, and it’s typically chosen at a high mass scale Λ ∼ mρ or Λχ so
that the large logs are placed in the matrix elements instead of the coefficients, as the dimensional analysis
holds for them and the power counting estimation works. Note that there is no infinite series of large logs
to sum over in this EFT, since the kinetic terms don’t get renormalized (when ε→ 0).

If the regularization is a hard cut-off Λc, then the 1-loop diagrams involve terms ∼ Λ4
c

Λ4
χ

that break chiral

symmetry (and therefore effectively cannot be absorbed by counter-terms in Lχ, which preserves chiral

symmetry), terms ∼ Λ2
cp

2

Λ4
χ

that break power counting (which should be suppressed as O(p4) for the right
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power counting) and are absorbed in O(p2) to restore power counting, and terms ∼ p4 ln Λc
Λ4
χ

that can be

eliminated by the counter-terms of p4Li (similar to dimensional regularization). There are difficulties as
mentioned above, so this choice of regularization is not often chosen for ChPT.

A difference between a theory with gauge symmetry and chiral symmetry is the structure of IR physics.
In ChPT, the derivative ∂µ couplings make the IR region nicer since one usually has good m2

Π → 0 and
p2 → 0 limits.

ChPT can be used for phenomenology.

Example: The pion scattering process ππ → ππ below the inelastic thresholds can be described by a

simple quantum mechanics S-matrix, which we can enumerate channel by channel. For example, SlI = e2δlI ,
with l is for partial wave (angular momentum state) and I is for isospin. The effective range expansion for

the phase-shift gives p2l+1 cot δlI = − 1
alI

+
r
(0)
lI p

2

2 + .... Detailed ChPT calculations with the direct 4-pion

scattering predict the values for alI (e.g. a00 =
7m2

Π

16πf2
Π

and a02 = − m2
Π

8πf2
Π

, with fΠ being the pion decay

constant), which are parameter-free after mΠ and fΠ are known.

Now let us go back to the power counting of Feynman diagrams in ChPT. Consider a diagram with
NV vertices, NI internal lines, NE external lines and NL loops. Expand NV =

∑
nNn so that Nn counts

the number of vertices in O(pn,mn
Π). We use dimensional regularization, so that the power counting isn’t

ruined. Let us count the mass dimension (Λχ factors) for a matrix element with NE external pions:

• Vertices give Λ
∑
nNn(4−n)

χ , where the factor (4−n) comes from the mass dimension of the couplings.

• f(∼ Λχ) contributions from the pion lines Λ−2NI−NE
χ (internal lines is the contraction between 2 pion

fields while external is 1), because each factor of pion field comes with a factor f through Πa

f

Topologically, one has the Euler identity to put a constrain NI = NL+NV −1 and this can be used to re-
move NI from the calculations. Hence the mass matrix elements should be ∼ Λ4−NE−D

χ {p,mΠ}Dg({p,mΠ}
Λ ),

where D can be solved to be 2 +
∑

nNn(n − 2) + 2NL ≥ 2. The term 4 − NE in the exponential comes
from the dimensional analysis of the scattering amplitude. Adding vertices or loops always increases D
(more power in {p,mΠ}), and they correspond to a power suppression.

In conclusion, one just has to count the number of loops and vertices (momentum counting).

Example: D = 2, D = 4, D = 4

4.2 SU(3) ChPT

In the SU(3) case one has an octet of pseudo-Goldstones (in the charge basis):

Mq =

 mu 0 0
0 md 0
0 0 ms

 ; M =
λaΠa

√
2

=


Π0
√

2
+ η√

6
Π+ K0

Π− −Π0
√

2
+ η√

6
K0

K− K̄0 − 2√
6
η


We can expand the mass term µTr (MqΣ

† +M †qΣ) to get the masses for the mesons: m2
K0 = m2

K̄0 =
4µ
f2 (md+ms)) and m2

Π± = 4µ
f2 (mu+md). The masses of η and Π0 are mixed in the mass matrix (with a spin-

violating off-diagonal term∼ mu−md that is often treated perturbatively)MΠ0η =

(
mu +md

mu−md√
3

mu−md√
3

mu+md+4ms
3

)
.
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If we ignore isospin violation via mu ≈ md = mud = mu+md
2 � ms, then m2

Π0 ≈ 4µ
f2 (mu + md) ≈ 8µ

f2mud

and m2
η ≈

4µ
3f2 (mu +md + 4ms) ≈ 8µ

3f2 (mud + 2ms).

Including the spurion left and right chiral current ∂µ → Dµ, the lowest order Lagrangian is:

L(0)
χ =

f2

8
Tr (DµΣ†DµΣ + χΣ† + χ†Σ) ,

f2

8
χ = v0Mq

The momentum power counting gives Σ ∼ 1, DµΣ ∼ p, lµ ∼ rµ ∼ p (recall that these are the spurion
source chiral currents), χ ∼ p2 (which behaves like a scalar source) and mΠ ∼ mK ∼ p. The next order is
O(p4):

L(2)
χ = L1

(
Tr (DµΣDµΣ†)

)2
+ L2Tr (DµΣDνΣ†)Tr (DµΣDνΣ†) + L3Tr (DµΣDµΣ†DνΣDνΣ†)

+L4Tr (DµΣDµΣ†)Tr (χΣ† + χ†Σ) + L5Tr
(
DµΣDµΣ†(χΣ† + χ†Σ)

)
+ L6

(
Tr (χΣ† + χ†Σ)

)2
+L7

(
Tr (χΣ† − χ†Σ)

)2
+ L8Tr (χΣ†χΣ† + χ†Σχ†Σ) + L9Tr (LµνDµΣDνΣ† +RµνDµΣ†DνΣ)

+L10Tr (LµνΣRµνΣ†) +H1Tr (LµνLµν +RµνRµν) +H2Tr (χχ†)

In the above Lagrangian, Lµν = ∂µlν − ∂ν lµ + i[lµ, lν ] and Rµν = ∂µrν − ∂νrµ + i[rµ, rν ]. Simi-
lar to SU(2) ChPT, the equation of motion can be used to remove �Σ terms, and the SU(3) relation

also helps to reduce the number of operators (e.g. Tr (DµΣDνΣ†DµΣDνΣ†) = 1
2

(
Tr (DµΣDµΣ†)

)2
+

Tr (DµΣDνΣ†)Tr (DµΣDνΣ†)− 2Tr (DµΣDµΣ†DνΣDνΣ†)).

One can make a correspondence between the SU(2) and SU(3) case since they both describes pions.
The heavy particles (kaons and eta) in the SU(3) case can be integrated out and the coefficients can be
matched between these two theories, where the kaon and eta physics will be encoded in the coefficients of
the SU(2) ChPT.

Example: An example for the matching is 2L
SU(2)
1 + L

SU(2)
3 = 2L

SU(3)
1 + L

SU(3)
3 − 1

16(4π)2

(
1 + ln ( Λ2

m2
K

)
)

We now quickly look at the renormalization of these operators. The renormalization of Li starts with
Li = Lren

i + δLi. The counter-terms absorb divergences ∼ 1
ε − ln (4π) + γE − 1 in the MS scheme.

Example 1: In the SU(2) case, causes a mass renormalization of the Goldstones,

shifted from the tree level answer m2
o ≈ 2Bomud (Bo = 4µ

f2 ):

m2
π(Λ) = m2

o

(
1− 16m2

o

f2

(
2Lren

4 (Λ) + Lren
5 (Λ)− 4Lren

6 (Λ)− 2Lren
8 (Λ)

)
+

m2
o

(4πf)2
ln (

m2
o

Λ2
)
)

Example 2: In the SU(3) case the pion decay constant gets renormalized as:

fΠ(Λ) = f
(

1− 2ζΠ − ζK +
16mudBo

f2
Lren

5 (Λ) +
16Bo
f2

(2mud +ms)L
ren
4 (Λ)

)
, ζi =

m2
i

(4πf)2
ln (

m2
i

Λ2
)

with f being the parameter in the leading order Lagrangian.

5 Heavy Quark Effective Theory

Heavy Quark Effective Theory (HQET) is an example of an EFT where heavy particles (that are not
removed) “wiggle” under the influence of light particles. It has degrees of freedom that will come with
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labels and encodes heavy quark symmetry (which is not apparent in QCD) with covariant representations
and reparametrization invariance. In this EFT the anomalous dimensions are functions (not just numbers)
and the renormalization scheme MS shows limitations that come from the scale separation for power-law
terms and renormalons.

Instead of integrating out the heavy particles, they are viewed from the EFT as sources that can wiggle.
Consider a heavy quark Q sitting in a bound state of a meson Qq̄ and being surrounded by light degrees
of freedom q̄, similar to what’s going on in B0 = b̄d.

In this example, the size of the meson is r−1 ∼ ΛQCD � mQ, so that a good expansion factor is

∼ ΛQCD
mQ

. To describe the fluctuation of the heavy quark due to the light quark, one needs a top down EFT

that takes the low energy limit of QCD:

LEFT = lim
mQ→∞

LQCD = lim
mQ→∞

Q̄(iD/−mQ)Q+ ... (5.1)

One needs to find a way to expand the Lagrangian.

5.1 Preliminary Treatment for Heavy Quark

In the low energy limit of QCD, consider the propagator of the heavy quark with v2 = 1 and on-shell
momentum p = mQv. After receiving a kick from the light degree of freedom (soft modes), the momentum
wiggles pµ = mQvµ + kµ (kµ ∼ ΛQCD � mQ) and the off-shell part should be encoded in the effective
propagator:

i(p/+mQ)

p2 −m2
Q

=
imQv/+mQ + k/

2mQvk + k2
= i
(1 + v/

2

) 1

vk
+O(

1

mQ
)

Vertices can also be expanded from the 2 legs of the heavy quarks with
(1+v/

2

)
γµ
(1+v/

2

)
= vµ

(1+v/
2

)
:

= −igγµT a → −igvµT a

Without expanding the full Lagrangian, one can guess and write down an effective Lagrangian for those
modifications from the change in the Feynman rules. This is actually the HQET Lagrangian LHQET =

Q̄vivDQv with the degree of freedom Qv satisfying a projection condition
(1+v/

2

)
Qv = Qv.

A more direct derivation of the Lagrangian can be started by decomposing the heavy quark field:

Q(x) = e−imQvx
(
Qv(x) +Bv(x)

)
;
(1 + v/

2

)
Qv = Qv ,

(1− v/
2

)
Bv = Bv

Another way to write down the projection condition is v/Qv = Qv and v/Bv = −Bv. The derivative can
be expanded as iD/ = v/iv ·D + iD/T , with the transverse derivative DT µ = Dµ − vµv ·D (which leaves us
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will the desired relation v ·DT = 0). Then, the Lagrangian for the heavy quark becomes:

LQ = Q̄(iD/−mQ)Q = (Q̄v + B̄v)e
imQvx(v/ivD + iD/T −mQ)e−imQvx(Qv +Bv)

= (Q̄v + B̄v)e
imQvxe−imQvx

(
(v/− 1)mQ + v/ivD + iD/T

)
(Qv +Bv)

= Q̄vivDQv − B̄v(ivD + 2mQ)Bv + Q̄viD/TBv + B̄viD/TQv

where we have used D/T
(1−v/

2

)
=
(1+v/

2

)
D/T . Therefore, with only Qv as external particles, Bv can be

decoupled ∼ 1
mQ

as mQ → ∞ since Bv effectively have mass ∼ mQ. After

integrating out the terms with Bv fields, one has the LHQET. The field redefinitions are at tree level so
the above analysis is valid to leading order in O( 1

mQ
) and O

(
αs(mQ)

)
, but one can still correctly describe

the couplings to kµ ∼ ΛQCD � mQ gluons with this tree level HQET. Physically, Qv corresponds to the
heavy particle and Bv corresponds to the heavy antiparticle (this can be seen if we go to the rest frame

with timelike vrµ = (1, 0, 0, 0), then the projection 1+v/r
2 = 1+γ0

2 on the Dirac representation singles out
the particle part and eliminates the antiparticle part of the spinor), and by choosing to pull out the phase
e−imQvx one can focus on the on-shell fluctuations that are close to the particle (the opposite phase eimQvx

deals with antiparticle on-shell fluctuations). Also note that when one redefines the fields, the velocity v
becomes the label on fields, and it is conserved by low energy QCD interactions.

In short, HQET helps to study heavy particles close to their mass-shell as one looks at the physics
of the fluctuations near mQ - the antiparticle fluctuations are 2mQ away, so they can be decoupled and
integrated out. Hence pair creation-annihilation is not part of the theory, so the number of heavy particles
is conserved, which results to a U(1) symmetry for HQET that QCD (the top down origin) doesn’t have -
an emergent symmetry of the EFT. A generalization of that is the heavy quark symmetry in HQET:

• There is a flavor symmetry U(Nh) where Nh is the number of heavy quarks, since the LHQET is blind
to mQ so it does not know about flavors of the quark from QCD.

• Spin symmetry SU(2), the independence of the remaining two spin components of Qv, emerges
because LHQET depends on the scalar derivative v ·D instead of the matrix derivative D/ with spin
indices; in the rest frame it can be seen from the heavy quark spin transformation Q′v = (1+iαiS

i
Q)Qv

and δLHQET = Q̄v[ivD, iαiS
i
Q]Qv = 0 (which is obvious, because v · D is a scalar) with SiQ =

1
2

(
σi 0
0 σi

)
= 1

2γ
5γ0γi .

• Together these make the U(2Nh) heavy quark symmetry, where Qv is fundamental with Nh spin
up and Nh spin down degrees of freedom. This emergent symmetry has an impact on calculating
observables.

The power counting in HQET is based on the power counting factor 1
mQ

, as the leading order Lagrangian

has no mQ and the next orders Lagrangian are suppressed by 1
mQ

. From the mode expansions for the full

field Q(x) =
∫ d̄3p√

2Ep

(
aspu

s(p)e−ipx + ...
)
, one pulls out the particle fluctuations Qv(x) ∼ e−ikx and gets

i∂µQv(x) ∼ kµQv(x) without a factor of mQ. The variation in coordinate x of Qv corresponds to the low
energy fluctuations of the scale ΛQCD, which is what one wants from this EFT. Looking at the sub-leading
Lagrangia and the external operators, all the powers of mQ are explicit, which makes power counting easy.

There is a catch, however, and factors of mQ can hide in states. Consider a relativistic normalized state
in QCD of a hadron H of the form 〈H(p′)| H(p)〉 = (2π)32Epδ

(3)(p−p′) (spin labels are suppressed), where
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the state has mass dimension −1. The mass mQ is hiding in the physical on-shell energy Ep =
√
m2
H + p2

(e.g. mB of B mesons has the heavy quark mass mb in it). The state in HQET from the leading order
LHQET quantization for the hadron |H(v)〉 must include a different normalization as well as 1

mQ
corrections:

|H(p)〉 =
√
mH

(
|H(v, k)〉 + O( 1

mQ
)
)

and 〈H(v′, k′)| H(v, k)〉 = (2π)32v0δv,v′δ
(3)(k − k′), from which one

can see that the state has the mass dimension −3
2 . A similar treatment can also be done for Dirac spinors

us(p) =
√
mHu

s(v), where we include the
√
mH factor to cancel the 1√

2E
in the mode expansions.

Example: The Dirac spinors are relativistically normalized so that ūs(p)γµu
s(p) = 2pµ, and normalized

in HQET to satisfy ūs(v)γµu
s(v) = 2vµ, which can be shown to be related by us(p) =

√
mHu

s(v)

With the heavy quark symmetry in HQET, one can do some spectroscopy. Light quarks and gluons
are still described by a full LQCD without heavy quarks. As mQ →∞, a complicated bound state hadron
Qq̄ has the quantum number of the heavy degrees of freedom Q and light degrees of freedom of q̄, any
number of qq̄ and any number of gluons. Similar to QCD, the total angular momentum J is conserved
(although the Lorentz boost invariance is broken), therefore it is a good quantum number (J2 = J(J + 1)).
In addition, the heavy quark spin SQ is also unchanged, and that can be used to read off some extra
information about the bound state by defining the light quark spin Sl = J− SQ to get the new quantum
number satisfying S2

l = Sl(Sl + 1). Organizing the particles by Sl, one arrives at the symmetry doublet
for the mesons (with j± = Sl ± 1

2):

This is because the Lagrangian and the dynamics in HQET are independent of SQ, so it can be added
or subtracted from the Sl to produce different j that will belong to the same symmetry doublet. So heavy
quark symmetry relates particles in a doublet of a given Sl. The same thing can be done for baryons:

More predictions can be seen from the covariant representation of fields, which encodes heavy quark

symmetry in objects with nice transformation properties. Consider a field H
(Q)
v (the Q index denotes the

flavor) that annihilates the meson doublet for the gound state mesons:

HQ
v =

(1 + v/

2

)
(P ∗v

(Q)
µ γµ + iP (Q)

v γ5)

This is a bispinor field with indices of Qq̄ and HQ
v v/ = −H(Q)

v (because v · P ∗v (Q) = 0). The pref-

actor
(1+v/

2

)
projects out the antiparticle part of the heavy quark degrees of freedom, P ∗v

(Q)
µ is a vector
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field (it is replaced by the polarization εµ after acting on the state, with ε2 = −1 and v · ε = 0) and

iP
(Q)
v γ5 is a pseudoscalar field. Under Lorentz transformation Λ, it transforms like a bispinor H

′(Q)
v′ (x′) =

D(Λ)H
(Q)
v (x)D−1(Λ), where v′ = Λv, x′ = Λx and D(Λ) is the spinor Lorentz transformation. It also

transforms as (1
2 ,

1
2) in the heavy quark and light quark symmetry SQ ⊗ Sl. To see this, simply go to the

rest frame vrµ = (1, 0, 0, 0) with Σi = i
4ε
ijk[γj , γk], then [SiQ, H

(Q)
vr ] = 1

2ΣiH
(Q)
vr and [Sil , H

(Q)
vr ] = −1

2H
(Q)
vr Σi.

Also under heavy quark spin transformation H
(Q)
v → D(R)QH

(Q)
v (δH

(Q)
v = i[αiS

i
Q, H

(Q)
v ]), then after some

Dirac algebra one finds δPvr = −1
2αiP

∗
vr
i and δP ∗vr

i = 1
2ε
ijkαjP

∗
vrk
− 1

2α
iPvr as these fields are mixed.

With H
(Q)
v , one can easily read off the heavy quark symmetry prediction.

Example 1: From QCD, the heavy quark decay constants of B̄,D can be guessed from just Lorentz
symmetry, parity and time reversal to be 〈0| q̄γµγ5Q |P (p)〉 = −ifP pµ = −ifPmP v

µ, and also for B̄∗, D∗

to be 〈0| q̄γµQ |P ∗(p, ε)〉 = fP ∗ε
µ (fP has mass dimension 1 and fP ∗ has mass dimension 2). With heavy

quark symmetry in HQET one can relate P and P ∗.

In HQET, these vector currents can be expressed as q̄ΓµQ = q̄ΓµQv + O
(

1
mQ

, αs(mQ)
)
, the matrix

element in this EFT is 〈0| q̄ΓµQv |H(v)〉 with H(v) denoting either P or P ∗ of zero residual momentum k.
Under the heavy quark spin transformation Qv → D(R)QQv, the current changes q̄ΓµQv → q̄ΓµD(R)QQv.

It is convenient to rewrite q̄ΓµQv in terms of H
(Q)
v which has P and P ∗ inside, and to preserve the same

transformation law under heavy quark spin rotation, using the trick pretending Γµ → ΓµD(R)−1 so that

the currents are spuriously invariant. Since H
(Q)
v → D(R)H

(Q)
v , each of these spuriously invariant currents

should have a single term ΓµH
(Q)
v , because it only contains a single initial state heavy meson field. Lorentz

covariance requires that the currents must have the scalar form Tr (XΓµHQ
v ) = Tr (ΓµHQ

v X), where X is

a Lorentz bispinor which is generally of the form a0(v2)−a1(v2)v/
2 . Call a = a0(v2) − a1(v2), then the trace

becomes to −iavµPv when Γµ = γµγ5 and aP ∗v
µ when Γµ = γµ. One arrives at:

〈0| q̄γµγ5Q |P (v)〉 = −iavµ ; 〈0| q̄γµQ |P ∗(v)〉 = aεµ

The first prediction from HQET is that a (∼ Λ
3/2
QCD) must have the same values for B̄, D,B̄∗ and D∗.

The connections between states in HQET and QCD gives fP = a√
mP

and fP ∗ = a
√
m∗P . The second

prediction is the size of the decay constants for the mesons, such as fB ∼
Λ

3/2
QCD

m
1/2
B

∼ 180 MeV as well as the

ratio between decay constants, such as fB
fD
∼
√

mD
mB
∼ 0.6.

Example 2: Semileptonic decays B̄ → Dlν and B → D∗lν are greatly simplified in HQET, since in
QCD one has to deal with 6 unnormalized form-factors while they can all be reduced to only 1 normalized
form factor (Isgur-Wise function) in HQET

5.2 HQET radiative corrections

HQET has an interesting renormalization structure for the Lagrangian LHQET and the current Jµ. This

can be used to match with the top-down origin QCD, e.g. JQCDµ = C( µ
mQ

)JHQETµ +O( 1
mQ

).

The wavefunction renormalization Qbare
v = Z

1/2
Q Qv in HQET, using dimensional regularization (in
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Feynman gauge, and using the MS scheme which introduces the extra factor µ2ε

(4πe−γE )ε
) becomes:

= −CF g2

∫
d̄dq

v2

q2v(q + p)
= − iCF g

2

8π2
vp

1

ε
+ ...

To carry out the above integration, we used 1
ab = 2

∫∞
0

dλ
(a+2bλ)2 with a = q2, b = v(q + p) and

(t2 −A)2 = (q2 + 2λvq + 2λvp)2 with t = q + λv, A = λ(λ− 2vp):

−CF g2

∫
d̄dq

v2

q2v(q + p)
= (−CF g2)

2iΓ(2− d
2)

(4π)
d
2

∫ ∞
0

dλλ
d
2
−2(λ− 2vp)

d
2
−2

= (−CF g2)
2iΓ(ε)

16π2

Γ(3
2 −

d
2)Γ(d2 − 1)

2
√
π

(−vp)d−3 = − iCF g
2

8π2
vp

1

ε
(5.4)

The wavefunction counter-term can be calculated - it will differ from Zψ in QCD because of the different
loop integration for heavy quark degrees of freedom compared to light quarks:

= i(Zh − 1)vp⇒ Zh = 1 +
CF g

2

8π2ε

Note that there are usually 2 choices for doing the renormalization in this case: if one uses the MS scheme
(as above) one only needs to keep the pole divergence, while in the on-shell renormalization scheme one
gets other extra terms. The matching result from both these methods must be the same in the end.

The next step is to renormalize the local operators. Consider a heavy-to-light transition, b → ue−ν̄.

To describe this process we use an operator of the form O
(0)
Γ = q̄(0)ΓQ

(0)
v with a light quark q and a heavy

quark Qv. The renormalized operator (grouping all the renormalized factors in the counter-term) becomes:

OΓ =
1

ZO
O

(0)
Γ = q̄ΓQv + (

√
ZqZh

ZO
− 1)q̄ΓQv (5.6)

By evaluating the diagram and including wavefunction renormalization, one arrives at ZO =

1 + g2

8π2ε
. The anomalous dimension is γO = − g2

4π2 = −αs
π , corresponding to the renormalization group

evolution below the heavy quark mass mQ (the conserved current above mQ has no evolution) since this
mass is treated as UV information of this effective field theory. Note that in this calculation independence
on the spin structure of Γ originates from a HQET symmetry.

For a heavy-to-heavy transition, such as B → D∗e−ν̄ (with quark content b → ce−ν̄), the operator of

interest has the form T
(0)
Γ = Q̄

(0)
v′ ΓQ

(0)
v (hence renormalized TΓ = Q̄v′ΓQv+(ZhZT −1)Q̄v′ΓQv). The diagram

calculation (in Feynman gauge) has both UV and IR divergences, and taking the external momentum of
the quarks to be zero for the sake of simplicity, we get:

= −iCF g2(vv′)

∫
d̄dq

q2(vq)(v′q)
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Combining this with the contribution of the wavefunction renormalization and looking at the UV behavior,

with ω = v · v′ and r(ω) = ln(ω+
√
ω2−1)√

ω2−1
, one arrives at ZT = 1− g2

6π2ε

(
ωr(ω)− 1

)
, leading to a non-trivial

anomalous dimension γT = g2

3π2

(
ωr(ω) − 1

)
. Once again, the anomalous dimension is independent of the

spin structure Γ, which is easy to see from the Feynman diagram from the heavy quark symmetry, because
both non-Γ vertices and propagators don’t have any spin structure characteristic. However, the result does
depend on the structure of the heavy quarks’ hard motion, a complication that arises from the fact that
ln (

mQ
ΛQCD

) in QCD splits into ln ( µ
ΛQCD

) in HQET and ln ( µ
mQ

) in the Wilson coefficients, and the anomalous

dimension has to sum over both of these large logs.

The Wilson current in general must depend on these indices (µ, v, v′), and because it is a scalar we
can write:

C(αs, µ,mbv
µ,mcv

′µ) = C(αs, µ,m
2
b ,m

2
c , ω = v · v′) (5.8)

Example: In B → D∗e−ν̄ let pµB = mBv
µ = mD∗v

′µ + qµ (qµ is the 4-momentum transfer), hence ω =

v · v′ = m2
B+m2

D∗−q
2

2mBmD∗
, which is fixed by kinematics (the allowed kinematic range is 1 ≤ ω ≤ 1.5).

There is more interesting physics to be noted from the study of these transition operators:

• In QCD the vector current q̄1γ
µq2 is conserved for massless quarks so no anomalous dimension

contribution arises (masses don’t spoil this, as µ � m). However, in HQET the scales are µ . m
and therefore the currents q̄1γ

µQv and Q̄v′γ
µQv are not conserved.

• From the results at leading log order the matching at µ = mQ (so that C(µ = mQ, ...) = 1) yields

CLL(µ, ...) = C(mQ)U(mQ, µ) =
(

αs(µ)
αs(mQ)

)− γ
2β0 (similar to the Electroweak Hamiltonian), where γ is

a constant for heavy to light operators and γ = γLL(ω) for heavy to heavy operators.

• The corresponding µ-dependence arises in HQET matrix elements, e.g. the decay constant matrix
element 〈0| q̄γµγ5Qv |P (v)〉 = −ia(µ)vµ is a function of µ (note that this works for a perturbation
theory cut-off scale µ ∼ 1 GeV & ΛQCD, since a(µ) has no large logs and other complications).

With the knowledge gained from the study of the renormalization group evolution, one can move on
to the matching analysis. We will use the MS scheme everywhere and consider perturbative corrections
corrections at the scale mQ, αs(mQ). Before matching onto HQET, we integrate out the weak interaction
exchange partners to get to to QCD with Hew. This is then matched to HQET by considering perturbative
corrections in the heavy quark mass scale and integrating out the heavy degrees of freedom below their
mass scale. A pictorial view of how Hew of QCD is matched onto HQET is:

Consider a matrix element in QCD with Electroweak HalmintonianHew (setting the light quark momentum
to zero for simplicity). The finite residue factor coming from UV corrections of the light quark wavefunction
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(in MS) is R(q) and of the heavy one is R(Q), and v1(µ) comes from the vertex correction:〈
q(0, s′)

∣∣ q̄γµQ |Q(p, s)〉 =
√
R(q)R(Q)ū(0, s′)

(
γµ + αs(µ)vµ1

)
u(p, s) (5.9)

This will be matched with the following matrix element in HQET, with a finite residue factor of UV
corrections of the light quark wavefunction being R(q) and of the heavy quark wavefunction being R(h),
and also with a vertex correction of HQET vHQET1 :〈

q(0, s′)
∣∣ q̄ΓQv |Q(v, s)〉 =

√
R(q)R(h)ū(0, s′)

(
1 + αs(µ)vHQET1

)
Γu(v, s) (5.10)

Note that vHQET1 is independent of the spin structure in Γ, while v1 is not. Indeed, the vector current in

QCD matched onto HQET gives 2 currents, C
(v)
1 q̄γµQv and C

(v)
2 q̄vµQv (this can be easily seen from the

fact that in QCD the index v is internal while in HQET it’s external; also note that a current of the form
q̄σµνvνQv is reducible).The final results are:

C
(v)
1 = 1 +

αs(µ)

π

(
ln (

mQ

µ
)− 4

3

)
, C

(v)
2 =

2αs(µ)

3π
(5.11)

Example: There’s a nice trick to arrive at the above results. Let us pick an IR regulator to make the effective
theory as simple as possible (one has the freedom to choose this regulator, as the Wilson coefficients and
the anomalous dimensions will not depend on the specific choice): use dimensional regularization for both
UV and IR divergences in the MS scheme. With that, all HQET graphs with on-shell external momenta
scale as

(
1

εUV
− 1

εIR

)
. The UV divergent piece (∼ 1

εUV
) gets removed by the counter-term and there’s no

finite term leftover in MS. One is then left in the end with 1
εIR

. This simplifies the matching process,
since the IR divergence of the full QCD with Hew must match. To be precise, the UV renormalized QCD
graphs (dimensional regularization with similar IR regulator) gives 1

εIR
(...) + ln ( µ

mQ
)(...) + (...), and the

first term cancels when one subtracts with HQET. The matching is then just the second term. Hence,
without any calculation in HQET, the matching can still be read-off, if one trusts that the IR behavior
should be matched - which should be the case when the effective field theory is done right.

5.3 Power Corrections and Reparametrization

At the lowest order HQET is realized and used for perturbative calculations. It’s natural to take further
steps by going into the physics at higher order in the power counting expansions (series in 1

mQ
). Recall

that the Lagrangian supports integrating out Bv at tree-level (v/Qv = Qv and v/Bv = −Bv):

LQ = Q̄vivDQv − B̄v(ivD + 2mQ)Bv + Q̄viD/TBv + B̄viD/TQv , δB̄vLQ = 0⇒ Bv =
iD/TQv

ivD + 2mQ
(5.12)

Performing a field redefinition from the equation of motion:

LQ = Q̄v

(
ivD + iD/T

1

ivD + 2mQ
iD/T

)
Qv = Q̄vivDQv −

1

2mQ
Q̄vD/T

2Qv + ... = L(0)
Q + L(1)

Q + ... (5.13)

The above result for the first order Lagrangian L(1)
Q can be further simplified with D/T

2 = D2
T + g

2σ
µνGµν

(the commutation relation of gauge derivatives is [Dµ, Dν ] = igGµν):

L(1)
Q = −Q̄v

D2
T

2mQ
Qv − gQ̄v

σµνGµν
4mQ

Qv (5.14)
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The first term is the kinetic part that breaks flavor symmetry and the second one is the magnetic mo-
ment part (∼ σB) that kills the flavor and spin symmetries. Can you see that? Hint: think about what
information is stored inside mQ and σµν .

There’s another way to arrive at the effective field theory from the bottom-up point of view. Since the
above method is based on tree-level results (classical physics), which means that loop corrections (quantum
physics) are not included, some operators might be missed since they are vanishing at tree-level. The more
general procedure (also more correct) is to write down all possible operators allowed by symmetry:

• Power counting: powers of 1
mQ

are made explicit, outlining the mass dimensions of the field content

needed.

• Gauge symmetry: taking into account the gauge derivative Dµ.

• Discrete symmetry (the symmetries of QCD if the famous θ-term is dropped): charge conjugation
(C), parity (P ) and time reversal (T ).

• Realization of Lorentz symmetry in HQET: part of the Lorentz group is broken. For the rest frame,
v = (1, 0, 0, 0), we can see that the part of the Lorentz generator MµT νT that is transverse with
respect to v (purely rotation M12, M23, M13) is preserved while the others vµMµνT (purely boost
M01, M02, M03) are not. Indeed, introducing v means having a preferred frame, therefore the full
Lorentz symmetry should be broken. However, there’s a hidden symmetry on v itself (order by order
in power counting) in this effective field theory that restores Lorentz symmetry at low energy by
reparametrization invariance (RPI).

Let us take a closer look at the last statement in the above list, considering how much freedom is allowed
when choosing v. A heavy quark 4-momentum is split into 2 pieces pµQ = mQv

µ + kµ quite randomly (one
can move pieces back and forth between these 2, as long as they don’t violate power counting). This can
be realized as an invariant under vµ → vµ + εµ

mQ
and kµ → kµ − εµ with ε ∼ ΛQCD (let’s think of it as

infinitestimal). Also, there’s a constraint coming from v2 = 1, which means that ε · v = 0 as one has 3
degrees of freedom stored in ε. Under this transformation, fields become:

v/Qv(0) = Qv(0)→ (v/+
ε/

mQ
)(Qv + δQv) = Qv + δQv ⇒ δQv =

ε/

2mQ
Qv (5.15)

Summing up, RPI is realized through the following transformation:

vµ → vµ +
εµ

mQ
, Qv(x)→ eiεx(1 +

ε/

2mQ
)Qv(x) (5.16)

Note that the extra phase eiεx in Qv is nothing but the change of i∂µ → i∂µ − εµ (kµ → kµ − εµ), and this
restores the Lorentz invariance of the original symmetry under a small boost (ε ∼ ΛQCD � mQ), which is
exactly the region of validity for the EFT of interest.

Now we consider 1
MQ

operators for L(1)
Q from a bottom-up point of view. While in general, there might

be some radiative correction hidden inside cK and cF at this order there are no missing operators from the
tree-level field redefinition approach. So, we have:

L(1)
Q = −cKQ̄v

D2
T

2mQ
− cF gQ̄v

σµνGµν
4mQ

Qv (5.17)
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RPI puts some requirements on the effective theory, but since this phase is only leading order change,

hence L(0)
Q is invariant at order m0

Q since vε = 0. At L(1)
Q , RPI gives a mixing piece, since the RPI-realized

transformation gives:

L(0)
Q → L

(0)
Q + δL9))

Q = Q̄v(1 +
ε/

2mQ
)e−iεxi(v +

ε

mQ
)Deiεx(1 +

ε/

2mQ
)Qv , δL(0) = Q̄v

iεD

mQ
Qv (5.18)

Going through this transformation gives some change to L(1)
Q at this order:

δL(1)
Q = −cKQ̄v

iεDT

mQ
Qv ⇒ cK = 1 (5.19)

For the symmetry not to be violated, cK = 1 indeed is true to all order in αs as long as the renormalization
scheme and the chosen regulator don’t break RPI. However, there’s no constraint for cF and it will run as

cF (µ) =
(
αs(mQ)
αs(µ)

)CA
β0 (where CA is the non Abelian adjoint Casimir number CA = N = 3).

RPI can in general also be used to get information about power suppressed operators operators by
relating the Wilson coefficients in subleading order to those of the leading order currents. Considering
mass corrections as a simple instantiation of the above statement – the mass mH of a heavy meson H
which contains a heavy quark mQ, then one can guess order by order mH = mQ + Λ̄ + O( 1

mQ
), where Λ̄

is just some O(1) contribution. To see the physical meaning of these pieces, remember that the effective

Lagrangian can be written as L = L(0)
HQET +Llight

QCD+
∑

n=1 L
(n)
Q . The (non-perturbative) Λ̄ piece originates

from Llight
QCD, and by finding the corresponding Halmintonian H(0), we can write Λ̄ = 〈H|H(0)|H〉

〈H|H〉 , where |H〉
is the heavy meson eigenstate of the theory. Since at that order H(0) has no mQ-dependence, Λ̄ is also
independent of mQ (not only that, but also the spin structure, e.g. B and B∗, and the flavor, e.g. B and
D, cannot be seen yet). That subleading mass contribution has a universal value, it only depends on Sπl
(Sl is the spin of light degrees of freedom mentioned before, and π is just a parity indication). L(1) and
higher-order Lagrangians are used to describe the mass corrections at higher order O( 1

mQ
). Consider the

next lowest order:

H(1) = −L(1) = Q̄v
D2
T

2mQ
Qv + CF gQ̄v

σµνGµν
4mQ

Qv (5.20)

Taking the matrix elements in the rest frame, with vr = (1, 0, 0, 0), gives 2 parameters which we will call
λ1 and λ2:

2λ1 = −〈H| Q̄vrD2
TQvr |H〉 , 16SQSlλ2(mQ) = CF (µ) 〈H| gQ̄vrσµνGµνQvr |H〉 (5.21)

Notice that λ1 is mQ-independent and λ2 contains information about time reversal properties.

You should do the manipulation to relate SQSl to J2, S2
Q and S2

l . Hint: SQSl =
J2−S2

Q−S
2
l

2

From their mass dimesions, one could guess that λ1, λ2 ∼ Λ2
QCD (λ2 has mQ-dependence logarithmically

O
(

ln (mQ)
)

only), and these are non-perturbative parameters which contain more dynamical information
than Λ̄.

Example: Some mass corrections order by order in the same Sπl -multiplet:

mB = mb + Λ̄− λ1

2mb
− 3λ2(mb)

2mb
, mB∗ = mb + Λ̄− λ1

2mb
+
λ2(mb)

2mb
, (5.22)

mD = mc + Λ̄− λ1

2mc
− 3λ2(mc)

2mc
, mD∗ = mc + Λ̄− λ1

2mc
+
λ2(mc)

2mc
(5.23)
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Certain combinations can be formed to cancel dependence on these power corrections: m̄P = 3mP+mP
4

(where P = B,D) is independent of λ2. Phenomenologically, we see m2
B∗ −m2

B ≈ 0.49 GeV2 ≈ 4λ2(mb)

and m2
D∗ −m2

D ≈ 0.55 GeV2 ≈ 4λ2(mc). Hence experimentally λ2(mc)
λ2(mb)

= 1.12 agrees relatively well with

the theoretically leading logs RGE λ2(mc)
λ2(mb)

=
(
αs(mc)
αs(mb)

)1/3
= 1.17 with number of light flavors nf = 3.

We can derive an important phenomenological prediction using this effective field theory. Consider
a simple class of B-decay which are semileptonics. We divide these into exclusive decays, which make
a transition between meson states, (e.g. B → Dlν̄ or B → D∗lν̄) and inclusive decays where we allow
transitions to any charm states (e.g. B → Xclν̄ with Xc = D,D∗, Dπ,Dπππ). Exclusive decay has
form-factors for the currents between states. Our heavy quark symmetry reduces many form-factors to
a single one with no 1

mQ
corrections, and this can be used to measure Vcb – using analytical methods

or lattice QCD. Inclusive decay has an Operator Product Expansion (OPE) constrained by HQET (the
leading order corrections enter only at O( 1

m2
Q

) with dependence merely on λ1 and λ2). Let’s focus on the

inclusive OPE, starting from the triplet differential inclusive spectrum B → Xclν̄ decay rate dΓ
dq2dEldm

2
X

with q = pl + pν̄ = pB − pX .

For this analysis, we will try to carry out the expansion in
ΛQCD
mQ

for this process, summing over

all intermediate Xc states (allowing connection between partonic calculations and hadronic calculations
through probability conservation). At leasing order, the process is b → clν̄ with O (αs(mQ)) corrections,
schematically and diagrammatically, the OPE can be described as:

Unsurprisingly, C = C( µ
mQ

, αs(mQ), ...) is identified with the b→ clν̄ decay rate (even after including loop

corrections). This OPE requires that kinematic variables are hard (i.e. ∼ mQ) or integrated over a region

of phase space ∼ mQ, e.g.
∫m2

B
0 dm2

X . If one restricts the phase space close to the edges it will introduce
a new scale into the problem, and will mean that our theory cannot still be described as HQET with
mQ � ΛQCD. At next-to-leading order we don’t see any O(

ΛQCD
mQ

) correction (this can be derived using

the equation of motion iv ·Dhv = 0). At NNLO just λ1, λ2 show up in the spectrum. Experimentally, the
OPE is phenomenologically very successful (e.g. |Vcb| = (41.6± 0.6)× 10−3 fits).

5.4 Renormalons

Using the knowledge gained from the B-decay process, we can explore ambiguities in our perturbative
series known as renormalons.
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In many discussions of renormalization, there is freedom in defining the perturbative series simultane-
ously with Lagrangian parameters (like masses) or matrix elements (like λ1, λ2) – in the MS scheme it’s
the freedom to adjust the cut-off by choosing µ to separate perturbative and non-perturbative physics. The
problem is that a poor choice of power separation can have a non-trivial impact (such as matrix elements
being overwhelmed with UV physics or Wilson coefficients being IR sensitive via a hidden power-law)
coming from the asymptotic structure of higher orders of the perturbation series, leading to poor conver-
gence

∑
n α

n
s on one hand and irreducible uncertainty in the meaning of parameters on the other (troubles

extracting the non-perturbative parameters as UV physics and IR physics are not divided correctly; for
example, a parameter is doubled when one goes to the next order in perturbation series). Renormalon
techniques help to quantify these problems. In other words, poor choices are plagued by renormalons (“bad
objects people hate”).

Example: Let’s look at b → ueν̄ at lowest order (the up quark is treated as massless), think about it
inclusively like B → Xueν̄ in order to have physical sense. The decay rate as one sets µ = mb is:

Γ(b→ ueν̄) =
G2
F |Vub|2

192π3
m5
b

(
1 + κ1

αs(mb)

π
ε+ κ2

αs(mb)
2

π2
ε2 +O(ε3)

)
(5.24)

ε = 1 is just a power counting indication to help keep track of the order of αs. There are different choices
one can use to define the bottom quark mass mb, and that changes the perturbative series:

• Pole scheme: Γ =
G2
F |Vub|

2

192π3 (m
(pole)
b )5(1 − 0.17ε − 0.13ε2 + ...), correction at 2-loop pretty much the

same size with 1-loop.

• MS scheme: Γ =
G2
F |Vub|

2

192π3 (m̄b)
5(1 + 0.30ε+ 0.19ε2 + ...), a little bit better but still not working for a

clear separation for corrections at 1-loop and 2-loop level.

• 1S scheme: Γ =
G2
F |Vub|

2

192π3 (m
(1S)
b )5(1 − 0.115ε − 0.035ε2 + ...), at least one can be happier with this

compared to the previous schemes.

To convert results between different schemes (and see how poorly convergent the pole scheme is com-
pared to other schemes), note that:

m
(pole)
b = m̄b(mb)

(
1 +

4

3

αs(mb)

π
ε+ 13

α2
s

π2
ε2 + ...

)
= m̄b(mb)(1 + 0.09ε+ 0.06ε2 + ...) , (5.25)

m
(pole)
b = m

(1S)
b (1 + 0.011ε+ 0.016ε2 + ...) (5.26)

The lesson from this example is that the choice of mass scheme has a big impact on the perturbative series
for the decay rate. Why do some choices work while others don’t? This question will be answered soon.

Considering the meaning of those renormalization mass schemes:

• m(pole)
b is physically a poor choice since there’s no pole, thanks to confinement as the notion of

a pole in a quark propagator is only meaningful in the perturbative sense (and is ill-defined non-

perturbatively) – it is very ambiguous with an ambiguity in the mass scale ∆m
(pole)
b ∼ ΛQCD (to see

this, one has to study about the renormalon). In the HQET setup one has to use the questionable

physical parameters m(pole) with the field redefinition prefactor e−im
(pole)vx as the expansion about the

mass-shell. Other renormalization mass schemes can be implemented in HQET as m(pole) = m+ δm,
which will require a new operator −δmQ̄vQv in the Lagrangian.
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• m̄b is also not good, from the point of view of HQET. It can be seen from power counting why
MS isn’t good with HQET, parametrically and numerically. This choice introduces a new operator
−δmbQ̄vQv in our Lagrangian, where δmb = m̄bαs(mb). The αs(mp) ≈ 0.2 doesn’t give enough
suppression to this term and we are essentially introducing a Lagrangian term which is O(mb), which
is very bad from the point of view of our power counting.

• m(1S)
b (defined as 1/2 of the mass of the bb̄ bound state in perturbation theory) is the best choice

out of the given three. Indeed, δm = m(1S)α2
s ∼ ΛQCD is numerically good as the suppression is

acceptable. It is however not totally alright as it grows parametrically with mb and still ruins the
power counting.

• In general, a more “fancy” choice can lead to δm = Rαs with chosen R ∼ ΛQCD, which will then be
good both parametrically and numerically.

Let’s define the renormalon in a more mathematical way. First we will need a quick review. QFT
perturbative series are usually not convergent but rather asymptotic series. An asymptotic series (denoted
by =̇) is defined by

f(α)=̇
∞∑

n=−1

fnα
n+1 if and only if |f(α)−

N∑
n=−1

fnα
n+1| < κN+2α

N+2

for some number κN+2. In QFT it’s typical that fn ∼ n!an as n→∞, then for any fixed α� 1, no matter
how small, the truncation error can grow as κN ∼ N !aN , hence the series has zero radius of convergence
in α (the analytical behavior is that the series will decrease until N reaches N∗ = |a|−α, and then will
start to grow up again). Still, even if the series is asymptotic one can make use of it (let’s come back to
this story later). In perturbative QED and QCD, one doesn’t usually get over the first few terms in the
expansion series, and it works well in QED since the growing behavior happens at a very high loop level.
For QCD however the turnover happens already at 3-loop order (therefore one needs to be extra careful
even at 2-loop level). The best thing one can do is to stop the series at N∗. That’s actually not a bad
thing in the sense that the mistake one made by stopping there can be characterized by κN∗α

N∗ ∼ e−|a|−α

if N∗ � 1 (one will never be able to see the correction needed to get to the correct value in perturbative
series because e−|a|

−α
doesn’t have a perturbative expansion). The bad behavior at N > N∗ and the small

gap to zero at N = N∗ are related to power corrections.

How poorly convergent a series is can be classified with a parameter we call a. To go deeper into more
detail, one might want to work in a different functional basis. Here that is accomplished by a Borel
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transformation f(α)↔ F (b):

f(α) =

∫ ∞
0

dbe−b/αF (b) , F (b) = f−1δ(b) +
∞∑
n=0

1

n!
fnb

n (5.27)

Note that inserting the 1
n! factor makes the convergence better (improved convergence prefactor). For a

convergent series
∑

n fnα
n+1 one can get back the same f(α) from the inverse transform. For a divergent

series where F (b) and the inverse transform exist it’s reasonable to use the inverse transform to define
f(α).

Example: Consider the following series
∑∞

n=0(−1)nαn+1, which does not converge for α > 1. One way
to calculate it is to use analytic continuation for α < 1 since in that case the series converges and the
summation gives α

α+1 . The other way is to use Borel transformation to get a well-behaved function:

F (b) =
∞∑
n=0

(−b)n

n!
= e−b → f(α) =

∫ ∞
0

dbe−b/αe−b =
α

α+ 1
(5.28)

This integration is perfectly well-defined for large α.

However, there are cases where the inverse transform doesn’t exist (the F (b) integral cannot be done)
then the integrand can give information about the severity of the singularity causing the divergence.

Example: Take fn = a−n(n + k)!, then F (b) = k!
(1− b

a
)k+1

+ ... (keeping the most singular piece) has a

pole-like structure at b = a, and this pole is called b = a-renormalon. If a < 0, the integration contour
is positive and the pole is on the other side so there’s no problem as the inverse transform exists (UV
renormalon). If a > 0 the pole is on the integration contour then inverse transform doens’t exist anymore
(IR renormalon).

The location of the pole in Borel b-space tells us the severity of the singularity. The most severe pole
is the one closest to the origin in the positive part of the axis (for the above example, it can be seen as
follows: as b becomes small then so does a at pole position, hence fn goes up).

The ambiguity can be characterized by doing the integration above or below the pole (corresponding to
circling the pole) which gives the residue. In other words, a nonzero residue is the indication for an
integration ambiguity.

Consider the pole mass versus the MS mass. Let’s pick a particular subset of Feynman diagrams, the
sum of bubble diagrams Σbubbles (which is easy to calculate), to demonstrate renormalons in these 2 mass
schemes:
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Indeed, the bubbles sum diagram is unique in any order of perturbation theory that gives gauge invariant
contributions to the flavor/color structure of the theory, and it has the most power of nf (the number of
active fermions running in each bubble). The fundamental ingredient, the bubble (in Landau gauge, QCD)
is:

=
−i
p2

(
gµν − pµpν

p2

)
δab
(β0αs

4π

)
ln
(−µ2ec̄

p2

)
; c̄ =

5

3
, β0 = −2

3
nf +

11

3
CA

The geometric series summation of the bubble chain gives:

= Gµνbubbles(p, αs) =
−i
p2

(
gµν − pµpν

p2

)
δab

∞∑
n=0

(β0αs
4π

)n
lnn
(−µ2ec̄

p2

)
One can do the Borel transformation to variable u (which is just a rescaling of the Borel variable b) with(
β0αs
4π

)n+1
→ u

n! (n > 0). Taking into account the vertices at the 2 ends of each bubble chain (extra

g2 = 4παs = 16π
β2

0

(
β0αs
4π

)
) we get:

[
g2Gµνbubbles

]
(p, u) =

−i
p2

(
gµν − pµpν

p2

)
δab

16π2

β0

∞∑
n=0

un

n!
=

i

(−p2)2+u
(p2gµν − pµpν)δab

16π2

β0
(µ2ec̄)u (5.31)

Sticking this bubble chain back (acts like a modified gluon propagator with a different Feynman rule) to the
bubble sum diagram, we can calculate Σbubbles in terms of the MS mass, m̄ (canceling the uninteresting

1
εUV

poles – these come from the log-divergent piece u = 0, while u < 0 and u > 0 probes the power law

divergences through 1
(−p2)2+u ). After we have gotten m̄, the pole mass can be found by looking at the

topology of the propagator i
p/−m̄−Σ(p,m̄) with Σ(p, m̄) = m̄Σ1(p2, m̄, αs) + (p/− m̄)Σ2(p2, m̄, αs):(

p/− m̄− Σ(p, m̄)
)∣∣∣∣∣
p2=(m(pole))2

= 0⇒ (m(pole))2 = p/2 = m̄2
(1− Σ2 + Σ1

1− Σ2

)2
→ m(pole) = m̄(1 + Σ1 + ...)

(5.32)
Using these guidelines, let’s do the bubble sum diagram in Borel space (Gµνbubbles(k, αs)→ Gµνbubbles(k, u)):

Σbubbles(p
2, m̄, u) = Σ1(p2, m̄, u) = i3CF

∫
d̄dk

ū(p)γµ(p/+ k/+ m̄)γνu(p)

(p+ k)2 − m̄2

[
g2Gµνbubbles

]
(k, u) (5.33)

Using 1
anb = Γ(n+1)

Γ(n)

∫ 1
0 dx

xn−1(
ax+b(1−x)

)n+1 , the relation between the pole and MS mass can be read-off easily:

m(pole) = m̄

(
δ(u)− CF

6πβ0

(µ2ec̄

m̄2

)u 6(1− u)Γ(u)Γ(1− 2u)

Γ(3− u)
+ ...

)
(5.34)

The δ(u) part comes from transforming the factor 1 (m(pole) = m̄ at lowest order) to Borel space, and the
omitted terms contain both the terms where there is pole structure of the form 1

u rendering it regular at
u = 0 and terms that regular terms in u, which are not needed for this analysis. From the Γ-function
structure, the pole that is closest to zero (the strongest pole) is at u = 1

2 which this corresponds to the

u = 1
2 renormalon (this renormalon has

(
1
2

)−n
n! growth). We can further simplify this equation to:

m(pole) = m̄
CF

6πβ0

( µ
m̄
e
c̄
2

) 2

u− 1
2

+ ...→ B(u) (5.35)
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The inverse Borel transformation B(αs) =
∫∞

0 due
−u 4π

β0αs(µ)B(u) has an ambiguity, thanks to the renor-
malon sitting at u = 1

2 (the ambiguity is realized by analytical continuation above or below the pole),

which averages out to be a half of the residue. Specifically, ∆m(pole) ≈ CF
3β0

e
c̄
2 ΛQCD:

Example: The ambiguity can be calculated as follows and can be found to be ∼ ΛQCD as expected:

∆m(pole) ≈ 1

2
Res[B(u)]

∣∣∣∣∣
u= 1

2

=
1

2
(2iπ)

∮
u= 1

2

duB(u) =
CF
3β0

e
c̄
2

(
µe
− 2π
β0αs

)
=
CF
3β0

e
c̄
2 ΛQCD (5.36)

Since m(pole) has this ambiguity, one should avoid this choice of mass scheme.

Some interesting observations:

• The ambiguity doesn’t depend on the use of m̄, it’s strictly associated to m(pole).

• The ambiguity is µ-independent in αs-space, as ∆m(pole) ∼ ΛQCD. However, the residue of the
pole seems to be µ-dependent in Borel space. When one expresses the decay rate Γ(b → ueν̄) =

(m
(pole)
b )5(1 + ...αs + ...α2

s + ...) in terms of m̄b, then the u = 1
2 poles in (m(pole))5 and in the

expansion series (1 + ...αs + ...α2
s + ...) actually cancel each other, as long as they are both expanded

in the same αs(µ) order by order (also, the Borel variables have the same meaning). The bubble
chain trick indeed works well for the expansion series.

• These poles are artifacts from splitting up the physics at different energy scales, so in general, they
always cancel for observables.

• To cure the ambiguity, one has to introduce a new energy scale R. In general a scheme change gives:

m(pole) = m(R) + ∆m , ∆m = R
∞∑
n=1

∑
k

ank lnk
( µ
R

)(αs(µ)

4π

)n
(5.37)

m(R) can be chosen to be free of renormalons, if ∆m properly subtracts the pole mass renormalons.
In the MS mass scheme, R = m̄(µ = m̄); while in the interaction-based 1S mass scheme, R =
αs(µ)m(1S) (inverse Bohr radius). Still, R can be considered a free parameter (floating cut-off) and
the ambiguity is generally R-independent. R sets the scale for absorbing the IR fluctuations (causing
the instability by dressing up the pole mass) together with the pole mass – point particle mass, in a
familiar sense – to yield a well defined mass m(R).

Example: With R, one can define the MSR mass scheme by using the MS scheme and taking the only

non-zero coefficients to be an0 = ān0 (from MS value) and take µ = R, so one has a well-defined mass

with m(pole) = m(MSR)(R) +R
∑∞

n−1 ān0

(
αs(R)

4π

)n
. This scheme is good for doing physics where one wants

to absorb things up to that floating cut-off (which pretty much decouples from the mass threshold). Note
that, in a more general scheme based on floating R and MS scheme, there might be 2 running scales µ and
R, and while µ is needed for the log divergences cut-off, R is needed for the power law divergences cut-off.
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Before moving on, let’s review about how one defines ΛQCD at higher orders in resummation (LL, NLL,
...). In MS, the β-function from contributions at all orders is:

β(αs) =
∂αs(µ)

∂ lnµ
= −2αs(µ)

∞∑
n=0

βn

(αs(µ)

4π

)n+1
, µ = R→ ln

R1

R0
=

∫ R1

R0

dR =

∫ αs(R1)

αs(R2)

dαs
β(αs)

(5.38)

Let t = − 2π
β0αs(R) , then ln R1

R0
=
∫ t1
t0
dt̂b(t) = G(t1)−G(t0) with the Laurent series b̂(t) = 1 + b̂1

t + b̂2
t2

+ ....

The higher Laurent coefficients are b̂1 = β1

2β2
0
, b̂2 =

β2
1−β0β2

4β4
0

, b̂3 =
β3

1−2β0β1β2+β2
0β3

8β6
0

, and so on. The integral

G(t) can be easily evaluated, and ΛQCD = R1e
G(t1) = R0e

G(t0):

ΛQCD = µ exp

(
− 2π

β0αs(µ)
+ b̂1 ln

( 2π

β0αs(µ)

)
+ ...

)
(5.39)

The whole expression is µ-independent.

Moving on, let’s treat R like a variable which parametrizes a mass scheme. Similar to the renormaliza-
tion group equation (RGE) from the running of µ in the MS scheme, it is expected that by flowing with
the floating cut-off R one also has another kind of RGE (known as R-RGE), since varying the scale R in
the MSR scheme is much like varying µ in the MS scheme. For simplicity set µ = R:

∂m(pole)

∂ lnR
= 0 =

∂m(R)

∂ lnR
+RγR

(
αs(R)

)
, γR

(
αs(R)

)
=
∂∆m(R)

∂R
=

∞∑
n=0

γRn

(αs(R)

4π

)n+1
(5.40)

By setting µ = R, this perturbative series avoids ln
(
µ
R

)
that could be large if µ � R. The R-RGE is

simply ∂m(R)
∂ lnR = −RγR

(
αs(R)

)
(interesting fact: the power of R in the RHS is actually related to the

position of the renormalon). This R-RGE can be solved as a well-defined integral:

m(R1) = m(R0) + ΛQCD

∫ t0

t1

dtγR(t)
∂e−G(t)

∂t
(5.41)

The only potential issue with this integral can come from t = 0, but one never gets there, as it corresponds
to the Landau pole where the coupling blows up. The evolution R0 → R1 yields new well-defined m(R1)
which absorbs different amounts of IR fluctuations.

Example: Consider the LL solution with γR(αs) = γR0
αs
4π , γR(t) = − γR0

2β0

1
t and G(t) = t, then:

m(R1) = m(R0) + Λ
(0)
QCD

γR0
2β0

∫ t0

t1

e−t

t
= m(R0) +

γR0
2β0

(
Γ(0, t1)− Γ(0, t2)

)
Λ

(0)
QCD (5.42)

The incomplete Γ-function has asymptotic behavior when we expand about αs = 0 and t = +∞. In detail,

Γ(0, t)Λ
(0)
QCD = −2R

∑∞
n=0 2nn!

(
β0αs
4π

)n+1
, with the 2n =

(
1
2

)−n
pre-factor corresponding to the u = 1

2

renormalon. The difference between these 2 asymptotic series (for t0 and t1) is actually a convergent series.

Example: Here we do the incomplete Γ-function expansion to see the explicit renormalon cancellation:

m(R1)−m(R0) = − γ
R
0

2β0
R1

∞∑
n=0

(β0αs(R1)

2π

)n+1
n!
(

1− R0

R1

n∑
k=0

1

k!
lnk

R1

R0

)
(5.43)

= − γ
R
0

2β0
R1

∞∑
n=0

(β0αs(R1)

2π

)n+1
∞∑

k=n+1

n!

k!
lnk

R1

R0
(5.44)
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This expression is a convegent series, renormalon-free with summation of ln R1
R0

logs (with power). Hence
one can connect the physics at scales R1 � R0 in a renormalon free fashion, which is not possible in general
with the µ-RGE of the MS scheme. Indeed, for phenomenology, it’s often useful to switch scheme back
and forth between MS and MSR.

Let’s look at all higher order generalizations, say, up to NkLL order (kth-next leading log) using the

series expansion form γR(t)∂e
−G(t)

∂t = e−t(−t)−b̂1
t

∑∞
j=0 sj

1
(−t)j (the coefficients s are related to higher order

b̂>1; e.g. s0 = γ̃R, s1 = γ̃R1 − (̂b1 + b̂2)γ̃R0 with γ̃Rk =
γRk

(2β0)k+ ). With this form, we end up with:

[
m(R1)−m(R2)

]NkLL
= Λ

(k)
QCD

k∑
j=0

sj(−1)jeiπb̂1
(

Γ(−b̂1 − j, t1)− Γ(−b̂1 − j, t0)
)

(5.45)

These imcomplete Γ-function subtractions are convergent. To show that
[
m(R1) −m(R2)

]NkLL
is well-

behaved, note that the anomalous dimension γR
(
αs(R)

)
of ∆m(R) is also free of a ∆m ∼ ΛQCD renor-

malon:

γR0 = a1 , γR1 = a2 − 2β0a1 , γR2 = a3 − 4β0a2 − 2β1a1 , ... , γRn = an+1 − 2nβ0an + ... (5.46)

where we’ve defined an ≡ an0. For simplicity, let’s look at the value for an for the bubble sum, then in a
given γRn one has an+1 ∼ n!(2β0)n, an ∼ (n − 1)!(2β0)n−1, ... and these growths cancel in the anomalous
dimension.

Aside from phenomenological studies, the our scale R can also be used for probing renormalons even
in cases when the bubble sum doesn’t work (e.g. no fermion loops) or other types of renormalons (e.g.
ones that cannot be seen through fermions). The mechanism for finding renormalons is to use R-RGE.
Recall that m(R1)−m(R0) = ΛQCD

∫ t0
t1
drγR(t) ddte

−G(t) and notice that t0 and t1 are negative and far from
t = 0 so things are nicely convergent, as R is usually chosen to be larger than ΛQCD. Consider R0 → 0
as m(R0) → m(pole), t0 = − ln R0

ΛQCD
→ +∞. The integration will have to pass through the Landau pole,

which introduces a new ambiguity (although near the Landau pole the series becomes non-perturbative,
one can still find a path in the t-complex plane so that things can be treated perturbatively). At LL order:

m(R1)−m(pole) = −ΛQCD
γR0
2β0

∫ ∞
t1

dt
e−t

t
=

∫ ∞
0

duF (u)e
−u 4π

β0αs(R1) ; u =
1

2
− t

2t1
, (5.47)

Where it can be shown that the Borel integral factor F (u) ∼ 1
u− 1

2

. The Landau pole effectively becomes

a Borel pole at u = 1
2 , therefore it makes it a little clearer that this pole corresponds to non-perturbative

physics in the IR region. One can formally generalize this to all orders. This probe for the renormalon
without using bubbles sum, known as the sum rule for renormalon, consists of formally taking the Borel
transformation to all orders. The residue of the u = 1

2 pole can be found to be P1/2 =
∑∞

k=0
sk

Γ(1+b̂1+k)
,

and P1/2 6= 0 means that there is a renormalon at u = 1
2 .

To use renormalon technology in phenomenology, let’s take a look at renormalons in the OPE. Consider
an OPE in the familiar MS scheme:

σ = C̄0(Q,µ)Ō0(µ) + C̄1(Q,µ)
Ō1(µ)

Q
+ ... ;

ΛQCD
Q

� 1 , C̄0(Q,µ) = 1 +

∞∑
n=1

bn
( µ
Q

)(αs(µ)

4π

)n
(5.48)

where σ is a dimensionless observable, C0 and C2 are dimensionless MS Wilson coefficients, O0 is a MS
matrix element with no mass dimension and Ō1 is also a MS matrix element but has mass dimension 1
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Since this is calculated in the MS scheme, bn
( µ
Q

)
=
∑

k bnk lnk
( µ
Q

)
. It’s good from the computational

point of view since there are only logs and no µ
Q power law terms, it naturally satisfies Lorentz and gauge

invariance, and is also simple enough for multiloop calculations. However, the MS scheme has a sensitivity
to renormalons, generically an IR ambiguity in ∆C̄0 ∼

ΛQCD
Q and a UV ambiguity in ∆Ō1 ∼ ΛQCD with

a u = 1 renormalon. Consider a toy integral σ ∼
∫∞

0 dd−3k
f(k2,Λ2

QCD)

(k2+Q2)1/2 µ
2ε, then the separation in the MS

scheme with a high energy k ∼ Q piece and a low energy 1
Q -expansion piece becomes:

σ ∼ µ2ε

∫ ∞
0

dd−3 f(k2, 0) + ...

(k2 +Q2)/2
+ µ2ε

∫ ∞
0

dd−3kf(k2,Λ2
QCD)(

1

Q
+ ...) ∼ C̄0(Q,µ)Ō0 + C̄1

Ō1(µ)

Q
. (5.49)

Note that the identification with the OPE is Ō0 = C̄1 = 1. The MS scheme separates short and long
distance physics for logs correctly, but for powers it relies on setting the scale of integration to zero, which
is forced from the very definition of dimensional regularization and the scheme itself. This treatment
leaves residual sensitivity to power divergences from including the wrong regions of momentum space in
the integrals, which results in renormalons. In the Wilsonian picture (different separation), the toy model
will be cut-off by an explicit scale, as shown here :

σ ∼
∫ ∞

Λf

dk
f(k2, 0) + ...

(k2 +Q2)1/2
+

∫ Λf

0
dkf(k2,Λ2

QCD)
( 1

Q
+ ...

)
∼ C(W )

0 (Q,Λf ) +
O

(W )
1 (Λf )

Q
, (5.50)

where O
(W )
0 (Λf ) = C

(W )
1 (Q,Λf ) = 1. This separation has no renormalon, but since it uses a hard cut-

off, the calculations are very difficult and the symmetries will not be preserved order by order (as was
mentioned earlier in these notes).

In a general R-scheme (working with C̄1 = 1 for simplicity), one needs to start with the MS scheme and
then change the scheme by moving pieces around inside elements of the OPE (rearrangement of physics):

Ō1(µ) = O1(R,µ)−R
∞∑
n=1

dn
( µ
R

)(αs(µ)

4π

)n
Ō0 , C̄0(Q,µ) = C0(Q,R, µ) +

R

Q

∞∑
n=1

dn
( µ
R

)(αs(µ)

4π

)2
(5.51)

Then σ ∼ C0(Q,R, µ)Ō0 + O1(R,µ)
Q , and by choosing the coefficients d the u = 1 renormalon in the MS

scheme can be removed (in detail, the power-law dependence on R eliminates the sensitivity of Cn to
small momenta). The choice of d is indeed similar to the choice of the hard cut-off, hence actually this
scheme change is perturbatively going toward the Wilsonian picture (in a Lorentz and gauge symmetries
preserving way), starting from MS.

Example 1: The MSR scheme for OPE reuses the coefficients of the MS scheme bn
( µ
Q

)
(with renor-

malons inside) at a different scale R as dn
( µ
R

)
= bn

( µ
R

)
. With R

QC0(R,µ) acting as an IR cut-off to ensure
C0(Q,R, µ) corresponds to short distance physics, one gets a renormalon-free expression:

C0(Q,R, µ) =

∞∑
n=1

(
bn
( µ
Q

)
− R

Q
bn
( µ
R

))(αs(µ)

4π

)n
= C0(Q,µ)− R

Q
C0(R,µ) (5.52)

Indeed, since the renormalon is independent of R and Q, they cancel out in the subtraction bn
( µ
Q

)
−R
Qbn

( µ
R

)
.

Setting µ = R and pretending that C0 has no anomalous dimension, one can easily read-off the running
∂C0(Q,R,R)

∂lnR = −R
Qγ
(
αs(R)

)
. The flow can be solved to be:

C0(Q,R1, R1) = C0(Q,R0, R0) +
ΛQCD
Q

∑
j

sj(−1)jeiπb̂1
(

Γ(−b̂1 − j, t0)− Γ(−b̂1 − j, t1)
)

= C0(Q,R0, R0)U(Q,R0, R1) (5.53)
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Example 2:. The OPE renormalon techniques can be used in HQET. Consider the ratio between the

mass-squared difference of a symmetry multiplet r =
m2
b∗−m

2
B

m2
D∗−m

2
D

perturbatively in the MS scheme:

r =
C̄F (mb, µ)

C̄F (mc, µ)
+

Σ̄p(µ)

µ2
G(µ)

( 1

mb
− 1

mc

)
+ ... ,

Σp(µ) ∼ Λ3
QCD

µ2
G(µ) ∼ Λ2

QCD

∼ ΛQCD (5.54)

The theoretically calculated result r = 1 − 0.113
∣∣∣
αs
− 0.078

∣∣∣
α2
s

− 0.0755
∣∣∣
α3
s

has contributions at different

orders of similar sizes and doesn’t seem to converge well. In terms of log order, one can rewrite this as

r = 0.8617
∣∣∣
LL
− 0.0696

∣∣∣
NLL
− 0.0908

∣∣∣
NNLL

, which also doesn’t help (the experimental data is close to the

answer at LL order, however, and the next log order contributions are moving away). Indeed, there’s a
renormalon present in the calculation (can be shown to be the u = 1

2 renormalon through the bubble sum),
and to cure this one can use the MSR scheme by redefining CF (mQ, R,R). This gives:

r =
CF (mb, R0, R0)

CF (mc, R0, R0)
+

Σp(R0, R0)

µ2
G(R0)

( 1

mb
− 1

mc

)
, Σp(R0, R0) = Σ̄p −R0µ

2
G

∑
...αs (5.55)

The scale µ = R0 is chosen a little above ΛQCD so that Σp(R0, R0) is still on the order of Λ3
QCD, therefore

doesn’t mess up with the power counting in the the MS results. Using R-RGE to sum up logs between
R0 → mQ gives

r =
CF (mb, R1, R1)U(mb, R1, R0)

CF (mc, R1, R1)U(mc, R1, R0)
+

Σp(R0, R0)

µ2
G(R0)

( 1

mb
− 1

mc

)

The first term in this expression is given order by order numerically as 1→ 0.88→ 0.862→ 0.860, which
converges pretty decently. The second terms (which are smaller than in the MS scheme) can be seen as a

small uncertainty coming from varying R0 and R1, in the sense that rNNLL = 0.860±0.065
∣∣∣
Σp
±0.0008

∣∣∣
pert

.

Note that, since the R0 dependence cancels between the leading power term and the 1
Q term, it gives us

a method for estimating the size of the power corrections (pretty much like what µ does for perturbative
corrections in the MS scheme).

6 EFT with a Fine Tuning

This section is devoted to investigating an EFT where a naively irrelevant operator must be promoted
to being relevant. We will see an operator, although it can be thought of as irrelevant from dimensional
analysis, can have an anomalous dimension large enough that it actually becomes relevant.

6.1 Two Nucleon Nonrelativistic EFT

The Two Nucleon Nonrelativistic EFT (NNEFT) is a bottom up EFT that describes the SM in the limit of
small momenta p� mπ so that all exchanged particles, including the pions, can be integrated out. Nonlocal
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6.1 Two Nucleon Nonrelativistic EFT 6 EFT WITH A FINE TUNING

pion exchange becomes a local process, similar to how the massive weak gauge bosons are integrated out
from QCD to give Hew.

Let’s start from a nonrelativistic elastic scattering in the center-of-mass frame (the particles have the
same mass M , so energy conservation gives |p| = |p′| = P ), which can be dealt with by using standard
Quantum Mechanics. Indeed, the scattering can be described by a phase shift S = e2iδ = 1 + iPM

2π A (the
familiar partial wave expansion), where A = 4π

M
1

P cot δ−iP is the scattering transition amplitude. For any

short range potential the effective range expansion is P 2l+1 cot δl = − 1
a + 1

2roP
2 + O(P 4), where l is the

particular partial wave of interest (e.g. l = 0 for s-wave and l = 1 for p-wave). This expansion is nontrivial
in QM, since one needs to consider a general potential, but we can show it quite easily from EFT.

Let us prove the effective range expansion in NNEFT, which has the Lagrangian:

L = N †
(
i∂t +

∇2

2m
+ ...

)
N −

∑
S

∞∑
m=0

C
(S)
2mO

(S)
2m + ... , (6.1)

where N is the nucleon field with spin 1
2 and isospin 1

2 and
∑

S

∑∞
m=0 ... represents a contact interaction

O
(s)
2m of 4 nucleon fields (N †N)2 with 2m derivatives (here S is the spectroscopic channel 2S+1LJ). We are

looking at the four nucleon interaction in this theory, which is diagrammatically,

It can be seen from the operators listed in the Lagrangian, that for any given in-channel and out-channel, the
contribution ∼ P 2m. Note that nucleons are fermions, therefore the wavefunction must be anti-symmetric.
This gives us a relationship between the isospin and the angular momentum that tells us (−1)s+l is even
for the isotriplet I = 1 and (−1)s+l is odd for the isosinglet I = 0. Angular momentum conservation forces
J = J ′, and for s = 0 we get l = l′, while for s = 1 we get |l − l′| = 0, 2. Going into more detail we
explicitly write some of the operators in the Lagrangian:

∞∑
m=0

C
(S)
2mO

(S)
2m = C

(S)
0 (NTP(S)

i N)†(NTP(S)
i

←→
∇ 2N)− C

(S)
2

8

(
(NTP(S)

i N)†(NTP(S)
i N) + h.c.

)
+ ... , (6.2)

with
←→
∇ 2 =

←−
∇2 +

−→
∇2 − 2

←−
∇
−→
∇ , and the matrices in spin-isospin space P1S0 = 1√

8
(iσ2)(iτ2τi), P

3S1 =
1√
8
(iσ2σi)(iτ2). The Feynman rules can be easily read-off (in the center-of-mass frame), giving the complete

tree-level amplitude as follows:
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6.1 Two Nucleon Nonrelativistic EFT 6 EFT WITH A FINE TUNING

To study quantum effects one needs to consider loops. For simplicity, consider the following loop with
total energy going in E = 0. One can see that by keeping only the ∂t terms (like in HQET) in the kinetic
pieces the integral is ill-defined and has a pinch singularity:

= (−iC0)2

∫
d̄dq

i

q0

i

−q0

Indeed, the problem arises because the kinetic energy is a relevant operator in Quantum Mechanics (when-
ever one writes down the Schrödinger equation, one needs to keep it), therefore the right power counting

should give E ∼ P 2

2M at leading order (which means that the ∂t terms and ∇2

2M terms are about the same

size, i∂t ∼ ∇2

2M ). It is generically true for 2 heavy particles to have this power counting for the kinetic
terms, which is different than what we saw in the case of HQET. Adding the missing pieces and using
dimensional regularization we get:

= (−iC0)2

∫
d̄dq

i(
E
2 + q0 − q2

2m

) i(
E
2 − q0 − q2

2m

)
= iC2

0

∫
d̄dq

M

q2 −ME
= −iC2

0

(−iMP

4π

)
The above result has the nucleon mass (which is large) appearing in the numerator, which is usually a bad
sign. Let’s count the powers of M while holding the spatial momentum P fixed: ∇ ∼ M0 (|x| ∼ M0),

∂t ∼ 1
M (t ∼ M),

∫
d4xN †

(
i∂t − ∇2

2M

)
N ∼ M0 → N ∼ M0 and

∫
d4xC2mO2m ∼ M0 → C2m ∼ 1

M as

O2m ∼ M0. Hence, there’s no issue with the counting of M , with the 1-loop and tree-level contributions
being about the same size ∼ 1

M . From the dimension counting [C2m] = −2− 2m, therefore the coefficient
is of the form C2m ∼ 1

MΛ2m+1 (P � Λ, where Λ is set from all fields one integrates out).

We can also calculate the loop with two generic vertices:

= (−iC0)2

∫
d̄dq2n M

q2 −ME
q2m = (ME)n+m

∫
d̄dq

q2 −ME

It is convenient that this theory is entirely made of bubbles of the same diagram type as above (indeed,
one doesn’t need to have anti-particles involved since it is a nonrelativistic theory). Summing all the
contributions at all loop orders, the bubble chain gives a geometrical series:

= iAk = −i
(∑

m

C2mP
2M
)k(−iMP

4π

)k−1
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which is easily summed as

A =
∑
k

Ak = −
∑

mC2mP
2m

1 + iMP
4π

(∑
mC2mP 2m

) =
4π

M

1(
− 4π

M
1∑

m C2mP 2m

)
− iP

(6.7)

The phase-shift can be found to be δ = arccot
(
− 1∑

m Ĉ2mP 2m+1

)
= δ0 where we’ve defined the shorthand

Ĉ2m = mC2m
4π . This result is for the s-wave part, which can be Taylor-expanded as P cot δ = − 1

Ĉ0
+ Ĉ2

Ĉ2
0

P 2 +

O(P 4). The same can be done for higher partial waves, e.g. for the p-wave l = 1 (no Ĉ0 contribution),

P 3 cot δ1 = −P 2

Ĉ2P 2+Ĉ4P 4+...
= − 1

Ĉ2
+ Ĉ4

Ĉ2
2

P 2 + ... . At this point we have proven the effective range expansion

for nonrelativistic QM. Note that this would have been much more difficult without our EFT approach.

The matching can be done easily giving C0 = 4π
M a and C2 = 4π

M
a2r0

2 , where a and r0 would be determined
experimentally. Higher coefficients C2m can also be found in a similar fashion. For power counting, if
a, r0 ∼ 1

Λ (Λ ∼ mπ), one can reproduce C2m ∼ 1
MΛ2m+1 . Unfortunately the value of the scattering length

a in nature is large (hence C0 becomes huge), and a seems to have a fine-tuning from the dimensional
counting in the EFT point of view (note that for other scales, e.g. r0 ∼ 1

mπ
, they are of the expected size):

a(1S0) = −23.714± 0.013(fm)� 1

mπ
, a(3S1) = 5.425± 0.001(fm) (6.8)

One needs to change the power counting a little bit, modifying aP � 1 to aP ∼ 1 or even aP � 1.
This means C0 must be treated as relevant although from dimensional analysis C0 ∼ 1

MΛ is irrelevant.
Since the problem originated from using dimensional regularization and the MS scheme, let us take a step
back and use another scheme – the off-shell momentum subtraction (OS) scheme defined diagrammatically
as:

= −i
∑
m

C2m(µR)P 2m

where the scale µR keeps track of the power divergence that both dimensional regularization and the MS
scheme couldn’t see. The loop result is now changed with a finite correction:

=
iM

4π
C0(µR)2

(
iP + µR

)
, Cbare0 = C0(µR) + δC0(µR)

The renormalization group equation for C0(µR) is straightforward,

µR∂µRC0(µR) = −µR∂µRδC0(µR) =
M

4π
C0(µR)2 , C0(0) =

4π

M
a = CMS

0 (6.11)

and yields the solution C0(µR) = −4π
M

1
µR− 1

a

. If µR ∼ P � 1
a then the correct power counting must be

C0(µR) ∼ 1
MµR

, which means one has to swap the integrated-out energy scale with the physical scale of

interest 1
Λ →

1
µR

(with this change, C0 now becomes relevant as desired). One can summarize this by
saying that the renormalization scheme can be chosen to make the right power counting easier.

Note that by counting P one can find that ∂t,
∇2

2M and C0 are all relevant. Another way to see that
is to look at the renormalization group flow from the β-function, with β0 ∼ aµR

(1−aµR)2 and the a-axis being

mapped to a more compact version called the x-axis via aµR = tan
(
πx
2

)
:
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There are 3 points where the β-function vanishes in the a-axis for a fixed value of µR: a = 0 (noninteracting,
since the only relevant terms are the kinetic pieces while all interactions are irrelevant) and a = ±∞
(interacting, since there are relevant interactions). Classically a measures the interaction size, therefore
the fixed points are either so big or so small that it’s basically the same on all scales (conformal symmetry
at these points). When one does perturbation theory, it’s best to expand about the fixed points of the
theory, and the problem pops out from naive dimensional analysis coming from perturbing around the
wrong fixed point a = 0. There is an interesting feature where a → 1

µR
and β0 → ∞ blows up, this

corresponds to a deuteron bound state – from the a = 0 side one never sees a deuteron in perturbative
calculations, while from the a = +∞ side this is a true pole in the scattering amplitude as a deuteron
must exist in the theory. Also, a = ±∞ are conformal fixed points with an enhanced SU(4) symmetry
(combined spin-isospin symmetry).

There is another scheme called the power divergence subtraction (PDS) scheme, which doesn’t only
subtract poles at d = 4 like in the MS scheme (∼ ln Λ) but also poles in d = 3 (∼ Λ). The calculation is
the following:

= iC2
0

(µ
2

)4−d
∫

d̄dqM

q2 −ME
=

iC2
0M

(4π)
d−1

2

Γ
(3− d

2

)
(−ME)

d−3
2

(µ
2

)4−d

At d = 4 the answer is i
(
iMP
4π

)
and at d = 3 there’s a pole iC2

0
M
4π

µ
3−d , which results in a counter-term to

cancel this (the renormalized answer is then basically the same as OS scheme):

= i
M

4π
C0(µ)2

(
iP + µ

)
This scheme (dimensional regularization style) indeed tracks the power divergent corrections, just like OS
does. Now, with the knowledge of C0(µ), one can find the running behavior of higher coefficients.

Example 1: Let’s deal with C2(µ):
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µ∂µC2(µ) =
Mµ

4π
2C0(µ)C2(µ) , C2(0) = CMS

2 =
4π

M
a2r0 (6.14)

This yields the solution C2(µ) = 4π
M

(
1

µ− 1
a

)2
r0
2 . The RGE enhances C2 from 1

Λ3 to 1
µ2Λ

.

Example 2: In general the RGE tells the enhancement due to fine-tuning from a→∞ of all operators
in the theory (since fine-tuning messes up the naive power counting, one needs to fix it everywhere):

µ∂µC2k(µ) =
Mµ

4π

k∑
j=0

C2jC2(k−j) , C2jC2(k−j) ∼ P 2k (6.15)

The naive power counting gives Ĉ2n ∼ 1
Λ2n+1 , while the improved one gives Ĉ2n ∼ 1

µn+1Λn
+ ... .

For the few first coefficients:

The scattering amplitude is now changed to:

MA
4π

= −
∑

mC2m(µ)P 2m

1 + (µ+ iP )
(∑

mC2m(µ)P 2m
) (6.16)

= − Ĉ0(µ)

1 + Ĉ0(µ)
(
µ+ iP

) − Ĉ2(µ)P 2(
1 + Ĉ0(µ)

(
µ+ iP

))2 +

((
Ĉ2(µ)P 2

)2
(µ+ iP )

(...)3
− Ĉ4(µ)P 4

(...)2

)
+ ... (6.17)

= − 1
1
a + iP

−
r0
2 P

2(
1
a + iP

)2 −

(
r0
2

)2
P 4(

1
a + iP

)3 −
r1

2Λ2P
4(

1
a + iP

)2 + ... (6.18)

The answer is µ-independent order by order (indeed, the scale µ only helps to do the power counting right,
and in the end of the day, the physical prediction is free of µ). In the diagram representation:
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6.2 Symmetries of NNEFT

6.2.1 Conformal Invariance for Nonrelativistic Field Theory

The Schrödinger group – an extension of the Galilean group, instead of the Poincare group – contains:

• Translation transformation: 4 generators

• Rotation transformation: 3 generators

• Galilean Boosts transformation: 3 generators, x′ = x + ct and t′ = t

• Scale transformation: 1 generator, x′ = esx and t′ = e2st

• Conformal transformation: 1 generator, x′ = x
1+ct and 1

t′ = 1
t + c

The NNEFT has this conformal symmetry at a→∞ (C0(µ)→ − 4π
Mµ , a fixed point of the β-function),

as the Lagrangian is invariant under µ→ e−sµ. The Green’s function is also invariant under this symmetry
of the free Schrödinger equation (the operator i∂t + ∇2

2M ).

Example: At leading order, adding up bubbles in a general frame gives:

⇒ ALO =
8π

M

1√
−4M(E1 + E2) + (p1 + p2)2

This expression is both scale and conformal invariant, which leads to the cross section σ = 4π
P 2 .

6.2.2 SU(4) spin-isospin symmetry – Wigner’s SU(4)

The infinitesimal form for Wigner’s SU(4) transformation is δN = iαµνσ
µτνN , with σ for spin and τ for

isospin. To visualize the symmetry, let’s rewrite the Lagrangian in a slightly different basis:

L = −1

2
CS0 (N †N)2 − 1

2
CT0 (N †−→σ N)2 (6.20)

= −1

4
(C

(1S0)
0 + 3C

(3S1)
0 )(N †N)2 − 1

8
(C

(1S0)
0 − C(3S1)

0 )(N †−→σ N)2 (6.21)

The first term has an explicit SU(4) symmetry and when a → ∞, C
(1S0)
0 = C

(3S1)
0 , gives rise to SU(4)

symmetry for the second term. In order to see this, we go to a(1S0), a(3S1) →∞:

CS0 (µ) = − 4π

Mµ
, −M

4π
CT0 (µ) =

1

a(3S1)
− 1

a(1S0)(
µ− 1

a(3S1)

)(
µ− 1

a(1S0)

) (6.22)
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Note that nature is far from the a(1S0) = a(3S1) limit, but SU(4) can still be realized when both of
them become large.

6.3 Deuteron

The deuteron d = np is a bound state of a proton and a neutron, has isospin I = 0 and spin s = 1 (3S1

state). To look for a bound state in field theory, we approach from the lattice QFT point of view. So, write
down some interpolating fields that overlap with that state by choosing operators with correct quantum
numbers, such as di = NTP(3S1)N for the specific isospin and spin equal to deuteron’s. Then we look for
a pole and see whether the deuteron is in the theory or not:

G(E)δij =

∫
d4xeipx 〈0|T

(
d†i (x)dj(0)

)
|0〉 ?∼ iZ(E)

E +Bd
δij , E = E − p2

2M
+ ... , (6.23)

where E is the 2 nucleon center-of-mass energy. In our theory this is simple to calculate using our bubble
chain,

The sum of the bubble chain is nothing but a simple geometric series, which gives G = Σ
1+iC0Σ with Σ

encoding 2PIC0 diagrams. At leading order in the PDS renormalization scheme we get:

= Σ(1)(µ) = − iM
4π

(
µ−
√
−ME

)
Define EB = −E > 0 and γB =

√
−ME =

√
MEB = −iP , therefore G = 1

1
a
−γB

. There is a pole for

γB = 1

a(3S1)
≈ 36 MeV > 0, corresponding to a physical deuteron state. A similar calculation can be done

at the 1S0 channel, but no pole is found. The binding energy of the deuteron is EB =
γ2
B
M = 1.4 MeV,

which is about the same order as the experimental value Ed = 2.2 MeV.

With the LSZ reduction for the bound state, one can calculate the deuteron electromagnetic form-
factor. The matrix element of the electromagnetic current, 〈p′, j| JµEM |p, i〉, can have 3 possible form-

factors: electric FE(q2) (from charge conservation FE(0) = 1), magnetic FM (q2) ( eFM (0)
2md

= µM ) and

quadrupole FQ(q2). To put electromagnetism in the theory use the covariant derivative DµN =
(
∂µ +

ieQEMeAµ

)
, QEM =

(
1 0
0 0

)
. There is another operator that should be written down, describing

how magnetism couples to a deuteron eL2(µ)(NTPiN)†(NTPi−→σBN) + h.c. (L2(µ) ∼ 1
Mmu2Λ

), which
diagrammatically looks like
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The LSZ reduction for the matrix elements of interest (on-shell, E , E ′ → −Bd) becomes:

〈
p′, j

∣∣ JµEM |p, i〉 = ZB

(
G−1(E)G−1(E ′)Gµij(E , E

′, τ)
)∣∣∣∣∣
E,E ′→−Bd

, (6.25)

Gµij =

∫
d4xd4ye−ipx+ip′y 〈0|T

(
d†i (x)JµEM (0)dj(y)

)
|0〉 (6.26)

where ZB is our bound state Z-factor ZB, G−1(E)G−1(E ′) give our truncation by two point functions and
Gµij(E , E ′, τ) gives the 3-point function. In terms of diagrams (defining Σ as the part irreducible by C0),
the 2-point function can be represented as:

=
Σ

1 + iC0Σ

Also with Γµ being irreducible by C0, the 3-point function can be drawn as:

=
Γµ

(1 + iC0Σ)(1 + iC0Σ)

To find the Z-factor note that G = iZB(E)
E+Bd

has a residue:

ZB(−Bd) = −i∂EG−1(E)
∣∣∣
E=−Bd

=
iΣ2

∂EΣ

∣∣∣∣∣
E=−Bd

(6.29)

All pieces can be put together back in the LSZ reduction matrix element of interest:

〈
p′, j

∣∣ JµEM |p, i〉 = i
Γµij(E , E ′, q)

∂EΣ

∣∣∣∣∣
E,E ′=−Bd

(6.30)

At lowest order the electromagnetic current J0
EM for the electric case is:

→ ∂EΣ
(1)
∣∣∣
E=−Bd

= − iM2

8πγB

→ Γ
(−1)
ij = −eM

2

2πq
arctan

( q

4γB

)
δij

One can go to higher orders in perturbation series (e.g. for the next leading order, one needs Σ(2) and Γ
(0)
ij ;

note that without Σ(2) the charge of the deuteron is messed up as FE(0) 6= 1). The physics of the deuteron
from this theory fits extremely well with experimental data.

We can also study phenomenology with NNEFT. Other processes of interest are neutron-proton scat-
tering np→ dγ (Big Bang Nucleosynthesis, which is calculated up to N4LO), deuteron break-up γd→ np,
neutrino-deuteron scattering νd → ppe− and νd → pnν (these are a charge current and a neutral current
process studied at the Sudbury Neutrino Observatory), and more.
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Another process of great interest is the nucleon-nucleon scattering that produces an axion, NN →
NN+ axion, which comes from the following pieces in the Lagrangian:

Lint = g0(∇iX0)
∣∣∣
X=0

N †σiN + g1(∇iX0)
∣∣∣
X=0

N †σiτ3N (6.31)

It’s important to decide kinematically what region of the phase space to look at, and for bounding axion
physics for axions in the sun Eaxion ∼ Enucleon and |kaxion| � |pnucleon| (to implement this particular
region use the multipole expansion by choosing the spatial part of the axion field going to 0 to make
(∇X0) exchanging energy but not momentum with the rest of the operators at lowest order). Note
that N †σiN and N †σiτ3N are related to the conserved charge of Wigner’s SU(4) symmetry in the EFT
(Qµν =

∫
d3xN †σµτνN), therefore since the charges of a field theory are time-independent (no energy

exchange) the axion has vanishing energy, which means no scattering. Indeed, NN(1S0) → NN(1S0)X0

must be gone because of angular momentum (X0 in p-wave), NN(3S0)→ NN(3S0)X0 vanishes for any a
(Qi0 is conserved spin) and NN(1S0)→ NN(2S0)X0 disappears as a→∞ (the amplitude for this process

is A ∼ kε(3S1)
(

1

a(1S0)
− 1

a(3S1)

)
1

( 1

a(1S0)
+iP )

1
( 1

a(3S1)
+iP )

→ 0 as a(1S0) and a(3S1) become huge). To summarize:

at lowest order in the EFT the process is suppressed.

A Introduction to the Standard Model

Here we give an overview of the symmetries and quantum numbers in the Standard Model.

A.1 U(1) gauge symmetry (QED) and SU(3) gauge symmetry (QCD)

Consider electromagnetism with a single fermion ψ(x) with charge Q (Q = −1 for e−). To get the
Lagrangian to be invariant under the gauge transformation ψ(x) → eiQα(x)ψ(x) = U(x)ψ(x) (for an
infinitesimal α, U = 1 + iQα(x) + ...), one needs to introduce a gauge field that transforms as Aµ(x) →
Aµ(x) + 1

e∂µα (which can be written in terms of U(x) as QAµ(x) → QAµ(x) − i
e

(
∂µU

)
U−1) and change

the purely spatial derivatives (which mess up the U(1) symmetry) to a gauge covariant version i∂µ →
iDµψ = (i∂µ + eQAµ)ψ, which leads to the transformation becoming nice again iDµψ → U(x)iDµψ.
One can form the gauge field strength Fµν = ∂µA

ν − ∂νA
µ (Fµν is gauge invariant, Fµν → Fµν) from

[Dµ, Dν ]ψ = iQeFµνψ. A U(1) gauge invariant QED Lagrangian can be written down:

LQED = ψ̄(iD/−m)ψ − 1

4
FµνFµν (A.1)

For SU(3) (color) gauge symmetry, a triplet of fermion fields (3 colors) ψ(x) transforms as ψ(x) →
U(x)ψ(x) with U(x) = eiα

A(x)TA (TA = λA

2 ) where λA (A = 1, . . . , 8) are the familiar Gell-Mann matrices.
Define the non-Abelian gauge covariant derivative iDµψ = (i∂µ + gTAAAµ )ψ, and in terms of Aµ = AAµT

A,

the AAµ component transforms as Aµ → U
(
Aµ + i

g∂µ

)
U−1 (this is indeed similar to QED if one writes

the latter as QAµ → QAµ + i
eU(∂µU

−1), using ∂µ(UU−1) = 0). We can use the same commutation trick
[Dµ, Dν ]ψ = igFµνψ to get the gauge field strength Fµν = FAµνT

A, FAµν = ∂µA
A
ν − ∂νAAµ + gfABCABµA

C
ν

(Fµν transforms as Fµν → UFµνU
−1 so Tr (FµνFµν) is invariant). The gauge fields transform as an octet

in the adjoint representation iDµA
A
ν = (i∂µδ

AC + igfABCABµ )ACν , where the second term shows that the
gauge fields are charged. The SU(3)-invariant Lagrangian for QCD is:

LQCD =
∑

i=1,2,3

ψ̄i(iD/−m)ψi −
∑

A=1,...,8

1

4
FAµνF

µνA (A.2)
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Note that this Lagrangian contains only renormalizable interactions: operators with dimensions ≤ 4 (for
example, the dimension-5 operator g′ψ̄σµνFµνψ is not included). The standard reasoning is that one
needs to impose a cutoff Λ for the UV divergences, and demands that all the divergences can be absorbed
into parameters of the theory (e.g. g(Λ), M(Λ)), then takes Λ → ∞ (in dimensional regularization this
means ε → 0 where d = 4 − 2ε). The renormalization group will actually allow one to make an even a
stronger statement, for a finite Λ. Actually, there is still another gauge-invariant dimension-4 operator
θεµνλτFAµνF

A
λτ (θ is a coupling constant) – although this term can be written as a total derivative, it is

nevertheless topologically meaningful in QCD, but it’s not a term of interest here, so we will ignore it.

A.2 The Standard Model SU(3)× SU(2)× U(1) gauge symmetry

Phenomenology is used to infer the charges (representations) of the fields, and from the gauge symmetry
one can find LSM . The Lagrangian, schematically, can be split as L = Lgauge +Lfermi +LHiggs +LνR . We
will examine each of these pieces in turn.

The pure gauge kinetic part is:

Lgauge = −1

4
BµνB

µν − 1

4
W a
µνW

µνa − 1

4
FAµνF

µνA (A.3)

whereBµν is field strength for the U(1) gauge field, W a
µν (a = 1, 2, 3) gives the SU(2), and FAµν (A = 1, . . . , 8)

is SU(3). The SU(2) is similar to SU(3), except that the generators are T a = σa/2 (where σa are the Pauli
matrices) and the generators satisfy [T a, T b] = iεabcT c. All the gauge bosons transform under the adjoint
representations of their corresponding groups, and they form 3 distinct sectors (e.g., no U(1) charge for
gluons).

The fermion part is simply Lfermi = ψ̄i /Dψ and one has to specify what the field degrees of freedom ψ
and gauge covariant derivatives D there are. Since ψ should describe 6 flavors of quarks, one can arrange

them in doublets for quarks

(
u
d

)
,

(
c
s

)
,

(
t
b

)
and leptons

(
νe
e−

)
,

(
νµ
µ−

)
,

(
ντ
τ−

)
. These can

be viewed as 3 families of fermions, in the order written above (for example, the first family includes u,
d, νe, and e−). The covariant derivative has the general form iDµ = i∂µ + ig1Y Bµ + ig2T

aW a
µ + igTAAAµ

(g, g1 and g2 are coupling constants, Y is the U(1) charge, T a is an SU(2) generator in a particular
representation, and TA is an SU(3) generator in a particular representation). For the degrees of freedom,
quarks transform as triplets (fundamental representation) under the color SU(3) (all the quarks transform
together, and color is flavor-blind) and leptons are singlets.

SU(2) breaks parity – it acts only on the left-handed fields. The left handed field is obtained as

ψL = PLψ (PL = 1−γ5

2 is the projection operator). Charge matter comes in SU(2) doublets: QL =

(
uL
dL

)
and LL =

(
νeL
eL

)
(the analysis is identical for the other families, so let’s look at i = 1 only). The right-

handed fields, given by ψR = PRψ (PR = 1+γ5

2 ), are singlets: uR, dR, eR, and maybe νR. One might also
include νR in a special term in the Lagrangian LνR , since if the neutrino is massless it can be completely
dropped because νR is uncharged (colorless, right-handed, neutral). However, it is known that the neutrino
masses are non-zero (mν 6= 0).

A mass term for the fermions is mψ̄ψ = mψ†γ0(PLPL + PRPR)ψ = m(ψ̄RψL + ψ̄LψR) (PL + PR = 1,
PL = P 2

L, PR = P 2
R, γ0γ5 = −γ5γ0). Under SU(2), ψL → UψL and ψR → ψR, the mass term violates

SU(2) gauge symmetry, hence it cannot be included. Instead masses are generated (for fermions, and also
for the gauge bosons) through the Higgs mechanism, which will appear in the Higgs sector, LHiggs.
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A.2 The Standard Model SU(3)× SU(2)× U(1) gauge symmetryA INTRODUCTION TO THE STANDARD MODEL

Note that the U(1) factor is not electromagnetism, as it can only have a single charge under the U(1)
(otherwise it would mess up the SU(2) gauge symmetry). Electromagnetism is actually hiding inside
SU(2)×U(1). The difference in the electromagnetic charge between the upper and the lower components
of the doublets is always 1 (e.g. 2

3 − (−1
3) = 1, 0− (−1) = 1), so let’s take the electromagnetic charge to be

Q = T 3 + Y (Y is the charge corresponding to the U(1) – hypercharge, and T 3 is the a = 3 generator of
SU(2) – it’s 1

2 for the upper component of the left-handed doublet, −1
2 for the lower component, and 0 for

the right-handed singlets). Since the neutrino is electrically neutral (Q = 0) while the electron has charge
Q = −1, the U(1) charge of this doublet should be −1/2. Using similar arguments one finds Y (QL) = 1

6 ,
Y (uR) = 2

3 , Y (dR) = −1
3 , and Y (eR) = −1 (although these charges seem somewhat arbitrary, they’re

constrained by anomalies – the possible mismatch between classical and quantum symmetries). From this
analysis we can write down the quantum numbers for the matter content of the standard model (including
some content that we will get to soon):

Example: With these ingredients one can write the full iDµ term for each of the fermions, for example:

iDµQL = i∂µQL + g1
1

6
BµQL + g2W

a
µ

σa

2
QL + gAAµ

λA

2
QL , (A.4)

iDµeR = i∂µeR − g1BµeR + 0 + 0 , ... (A.5)

A family index i = 1, 2, 3 should be included for the sake of completeness (e.g. u1
L = uL, u2

L = cL,
u3
L = tL, etc).

The Higgs field H =

(
h1

h2

)
, which is a doublet of complex scalars, will break SU(2)L × U(1)Y into

U(1)Q and generate masses for the particles. To find YH consider the following terms, which are allowed
by gauge symmetry for the Higgs Lagrangian:

LHiggs = (DµH)†(DµH) + µ2(H†H)− λ(H†H)4 + LY ukawa (A.6)

= (DµH)†(DµH)− λ
(
H†H − µ2

2λ

)2

+ LY ukawa (A.7)

We can see that the Higgs potential is minimized for a non-zero vev 〈0|H |0〉 ∼
√

µ2

2λ 6= 0. Recall that

Q = T 3 + Y , so QH =

(
(1/2 + YH)h1

(−1/2 + YH)h2

)
. When the Higgs gets a vev, if one doesn’t want to break
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electromagnetism, one picks YH = 1/2 and gives the vev only to the neutral component 〈0|h0|0〉 = v√
2

in

H =

(
h+

h0

)
(also, with YH = −1/2 an equivalent result is obtained). The most general Yukawa couplings

consistent with the gauge symmetries are LY ukawa = −gije ēiRHtLjL − gijd d̄
i
RH
†QjL + giju ūiRH

T εQjL + h.c.

(i, j = 1, 2, 3 are family indices and ε = iσ2 =

(
0 1
−1 0

)
. Each term in this Lagrangian is a Standard

Model singlet (even without the summation over family indices).

Example: Consider, for example, the first term: it is SU(3)-neutral, HtLL is an SU(2) singlet, and

the sum of the hypercharges YH = +1 − 1/2 − 1/2 = 0. The fact that HT εQL in the last term forms
an SU(2) singlet follows from the fact that 2 is a pseudoreal representation of SU(2), so that 2̄ = 2.
Let U = eiα

aσa . Then εUε = −U∗, as can be checked using ε2 = −1 in the Taylor expansion U =
1 + iαaσa + . . ., U∗ = 1 − iαaσ∗a + ... . It follows that UT εU = ε. Then under SU(2) transformation
HT εQL → HTUT εUQL = HT εQL

Let’s see how the vev of the Higgs gives masses to particles. Start with H =

(
0
h0

)
and h0 = v√

2
:

DµH
g1

2
Bµ

(
0
h0

)
+ g2W

a
µ

σa

2

(
0
h0

)
=
h0

2

(
g2(W 1

µ − iW 2
µ)

g1Bµ − g2W
3
µ

)
(A.8)

(DµH)†(DµH) includes the term
g2
2v

2

8 W 1µW 1
µ , which is a mass term for W 1

µ . Fermions get their mass

from the Yukawa couplings (e.g. the term geēRH
†LL + h.c. includes geh0ēReL + h.c., and after adding the

hermitian conjugate and substituting the vev of h0 one arrives at gev√
2
ēe = gev√

2
(ēReL + ēLeR) – a mass term

for the electron).

Note that the construction of LSM is based on gauge symmetry. One could instead have listed the
bosons and fermions and constructed all d ≤ 4 operators first (e.g. ∂µφ∂

µφ, φ∂µφAµ, φψ̄ψ, ψ̄ψ, φ2AµAµ,
AµAµ, ψ̄A/ψ, ψ̄ip/ψ), then imposing gauge invariance would relate coefficients of these operators and set
some of them to 0.

A.3 Symmetries of the Standard Model

Let’s look into the symmetries of the Standard Model in more detail:

1. Discrete Symmetries

The discrete symmetries are parity (P : (x0,x) → (x0,−x), x → xP ), time-reversal (T : (x0,x) →
(−x0,x), x→ xT ) and charge conjugation (C: particles → anti-particles).

Example: A fermion field transforms as Pψ(x)P−1 = γ0ψ(xP ), Cψ(x)C = e(ψ̄)T (e is representation-
dependent, e.g. in Peskin-Schröder notation e = −iγ2γ0 and in Bjorken-Drell notation e = −iγ2).
The term

∫
d4xψ̄(iD/ −m)ψ is invariant under P , C, and T . Under P one has mψ̄ψ → mψ̄ψ(xP )

(d4x = d4xP ), under C one has ψ̄γµψ → −ψ̄γµψ and Aµ → −Aµ. So, we can see that QED is
invariant under these symmetries, and QCD is also invariant, up to the term θFµνF λτ εµνλτ which
breaks C and CP . Experimentally, θ ≤ 10−10, so the violations, if they exist, are small. Weak
interactions violate P , C, and CP . The W boson couples to the current ψ̄1γ

µPLψ2. Under P one
has ψ̄1γ

µPLψ2 → ψ̄1γ
µPRψ2, under C one has ψ̄1γ

µPLψ2 → ψ̄2γ
µPRψ1, then under CP one gets

ψ̄1γ
µPLψ2 → ψ̄2γ

µPLψ1 and if one adds the complex conjugate terms, the current is invariant under
CP . However, if the coupling constant isn’t real, λψ̄1γ

µPLψ2 + λ∗ψ̄2γ
µPLψ1 isn’t invariant anymore

(there is one such case like this in the Standard Model).
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A.3 Symmetries of the Standard Model A INTRODUCTION TO THE STANDARD MODEL

2. Classify global symmetries

A global symmetry has the form ψ → eiα
ATAψ (αA are spacetime-independent). There are symme-

tries that are exact symmetries of LSM , and there are also approximate symmetries: broken by small

terms in LSM . For example, the SU(2) isospin symmetry acting on the doublet

(
u
d

)
is broken

by mu−md
Λ and by αEM = 1

137 , but is still a good symmetry of bound hadrons in QCD. The scale Λ
describes the strength of the first term in ψ̄(iD/ −mu)ψ. Since the size of a hadron is ∼ 1 fm, the

momentum is p ∼
(

1 fm
)−1
∼ 200 MeV ∼ Λ� mu ∼ 4 MeV. In addition, there are symmetries that

are spontaneously broken by the vacuum expectation value (hidden symmetries). In these cases, the
Lagrangian LSM is symmetric, but the ground state is not. Still, such symmetries have implications
for the dynamics (Goldstone bosons and their interactions). Finally, there are symmetries that are
anomalous: classical symmetry is not a symmetry of the quantum theory (breaking could be large
or small).

3. Conserved charge

Let’s look at the symmetries classically. Suppose the Lagrangian is invariant under the transformation
of the fields φi → U ijεφj (infinitesimally φi → (δij + iεT ij)φj), define πµi = ∂L

∂(∂µφi)
, then ∂µπiµ =

∂µ
∂L

∂(∂µφi)
= ∂L

∂φi
where in the last step we used the equation of motion following from demanding

δ
∫
d4xL = 0. The next step is to define the current Jµ = πµi (iT ij)φj , hence this current is conserved:

∂µJ
µ = ∂µπ

µ · iT · φ+ πµ · iT · ∂µφ =
∂L
∂φ
· iT · φ+

∂L
∂(∂µφ)

· iT · ∂µφ = δL = 0 (A.9)

The conserved charge is simply Q =
∫
d3xJ0 =

∫
d3xπ0

i (iT
ij)φj

In the Hamiltonian formulation, the momentum conjugate to the field φj is πj = πjµ=0 and it satisfies

the canonical commutation relations [φi(x, t), πj(y, t)] = iδijδ3(x− y), which give:

[Q(t), φj(y, t)] =

∫
d3x[πi(x, t), φj(y, t)](iT ikφk(x, t)) = T jkφk(y, t) , [Q(t), πj(y, t)] = T jkπk(y, t)

(A.10)
This implies that for any operator O(t) built out of φ and π, one has the infinitesimal transformation
generator popping out from the conserved charge operator-wise [Q(t),O(t)] = −iδO. In particular,
for the Hamiltonian H one gets [Q(t), H] = −iδH = 0 if the Hamiltonian is invariant under the
symmetry. This result implies that Q is conserved d

dtQ = 0.

4. Baryon Number and Lepton Number

The baryon number, a U(1) global symmetry, corresponds to the transformation ψi → e−iθψi (i
refers to each of the quarks, and in this case Tij = (−1)ij). The Lagrangian that’s invariant under
this symmetry is:

L = ψ̄i /Dψ − gdd̄H†QL + guūRH
T εQL (A.11)

It can be read-off that πiµ = ψ̄iiγµ and Jµ =
∑

i ψ̄
iγµψ

i. Baryon number is an accidental symmetry
of the Standard Model. It is anomalous, but the effect of the anomaly is very small.

Similar to the baryon number, the lepton number corresponds to the transformation ψi → e−iθψi

where i refers to each of the leptons. In fact, neglecting LνR one can diagonalize LSM in family space

by unitary redefinitions of eR and LL such that ge in gije ēiRH
†LjL is diagonal. The lepton number

inside each family is then conserved separately.
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Example: For example, for the first family, the symmetry transformation can be written as ψi →
e−iθeψi, where i includes only the electron and electron neutrino.

5. Quark Numbers

The number of a given quark flavor, such as strangeness and charm, is approximately conserved in
the standard model. The symmetry is broken due to non-diagonal giju and gijd . For example, weak
interactions have a vertex with s, u, and W , so strangeness is violated. However, strangeness is a
good symmetry of LQCD and LQED. Strangeness is useful also in weak interactions: for example one
can consider the matrix element 〈π+e−ν̄e|Hweak

∣∣K̄0
〉
, where π+ is a bound state of u and d̄, and

K̄0 is a bound state of s and d̄, so the strangeness changes by 1. The Wigner-Eckart theorem can be
used to obtain useful information.

6. Axial U(1)

Consider the transformation ψi → e−iθγ
5
ψi (i = u, d in the limit mu,md � Λ). The corresponding

current is Jµ(5) =
∑

i=u,d ψ̄
iγµγ5ψ

i. Another example is

(
u
d

)
→

(
e−iθγ

5
0

0 eiθγ
5

)(
u
d

)
with

Jµ(5) = ūγµγ5u − d̄γµγ5d. These U(1) are anomalous, and the effects of the anomalies are strong.
These are not symmetries in the quantum theory.

7. Flavor SU(3)

Flavor SU(3) is a generalization of isospin SU(2) to include 3 quarks: u, d, and s.

8. Heavy quark symmetries

There exist approximate symmetries involving the heavy quarks c and b, which become exact in the
limit mc,mb � Λ. There is U(2) flavor symmetry and SU(2) spin symmetry that are combined into
U(4) symmetry that acts on the vector (c↑, c↓, b↑, b↓)T .

9. Chiral symmetry

The QCD Lagrangian has an SU(2)L×SU(2)R symmetry (in the limitmu,md � Λ), corresponding to

the two independent SU(2) transformations ψL =

(
uL
dL

)
→ exp(−iσ · θL)ψL and ψR =

(
uR
dR

)
→

exp(−iσ · θR)ψR. The corresponding currents are JµaL = ψ̄Lγ
µσaψL and JµaR = ψ̄Rγµσ

aψR. This
symmetry is spontaneously broken into SU(2)isospin. Similarly, in the limit mu,md,ms � Λ, the
QCD Lagrangian has an SU(3)L×SU(3)R symmetry that is spontaneously broken into SU(3)flavor.

B Renormalization Techniques

The goals for studying renormalization, in general:

1. Improve our understanding of renormalizable QFT (the operator O has mass dimension [O] ≤ 4 in
4 spacetime dimensions) by showing that it is often the low energy limit of QFT with no restriction
on operator dimensions (non-renormalizable).

2. Understand why quantum fluctuations at short distances (large momenta Λ) only affect the value of
a few parameters g(Λ), m(Λ), etc. in renormalizable QFT (or at low energy).

3. Explore and exploit the scheme dependence of coupling constants (renormalization schemes).
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4. Derive “renormalization group equations” (RGEs) which allow us to avoid a breakdown of pertur-
bation theory due to large logs, e.g. α ln(q2/m2

e) for q2 � m2
e in QED, by using a smart choice of

coupling α(q2). If q2
1 � q2

2 � m2
e we’ll see that the RGE connects α(q2

1), α(q2
2), and α(m2

e).

Points 1 and 2 are usually thought of as Wilsonian RG. Point 4 is Gell-Mann–Low RG.

Consider for example non-renormalizable massless QED:

LΛ0
QED = −1

4
FµνFµν + ψ̄iD/ψ +

g5

Λ0
ψ̄σµνFµνψ +

g6

Λ2
0

(ψ̄ψ)2 + ... (B.1)

The term with g5 is a dimension-5 operator, the term with g6 is a dimension-6 operator, and we have
omitted an infinite number of other terms consistent with gauge symmetry. We can see that g5 and g6

are dimensionless, and Λ0 is a dimension-1 constant, the mass scale of irrelevant operators that defines
what low energy means. By dimensional analysis, the electron-positron scattering cross section is given by

σ(e+e− → e+e−) ∼ α2

E2 +
αg2

5

Λ2
0

+ ..., where the first term comes from squaring the amplitude of a diagram

with two e vertices, and the second from squaring the amplitude of a diagram with one e vertex and one g5

vertex (the cross-term vanishes by chirality). For E � Λ0, the first term dominates and the contributions
from g5, g6,... are irrelevant. Therefore the operators with dim > 4 are called irrelevant operators. Point

1 says LΛ0
QED

∣∣∣
E�Λ0

= LQED +O
(
E
Λ0

)
.

B.1 Wilsonian point of view

In the Wilsonian picture, a QFT should be regarded as an effective field theory valid in a certain range of
energies with a finite physical UV cutoff Λ0 (imposing p2

E . Λ2
0). For LΛ0

SM this cutoff might be the scale
of quantum gravity or a heavy particle we haven’t seen.

One should write down all interactions consistent with symmetries of the theory. For E � Λ0, LΛ0
SM

will look like LSM . For example, our g5

Λ0
term contributes 4g5

Λ0
to the electron magnetic moment. The

value calculated from the Standard Model agrees with experiment to 10−10 e
2me

, so Λ0
g5
& 8 × 1010me =

4×107(GeV ) . Note that, in the Standard Model, ψ̄σµνFµνψ is not consistent with SU(2) gauge symmetry.

B.2 Loops, Regularization, and Renormalization

Regularization is a cutoff on UV loop momenta (dimreg, cutoff Λ, Pauli-Villars, etc). Renormalization is
picking up a scheme to give definite meaning to parameters in L. Consider the φ4 theory:

L =
1

2
(∂µφ0)2 − 1

2
m2

0φ
2
0 −

λ0

4!
φ4

0 = L[φ0,m0, λ0] = L[φ,m, λ] +
1

2
δZ(∂µφ)2 − 1

2
δmφ2 − δλ

4!
φ4 (B.2)

In the last equality, the Lagrangian is expressed in terms of the renormalized field φ, and defined φ0 =
Z1/2φ, δZ = Z − 1, δm2 = m2

0Z −m2, δλ = λ0Z
2 − λ. The counter terms “δ...” remove UV divergences,

but can also remove finite terms, and one needs a way of specifying those, and this is the renormalization
scheme.

B.2.1 On-shell renormalization scheme

In the on-shell scheme one requires that the 1PI 2-point function Π(p2) satisfies Π(m2) = 0 and Π′(m2) = 0.
The first condition fixes δm, and the second fixes δZ. To fix δλ, the 1PI 4-point function is chosen to be
equal to −iλ at s = t = u = 4

3m
2, where s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2 are the Mandelstam
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variables. For regularizing loop diagrams either dimensional regularization (dimreg) or a cutoff can be
used, and the obtained results are the same for observables σ(E,m2, λ).

Example: The 1-loop contribution to the 4-particle scattering amplitude (regularized by a cutoff Λ in
Euclidean space) is given by the sum of the 3 contributing diagrams:

A =
iλ2

32π2

∫ 1

0
dx

(
ln
( Λ2

m2 − x(1− x)s

)
+ (t) + (u)− 3

)
(B.3)

If regularized by dimensional regularization with d = 4− 2ε (B is a known number), then:

A =
iλ2

32π2

∫ 1

0
dx

(
1

ε
+ ln

( Λ2

m2 − x(1− x)s

)
+ (t) + (u) +B

)
(B.4)

Here (t) and (u) denote the same term with s replaced by t or u. Since by our definition of λ the 4-
point function at s = t = u = 4

3m
2 is exactly given by the tree level result, the contribution from the

loops should be canceled by the counter-term. Substituting s = t = u = 4
3m

2 into the loop result gives

δλ = λ2

32π2

(
3 ln

(
Λ2

m2

)
+A−3

)
in the case of the cutoff, and δλ = λ2

32π2

(
3
ε +3 ln

(
1
m2

)
+A+B

)
in the case of

dimreg (where A is a known number). The sum of the loops and the counter-terms for general momentum

gives Aren = iλ2

32π2

∫ 1
0 dx

(
ln
(

m2

m2−x(1−x)s

)
+ (t) + (u)−A

)
independent of the method of regularization.

The fact that the argument of the log in ln
(

1
m2

)
isn’t dimensionless might seem to be a problem.

The reason is that in dimensional regularization the dimension of fields and couplings changes. From the
kinetic term for the scalar field ddx(∂µφ∂

µφ) it can be seen that [φ] = 1− ε, and from the φ4 term ddxλφ4

it can be seen that [λ] = 2ε. It is then convenient to write λ = µ2ελ(µ) where λ(µ) is dimensionless. In
the above analysis µ plays no role in Aren because it is a part of the regulator, but the expression for δλ is

given by δλ = λ(µ)
32π2

(
1
ε + ln

( µ2

m2

)
+ . . .

)
. Now suppose s, t, u� m2, then Aren ∼ λ2 ln(m2/s). The large log

could potentially spoil the λ-expansion, and in this limit it’s natural to consider taking m → 0, but both

Aren and λ = λ0 +
λ2

0
32π2

(
3 ln

(
Λ2

m2

)
+ ...

)
blow up. Writing for any observable of dimension D, one gets

Γ(s, x, λ,m2) = sD/2Γ(x, λ,m2/s), and the dimensionless function Γ on the right-hand side doesn’t have a
good m2 → 0 limit (x stands for the ratio t/s and u/s).

B.2.2 Off-shell renormalization scheme (µR)

To solve the problem of the on-shell scheme, another scheme might be needed, where one might require the
1PI 4-point function to be equal −iλ(µR) at s = t = u = −µ2

R where µR is an arbitrary renormalization
scale (different values of µR are different schemes). The tree level contribution is now −iλ = −iλ(µR), and
the 1-loop calculation gives:

δλ =
λ2(µR)

32π2

∫ 1

0
dx

(
3 ln

( Λ2

m2 + x(1− x)µ2
R

)
+ . . .

)
(B.5)

This expression has a good m→ 0 limit. The total amplitude in this limit is given by:

Aren =
iλ2(µR)

32π2

∫ 1

0
dx

(
ln
( µ2

R

−x(1− x)s

)
+ ...

)
(B.6)

⇒ Γ(s, x, λ(µR),m2, µ2
R) = sD/2Γ(x, λ(µR),m2/s, µ2

R/s) (B.7)
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These also have a good m→ 0 limit. Moreover, for −µ2
R ' s, Aren and Γ have no large logs, just ln

(
µ2
R
−s

)
,

so perturbation theory is fine.

B.2.3 Relating schemes

Different renormalization schemes are related. The bare couplings are scheme-independent, so λ0 = λ+δλ =
λ(µR) + δλ(µR) with λ and δλ refering to the on-shell scheme. One has:

λ(µR) = λ+
λ2

32π2

(
3 ln

(m2 + x(1− x)µ2
R

m2

)
+ ...

)
(B.8)

If µR � m this series may not converge. Consider λ(µ′R) = G
(
λ(µR), z =

µ′R
µR
, mµR

)
, where G is some

arbitrary function. Take µ′R∂µ′R of this equation and set µ′R = µR. Then one arrives at the Callan-

Symanzik equation µ′R∂µ′Rλ(µR) = β
(
λ(µR), mµR

)
where the β-function is β = ∂zG

(
λ(µR), z, mµR

)∣∣∣
z=1

. For

our φ4 theory, the β-function can be computed for µ′R ' µR where there are no large logs, and then
we can integrate the Callan-Symanzik equation to relate the coupling at different scales. The answer is

λ(µ′R) = λ(µR) + 3λ2(µR)
32π2 ln

(
µ′R

2

µ2
R

)
+O

(
λ(µR)3

)
, and the β-function is β = 3λ2(µR)

16π2 + ...

Form = 0, β(γ(µR)) = 3λ2(µR)
16π2 . Integrating this solution we obtain the result λ(µR) = λ

1− 3λ
16π2 ln(µR/m)

=

λ+λ
∑∞

k=1 ak

(
λ ln

(
µR
m

))k
(λ is the coupling constant in the on-shell renormalization scheme). Note that

λ(µR) ' λ + O(λ2) for λ ln
(
µR
m

)
� 1. The lesson is that the most appropriate coupling depends on the

probed scale.

One can extend the off-shell treatment to the other coupling constant. Requiring the 2-point 1PI
diagram Π(p2) to satisfy Π(−µ2

R) = 0 gives m(µR), and the condition Π′(−µ2
R) = 0 gives Z(µR), where Z

is the field renormalization φ = Z−
1
2 (µR)φ0. Defining

Z
1
2 (µ′R)

Z
1
2 (µR)

= Gφ
(
λ(µR),

µ′R
µR
, mµR

)
, taking µ′R∂µ′R , setting

µ′R = µR one gets µR
d

dµR
Z

1
2 (µR) = γφ

(
λ(µR), mµR

)
Z

1
2 (µR) or µR

d
dµR

lnZ
1
2 (µR) = γφ

(
λ(µR), mµR

)
, where

γφ = ∂zG
φ
(
λ(µR), z, mµR

)∣∣∣
z=1

is the anomalous dimension. Local products of operators, e.g. O0 = (φ2
0)(x)

are renormalized as O = ZOO0 and this means µR∂µR lnZO(µR) = γO
(
λ(µR), mµR

)
. In the φ4 theory the

first-order (in λ) contribution to Z vanishes (i.e. Z = 1 + O(λ2)) and γφ = 0 + O(λ2), so let’s look into
QED for more interesting physics.

B.3 Renormalization of QED

The QED Lagrangian in Feynman gauge ξ = 1 can be written as:

L = ψ̄(iD −m)ψ − 1

4
FµνF

µν − 1

2ξ
(∂ ·A)2 + c.t. (B.9)

The relations between the bare and the renormalized quantities are parameterized as ψ0 = Z
1
2
ψψ, Aµ0 =

Z
1
2
AA

µ, m0 = m − δm, e0 = Zee and ξ0 = ZAξ. Zψ comes from a diagram in which the electron emits
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a photon and then absorbs it and ZA comes from a diagram in which the photon turns into an electron-

positron pair, which then annihilate to create a photon. There is a relation ψ̄0e0A0ψ0 = ZψZ
1
2
AZeψ̄eAψ ≡

Z1ψ̄eAψ, with 4 diagrams being relevant to it, giving modifications to the electron-electron-photon vertex.
In one of them, an additional photon is traveling between the incoming electron and the outgoing electron,
in two others either the incoming or the outgoing electron is decorated with a Zψ contribution and in the
last one the photon is decorated with a ZA contribution. By the Ward identity Z1 = Zψ it can be shown

that Ze = Z
− 1

2
A .

B.3.1 QED: On-shell scheme

In the on-shell scheme one has α ' 1
137 . In this scheme one requires that the 1PI electron-electron-photon

vertex is equal to −ieγµ for qµ = 0 (where qµ is the momentum of the photon) or Π(q2 = 0) = 0. The

photon propagator is given by
−iZ−1

A
q2(1−Π0(q2))

(
gµν − qµqν

q2

)
−i
q4 q

µqν . In the on-shell scheme this is picked to be

−i
q2(1−Π(q2))

(
gµν − qµqν

q2

)
−i
q4 q

µqν (ZA is absent, and Π0 is replaced by Π).

Π(q2) =
e2

2π2

∫ 1

0
dxx(1− x) ln

(m2 − q2x(1− x)

m2

)
+O(e4) (B.10)

ZA =
(

1−Π0(0)
)−1

= 1− e2

12π2
ln

(
Λ2

m2

)
+ ... (B.11)

These results diverge in the massless m = 0 limit.

B.3.2 QED: Off-shell momentum subtraction scheme

In the off-shell momentum subtraction scheme the photon propagator at q2 = −µ2
R is equal to −i

q2 g
µν +

qµqν ... . This implies that Z−1
A (µR) = 1−Π0(−µ2

R) = ZOSA
−1

(1−ΠOS(−µ2
R)) and G(A) =

(
1−Π(−µ′2R)

1−Π(−µ2
R)

)− 1
2
:

G(A)
(
e(µR),

µ′R
µR

,
m

µR

)
=
(ZA(µ′R)

ZA(µR)

) 1
2

= 1 +
e(µR)2

4π2

∫ 1

0
dxx(1− x) ln

(m2 + µ′2Rx(1− x)

m2 + µ2
Rx(1− x)

)
(B.12)

γ(A)
(
e(µR),

m

µR

)
=
e(µR)2

2π2

∫ 1

0
dx

x2(1− x)2µ2
R

m2 + µ2
Rx(1− x)

, e(µR) = ZA(µR)
1
2 e0 (B.13)

Note that e0A0 = (e0ZA(µR)
1
2 )(A0ZA(µR)−

1
2 = eA should be µR-independent. So:

β = µR∂µRe(µR) =
1

ZA
µR∂µRZ

1
2
Ae0 = e(µR)γ(A) =

e(µR)3

2π2

∫ 1

0
dx

x2(1− x)2µ2
R

m2 + µ2
Rx(1− x)

(B.14)

In the limit µR � m one gets β ' e(µR)3

12π2 and this is known as the QED β-function. In the limit µR � m,

β ' e(µR)3

60π2

µ2
R
m2 . In general, the function passes smoothly through µR = m, and can be directly matched

to e(µR = 0) = e. For m > ∞ (the non-relativistic limit) we get β = 0 and e(µR) = e, the charge
we use in quantum mechanics. Integrating the expression for µR � m leads to α(µR) = α

1− 2α
3π

ln(µR/m)
,

which is similar to what is found for the φ4 theory. For a general µR/m, the expression has the form
α(µR) = α

1− 2α
3π
f(µR/m)

(the function f(µR/m) can be computed from the β function, and it satisfies f(0) = 0,

f(1) 6= 0). For µR
m . 1, the function α(µR) is approximately flat with the value α(0) ' 1

137 , then grows
slowly with muR

m (e.g. reaching α(10) ' 1
136.5 for muR

m = 10). At the mass of the W boson (∼ 80 GeV)
α(µR = mW ) ' 1

128 . People take these changes into account for precision weak physics.
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B.3.3 QED: MS scheme and M̄S scheme

The minimal subtraction scheme is an efficient method to get β and γ in dimensional regularization
(d → d − 2ε) where µ is a sliding scale and the counter-terms are simple. From the term in the action∫
ddxψ̄0A/0ψ0e0 one sees that the dimension of e0 in dimensional regularization is [e0] = ε, therefore

e0 = Zeµ
εe(µ) (e(µ) is dimensionless, and all objects in the equation depend on d = 4 − 2ε). A Laurent

series expansion in ε gives:

µ−εe0(d) = e(µ, d)
(

1 +
∞∑
k=1

ak(e(µ, d))

εk

)
= e(µ, d)Ze . (B.15)

Define e(µ, d) to be analytic for all d, ergo Ze only has pole terms. By acting with µ∂µ and defining
µ∂µe(µ, d) = β(e(µ, d), d) one gets:

−ε
(
e+ e

∞∑
k=1

ak(e)

εk

)
= β(e, d)

(
1 +

∞∑
k=1

ak(e)

εk

)
+ e

∞∑
k=1

ȧk(e)β(e, d)

εk
(B.16)

where ȧk = ∂eak),e stands for e(µR, d). We also know that β is analytic in d since e(µR, d) is, and it must
be linear in ε and cannot be quadratic or higher order. This means β(e, d) = −εe+β(e), and to 0th order:

β(e) = −ea1(e) + ea1(e) + e2∂ea1(e) = e2∂ea1(e)→ µ∂µe = −εe+ e2∂ea1(e) (B.17)

In the limit d→ 4 (ε→ 0), µ∂µe(µ) = e2∂ea1(e) or in terms of α(µ) = e(µ)2

4π then µ∂µα(µ) = 4α2(µ)∂αa1(α).
At any order in perturbation theory, the β-function is determined by simple poles in Ze. This makes it
clear that one only needs the divergent part of the graphs to compute β, e.g. ZA = 1 − e2

12π2ε
+ ...,

Ze = 1+ e2

24π2ε
+ ..., a1 = e2

24π2 +O(e4) and β = e3(µ)
12π2 , which is the same as the massless β-function obtained

in the µR scheme. In fact the massless β(e) is scheme-independent up to the first 2 orders.

The dimensional regularization scales µ in MS scheme and MS scheme are different by a constant
factor µ2

MS = µ2
MS

eγE (4π)−1 (γE ' 0.5772 in the Euler constant). The MS scheme is used to simplify the

finite piece (ε0 terms). A typical contribution from a loop looks like:

Γ(ε)

(4π)2−ε
µ2ε
MS

sε
=

1

16π2

(
1

ε
+ ln

(µ2
MS

s

)
+ ...

)
(B.18)

At O
(

1
εk

)
, 0 = β(e)ak−e2ȧk+1 +eβ(e, d)ȧk so e2∂eak+1 = β(e)∂e(eak(e)) and one finds a recursion relation

for the higher order terms in Ze – the coefficients of the higher poles are determined by a1(e).

Example: For k = 1

e2∂ea2 =
( e3

12π2
+ ...

)
∂e

( e3

24π2
+ ...

)
=

e5

96π4
+ ... (B.19)

So a2 = e4

384π4 is a 2-loop 1
ε2

pole in Ze. The anomalous dimension of the operator O is given by γO =

µ∂µ lnZO(µ) = −e∂eaO1 , with the renormalized factor ZO = 1 +
∑∞

k=1
aOk
εk

.

There can be multiple couplings g1, g2, ..., gl, ... = g with different dimensions:

gbare
l µ−∆l(d) = gl(µ, d)

(
1 +

∑
k

alk(g)

εk

)
, ∆l(d) = ∆l + ερl , (B.20)

µ∂µgl(µ, d) = −ερlgl −∆lgl + gl
∑
m

dal1
dgm

ρmgm (B.21)
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Note that gl(µ, d) is dimensionless (or dimensionful ĝl(µ, d) = µ∆lgl(µ, d) and [ĝl]
∣∣∣
d=4

= [gbarel ]
∣∣∣
d=4

):

µ∂µĝl(µ, d) = −ερlĝl + ĝl
∑
m

dal1(ĝ)

dĝm
ρmĝm (B.22)

In dimensional regularization, powers of a cutoff never appear (Λ, Λ2, ...). Poles at d = 4 correspond to

log divergences 1
ε + ln

(
µ2

−s

)
+ ... . If a product of couplings ĝa, ĝb, ĝc, ... appears in al1(ĝ) then dimensional

analysis implies 0 = ∆a + ∆b + ∆c + ... . In a renormalizable theory ∆m ≥ 0, so γ and β functions only
depend on ∆m = 0 (relevant) couplings. In a nonrenormalizable theory with ∆m ≤ 0 for all operators
(marginal and irrelevant), the nonrenormalizable interactions do not affect the renormalizable ones with
∆` = 0.

B.4 QCD: renormalization, β-function, asymptotic freedom

In the Faddeev-Popov gauge fixing one has:

LQCD = −1

4
(F aµν)2 + ψ̄(iD/−m)ψ − 1

2ξ
(∂µAaµ)2 + c̄A(−∂µDAC

µ )cC (B.23)

Here the c are ghosts, which are negative degrees of freedom that cancel unphysical degrees of freedom,
e.g. the timelike and the longitudinal polarization states of the gauge bosons. For example, in the process
qq̄ → gg one can calculate the squared amplitude |M|2 in two ways. One way is to consider a tree diagram
in which the two gluons are attached to a quark line, and square its absolute value, while explicitly
requiring the polarizations of the gluons to be transverse. Another way is to do the multiplication |M|2 by
considering all diagrams with incoming quark and antiquark and outgoing quarks and antiquark, that are
possible to cut into two pieces by cutting through two gluon lines. Without ghosts, there are 5 diagrams
like that, which look as follows. All of them have a quark line for the incoming quark-antiquark pair, and
another quark line for the outgoing quark-antiquark pair. The lines are connected as follows:

In order to get the right answer, one also must include diagrams with ghosts, that in this case is the
following diagram:

Define the renormalization factors A0 = Z
1
2
3 A, ψ0 = Z

1
2
2 ψ, c0 = Zc2

1
2 c, g0 = Zgg, m0 = (m + δm)Z−1

2

and ξ0 = Z3ξ. Z3 in the expressions is used for both A and ξ, which is allowed based on Ward identities.
Let’s write the Lagrangian term by term, state the renormalization prefactor of each term, and draw the
contributing diagrams:
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Note that the same g0 appears in all interactions. This allows one to write the relations:

Zg =
g0

g
= Z1Z

− 3
2

3 = Z ′1
1
2Z−1

3 = ZF1 Z
− 1

2
3 Z−1

2 = Zc1Z
c
2
−1Z

− 1
2

3 (B.24)

Note that unlike QED, ZF1 6= Z2. This gives 4 different ways to get Zg and hence the β-function. These

relations can also be written as Z1
Z3

=
Z′1
Z1

=
ZF1
Z2

=
Zc1
Zc2

, which are called Slavnov-Taylor identities (this is the

QCD analog of the QED Ward identities Z1 = Z2). It’s also possible to derive Slavnov-Taylor identities
based on gauge symmetry, which would give relations between the couplings. A manageable derivation
of Slavnov-Taylor identities requires using the BRST symmetry of the gauge-fixed action. The analog in

the U(1) case is that the renormalized coupling e = Z2
Z1
Z

1
2
3 e0 = Z

1
2
3 e0 does not depend on the species of

fermions.

In QCD things are more complicated because Z1 6= Z2, and Z3 is gauge dependent. However, you can
show that the first two terms in β(g) = b0g

3 + b1g
5 + ... are gauge-independent, and that in MS the full

β(g) is gauge-independent β = µ∂µg(µ) = g∂ga1(g) (Zg = 1 +
∑

k
ak
εk

). One needs to compute ZF1 , Z3, and
Z2 in order to get a1. A simpler method is the background field method.

B.4.1 Background field method

The idea of the background field method is to find a gauge where gAµ is not renormalized, so Zg = Z
− 1

2
3 .

The gauge fixing is needed for obtaining a well-behaved propagator, but one can still keep gauge invariance
on the external lines. Let Aµ → Aµ + Qµ where Aµ is a fixed background, and Qµ is a quantum field.
The QCD action S[A + Q] (without the gauge fixing terms) is invariant under the gauge transformation
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Aµ + Qµ → Aµ + Qµ + 1
g∂µα − i[Aµ + Qµ, α]. There are 2 gauge symmetries, the first is the gauge

transformation of the quantum field Aµ → Aµ and Qµ → Qµ + 1
g [DA+Q

µ , α] where iDA+Q = i∂+ g(A+Q),

the second is the gauge transformation of the background Aµ → Aµ + 1
g [DA

µ , α] and Qµ → Qµ − i[Qµ, α]

(can also be written as A → U
(
A + i

g∂
)
U−1 and Q → UQU−1). Here Q behaves like an adjoint matter

field. Let’s do gauge fixing for the transformations of the first type, but leave gauge symmetry of the
second type.

The generating function for Green’s functions for A = 0 is:

Z[J ] =

∫
DQdet

(δGa
δαb

)
exp

(
i

∫
d4x
(
L(Q)− 1

2ξ
(Ga)2 + JaµQ

µa
))

(B.25)

The generating function of the connected Green’s functions is W [J ] = −i lnZ[J ] and for the 1PI Green’s
functions Γ[Q̄] = W [J ]−

∫
d4xJaµQ̄

µa where Q̄ = δW
δJaµ

. Consider:

Z[J,A] =

∫
dQ exp

(
iS[Q+A] + iJaµQ

µa + i(Sgf ) + i(Sghost)
)

(B.26)

Let the gauge-fixing term be Lgf = − 1
2ξ (Ga)2 with Ga = (DµQ

µ)a = ∂µQ
µa + gfabcAbµQ

µc. This fixes the

gauge in the first type of transformation discussed above, but is invariant under the second (c → UcU−1

is also invariant under this second type of gauge transformation):

δQµ
δα

=
1

g
DA+Q
µ ,

δG

δα
=

1

g
DA
µD

µA+Q , Lghost = c̄(−DA
µD

µA+Q)c (B.27)

Thus S[Q + A] + Sgf + Sghost is invariant. So Z[g,A] = Z[UJU−1, UAU−1 + U i
g∂U

−1] (make a change

of variable Q → UQU−1 in the path integral). Similarly one can talk about Z[J,A] = eiW [J,A] and

Γ[Q̃, A] = W [J,A] −
∫
d4xJaµQ̃

µa (Q̃ = δW
δJ and Γ[Q̃, A] = Γ

(
UQ̃U−1, UAU−1 + U i

g∂U
−1
)

). We can

then use the gauge-invariant Γ[0, A] to compute the β-function. As Q̃ = 0 we have only external A fields
and we are integrating DQ so we have only Q-type gluons on internal lines. It can be shown that the
background field action with Q̃ = 0 is the standard effective action in a strange gauge, with the gauge fixing
term Lgf = − 1

2ξ (∂µQ
µa − ∂µAaµ + gfabcAbµQ

cµ)2. The divergences must preserve gauge the invariance of

Γ[0, A], so (F aµν)2 must be multiplicatively renormalized F aµν0
= Z

1
2
2

(
∂µAν−∂µAν +gZgZ

1
2
3 f

abcAbµA
c
ν

)
with

ZgZ
1
2
3 = 1. There are 5 diagrams that contribute to Z3 – they have two external A-gluons:

Diagrams 2 and 4 are proportional to
∫
ddk
k2 so they have no 1

ε pole, thus they don’t contribute. There are
the following Feynman rules: an AQQ vertex with an A-field with outgoing momentum p and indices a,
µ, a Q-field with outgoing momentum q and indices b, ν, and another Q-field with outgoing momentum r
and indices c, λ is (along with ξ = 1 in the background field Feynman gauge):

gfabc

(
gµλ

(
p− r − 1

ξ
q
)
ν

+ gνλ(r − q)µ + gµν

(
q − p+

1

ξ
r
)
λ

)
(B.28)
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There is another vertex that includes an outgoing ghost with momentum p and index a, an incoming ghost
with momentum q and index b, and an A gluon with indices c, µ, with value gfabc(p+ q)µ). So, diagram

1 (gluons in the loop) gives ig2CA
16π2 δ

ab(gµνk
2 − kµkν) 1

3ε with cA = 3 for SU(3). Diagram 3 (ghost in the

loop) gives 10 times the same result. So ZA = 1 + 11cA
3

g2

16π2ε
, Zg = 1 − 11cA

3
g2/2
16π2ε

, and one arrives at the
β-function:

βQCD = g2∂ga1 = − g3

16π2

(11

3
cA −

4

3
nfTF

)
= − g3

16π2
β0 , β0 =

11

3
cA −

4

3
nfTF (B.29)

The term proportional to nfTF comes from nf flavors of fermions contributing through diagram 5, where
the calculation is like in QED except Tr (TATB) = TF δ

AB.

For QED, cA = 0 and TF = 1, and assuming a single fermion (nf = 1) one has βQED0 = −4
3 so

βQED = g3

12π2 as expected from previous calculation. For QCD with nf < 17, β0 > 0 which gives a negative
βQCD. The interaction strength behaves as:

αs(µ) =
αs(µ0)

1 + αs(µ0)
2π β0 ln

(
µ
µ0

) =
2π

β0 ln
(

µ
ΛQCD

) (B.30)

At large µ the interaction is relatively weak: αs(mZ) = 0.118, αs(mb) = 0.22, so perturbation theory is
good, but as one goes to low energies, the expression for αs grows more and more, diverging at µ = ΛQCD.
Hence starting from αs ∼ 1 perturbative calculations cannot be trusted. As µ → ∞, αs → 0 and the
quarks become free at large energies (asymptotic freedom). The dimensionless parameter αs is traded for
the dimensionful parameter ΛQCD. This is called dimensional transmutation. If the fields become massless
in LQCD then it’s scale invariant, but this symmetry is still broken at the scale ΛQCD (ΛQCD ∼ 250 MeV
experimentally). At small µ (e.g. long distances as in the lab) quarks are confined into color singlet hadrons:
baryons qqq (since 3×3×3 allows a singlet) and mesons qq̄ (since 3×3̄ allows a singlet). If we take mu,d → 0,
then the only dimensionful parameter is ΛQCD, ergo mproton ∼ ΛQCD and (radiusproton)−1 ∼ ΛQCD. A
strong dependence on µ means that the renormalization group calculation is crucial to the interaction
strength, e.g. αs is twice as big for b-physics as for Z-physics.

B.4.2 Heuristic explanation of asymptotic freedom

Consider vacuum fluctuations in QED, with a photon turning into a fermion-antifermion pair which then an-

nihilates back into a photon. They give rise to e2(µ) as a dielectric medium. Hence e2(k) =
e20

1+b0e20 ln

(
Λ
k2

) =
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e20
ε(k) where Λ is a cut-off scale and e0 is the bare charge. In QED b0 = − β0

16π2 > 0 so ε > 1 – fluctuations

in the vacuum are screening the charge and e2(k) is smaller at long distances k−1. An intuitive picture
is that the bare charge e0 (say negative) is surrounded by fermion-antifermion pairs, and each pair points
with its positive particle towards the bare charge. In QCD b0 < 0 so ε < 1 and gluon fluctuations are
antiscreening the charge. To understand why, note that µε = 1 in the vacuum, so vacuum screens color
magnetic charge.

Let’s look at 2 interesting possible effects of magnetic field: paramagnetism – the magnetic field
B causes intrinsic magnetic moments to line up with B giving µ > 1 and m = µ−1

4πµB, diamagnetism
– current loop develops a magnetic moment to oppose the applied B field, giving µ < 1. Magnetic

susceptibility is defined as χ(k) = µ−1
µ = −b0e2

0 ln
(

Λ2

k2

)
. The energy density in magnetic field is given by

U = −1
2χB

2 = b0e
2
0 ln

(
Λ
k

)
B2, so the steps are: compute the energy density for free bosons or fermions

with an arbitrary spin in a magnetic field, find the term proportional to ln(Λ)B2 and then read off b0.

The diamagnetic term can be obtained as follows. In a magnetic field, the continuous free particle
spectrum turns into discrete energy levels – Landau levels (one can think of particles as executing a
quantized circular motion). Consider a massless particle of charge e in a magnetic field B = Bẑ, then the
corresponding vector potential is A = Bxŷ and the Hamiltonian is given by (pz and px commute with
the Hamiltonian, while the term involving py is like a shifted oscillator; the degeneracy per unit area is
gn = eB

2π ):
H2 = (p− eA)2 = p2

z + p2
x + (py − eBx)2 , E2 = p2

z + (2n+ 1)eB (B.31)

The vacuum energy per unit volume is given by U =
∑∞

n=0

∫ dpz
2π

[
p2
z + (2n+ 1)eB

]1/2 eB
2π . As B → 0 one

regains the continuous spectrum. One needs to take the limit carefully to get the B2 term. In general:∫ (N+ 1
2

)t

− 1
2
ε

dxF (x) =

∞∑
n=0

∫ (n+ 1
2

)t

(n− 1
2

)t
dxF (x) (B.32)

=

∞∑
n=0

∫ (n+ 1
2

)t

(n− 1
2

)t
dx
(
F (nt) + (x− nt)F ′(nt) +

1

2
(x− nt)2F ′′(nt) + ...

)
(B.33)

=
∞∑
n=0

(
tF (nt) +

t3

24
F ′′(nt) + ...

)
(B.34)

Invert this relation to get:

lim
N→∞

N∑
n=0

tF (nt) =

∫ ∞
0

dxF (x)− t2

24

∫ ∞
0

dxF ′′(x) + ... (B.35)

Note that t = eB, (n + 1
2)eB > x, F (x) = (p2

z + 2x)1/2, F ′′(x) = −(p2
z + 2x)−3/2 and make the change

of variable x = 2q2
⊥ so dx =

dq2
⊥

2 = d2q⊥
2π , then the energy density becomes (taking the continuous limit∑

n

∫ dpz
2π

eB
2π →

∫ d3p
(2π)3 ):

U =

∫
d3p

(2π)3
(p2
z + q2)1/2 +

(eB)2

24

∫ Λ d3p

(2π)3

1

p3/2
+ ... = U(B = 0) +

e2B2

48π2
ln Λ (B.36)

The sign of the vacuum energy for fermions is opposite to that of bosons (one can think of the fermions

as holes in the negative energy states). Then the diamagnetic contribution to b0 is bdiamag
0 = ± 1

48π2 where
the upper sign (+) is for bosons and the lower sign for fermions, and it is spin-independent.
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To calculate the paramagnetic contribution one includes the interaction of the spin with the magnetic
field H2 = (p− eA)2 − 2eBSz where the g-factor is taken to be g = 2. This changes the energy levels as

E2 = E2
Landau − 2eBSz hence E = ELandau − eBSz

ELandau
− e2S2

zB
2

2E3
Landau

+ ..., so the paramagnetic contribution to

the energy is bparamag
0 = ∓ S2

z
4π2 where the upper sign (−) is for bosons, and the lower sign for fermions.

The total b0 (per spin state) is b0 = ∓ 1
16π2 (4S2

z − 1
3). In QED, for fermions with Sz = ±1/2 and

charge Q, one gets (for both helicities together) b0 = 2 Q2

16π2

(
1− 1

3

)
= 1

12π2 exactly as obtained in the field

theory calculation. For vectors (e.g., the gluons in QCD) with Sz = ±1 and charges Q, b0 = − Q2

16π2
22
3 . For

comparison, the field theory calculation gave bQCD0 = − 1
16π2

(
11− 2

3nf

)
. There is a way of treating the Q’s

correctly so that the results agree. In a sense asymptotic freedom is a consequence of the large magnetic
moments of spin-1 charged particles making the vacuum paramagnetic. Magnetic moments of fermions
make vacuum diamagnetic because their zero-point fluctuations have negative energy.

B.5 Asymptotic behavior and fixed points

Recall that the coupling g changes with the scale µ as µ∂µg(µ) = β(g), so
∫ g(µ)
g(µ0)

dg
β(g) = ln

(
µ
µ0

)
. As µ→ 0

(IR flow) or µ → ∞ (UV flow), ln
(
µ
µ0

)
diverges. This can happen either because g goes to a value g∗

in which β(g∗) = 0, or g goes towards ∞. There are several possibilities for how β(g) can behave as a
function of g. In all cases β(0) = 0:

1. β(g) grows with g (i.e., always positive).

2. β(g) decreases with g (i.e., always negative).

3. β(g) first grows, but then decreases, crosses zero, and continues towards negative values.

4. β(g) first decreases, but then grows, crosses zero, and continues towards positive values.

In case 1, β(g) looks like QED and φ4 theory at small coupling.
∫∞ dg

β(g) <∞ and g diverges at a finite

scale µ = M given by M = µ0 exp
∫∞
g(µ0)

dg
β(g) . This leads to unphysical effects. However, these theories are

fine as low energy effective theories with p�M (and some new operators, new degrees of freedom become
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relevant at p ∼M). For example, in QED, M = e647me which is enormous (weak interactions enter much
earlier).

Case 2 is like QCD. Since β < 0 at small g, large energy behavior is under control. The flow goes
toward a trivial fixed point (g = 0) as µ→∞.

∫ g
g(µ0)

dg′

β(g′) →∞ for g → 0.

Cases 3 and 4 have fixed points at an intermediate energy. In case 3, g(µ→∞) = g∗ is UV stable fixed
point (because in the limit µ→∞ we flow towards g∗ from either side). Similarly, in case 4 g(µ→ 0) = g∗

is IR stable fixed point. The existence of these fixed points and the slope of β at the fixed points are
scheme independent. The anomalous dimensions at the fixed points (γ(g∗)) are also scheme-independent.

Let’s come back to the statement that (with some qualifications) non-renormalizable theories with [O] >
4 flow to renormalizable theories at low energy. Recall the following example: at tree level g5

Λ0
ψ̄σµνFµνψ

gave σ ∼ α2

E2 +
αg2

5

Λ2
0

+ ... in massless QED. In dimensional regularization (MS scheme) there are no powers

of a cut-off in loop computations and the naive dimensional analysis saying one can drop g5 for E � Λ0

carries through. Unfortunately this doesn’t really explain what’s going on. To do so one needs to consider
the Wilsonian RG with a hard cut-off, and show that RG flow is related to removing high energy modes,
and that operators with mass dimension larger than 4 are suppressed at low energy. Take a scalar field
theory with a physical Euclidean cut-off Λ0, then write down the action (include a general term g0

iOi[φ]
and we’ll use it to describe low-energy physics, below energy E, and E � Λ0):

S0(Λ0) =

∫
d4x
(1

2
(∂µφ)2 + g0

2φ
2 + g0

4φ
4 + g0

6φ
6 + g0

6′φ
2(∂µφ)2 + g8φ

8 + ...
)

(B.37)

The dependence on Λ0 comes due to the fact that g0
i depend on Λ0, hence:

Z[J,Λ0] =

∫
|p|<Λ0

Dφ0 exp
(
− S[φ0,Λ0]−

∫
Jφ0

)
,

∫
|p|<Λ0

Dφ0 =

∫ ∏
|p|<Λ0

dφ0(p) (B.38)

The current J(p)θ(E2 − p2) is the current for small momentum. Now introduce another cutoff Λ1 < Λ0.
Let φ0(p) = φ1(p) + χ(p) = φ1(p)θ(Λ1 − |p|) + χ(p)θ(Λ1 < |p| < Λ0) and denote Λ1 = bΛ0 (b < 1), then

the χ propagator is proportional to θ(Λ1<|k|<Λ0

k2 . Integrate out χ (use J(−p)φ0(p) = J(−p)φ1(p)):

Z[J,Λ0] =

∫
|p|<Λ1

Dφ1 exp

[
−S1[φ1,Λ1] +

∫
Jφ1

]
(B.39)

S1 can be written as:

S1[φ1,Λ1] =

∫
d4x
((∂φ1)2

2
+
∑
i

g
(1)
i (Λ1,Λ0,g

(0))Oi[φ1]
)

(B.40)

It’s easy to imagine using perturbation theory, and working to all orders. Expand:

φ4
0 = (φ1 + χ)4 = φ4

1 + 4φ3
1χ+ 6φ2

1χ
2 + 4φ1χ

3 + χ4 (B.41)

The φ2
1χ

2 vertex gives a diagram in which a χ loop is attached to an incoming-outgoing φ1 line. This

diagram is proportional to g
(0)
4 φ2

1

∫ Λ0

Λ1

d4k
k2 = φ2

1g
(0)
4 f(Λ0,Λ1), where f(Λ0,Λ1) is some function. This con-

tributes to the g
(1)
2 term in S1. Another vertex, that could come from a g

(0)
6 term in the original action,

is one at which four external φ1 lines meet at a vertex, and a χ loop is attached to the same vertex. This

would contribute to g
(1)
4 . Another is a tree diagram in which three incoming φ1 lines turn into χ, which
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then turns into three outgoing φ1 lines (two g
(0)
4 vertices). This will contribute to g

(1)
6 (so g

(1)
6 is generated

through loop corrections even if initially g
(0)
6 = 0).

One may only make a small change in the cutoff (b close to 1) in order to keep the action local, but
it can always be repeated many times, until the energy scale gets down to a cut-off of E. Make the

couplings dimensionless as λi(Λ) = Λ−∆igi(Λ) then the above process gives λi(Λ
′) = Gi

(
λi(Λ), Λ′

Λ

)
. Take

Λ′∂Λ′ and set Λ′ = Λ, then Λ′∂Λ′λi(Λ) = βi

(
λ(Λ)

)
with βi = ∂zGi

(
λ(Λ), z

)∣∣∣
z=1

. This is Wilsonian RGE

(compare to the earlier β-function calculation). The space of local interactions can be thought as an ∞-
dimensional surface parameterized by the couplings. One would like to show that for Λ � Λ0 it flows to
a stable subspace parameterized only by renormalizable couplings (and independent of Λ0 and the initial
conditions).

Example: Consider a theory with two couplings λ4 = g4 and λ6 = Λ2g6, with Λ∂Λλ4 = β4(λ4, λ6) and
Λ∂Λλ6 = 2λ6 + β6(λ4, λ6). Consider a solution λ̄i of these equations, and take a small perturbation λi =
λ̄i+εi, then the equations for εi (up to first order) are Λ∂Λε4 = ∂λ4 β̄4ε4+∂λ6 β̄6ε6 and Λ∂Λε6 = 2ε6+∂λ6 β̄6ε6
(β̄ means that the β-function should be evaluated at λ̄i). The goal is to show that as the cutoff is lowered,
the perturbed and the unperturbed solutions become close in λ6. It’s possible that the curves in the λ4-λ6

plane will get close to each other but the close points from the two curves will correspond to different
values of Λ. To take this into account, define ξ6 = ε6 − ∂Λλ̄6(∂Λλ̄4)−1ε4 and let’s hope that ξ6 → 0 after
lowering the cutoff. From Λ∂Λξ6 = (2 + ∂λ6 β̄6 + ∂λ4 β̄4 − Λ∂Λ ln β̄4)ξ6, the solution can be read off:

ξ6(Λ) = ξ6(Λ0)
Λ2

Λ2
0

β̄4(Λ0)

β̄4(Λ)
exp

(∫ Λ

Λ0

dΛ′

Λ′

(
∂λ6 β̄6 + ∂λ4 β̄4

)
(Λ′)

)
(B.42)

If the couplings are small enough that the integrand and β̄4(Λ0)
β4(Λ) remain small, then ξ6(Λ)→ 0 for Λ� Λ0.

This can be converted to a trajectory in the λ4-λ6 plane where the value of λ4(Λ) determines λ6, independent
of Λ0 and initial conditions. So the action depends only on the renormalizable couplings. The advantages
of the Wilsonian RG are that there are no subdivergences or overlapping divergences or IR divergences,
and that the exact correspondence with modes is clear. The disadvantages are that we always have non-
renormalizable operators, and that the cutoff destroys symmetries like manifest gauge invariance, chiral
symmetry etc.

Note that it was shown that the Wilsonian RGE can be used to set the nonrenormalizable couplings
to 0 (effectively, at high energy scale), in the sense that in the low energy limit the physics is still well-
approximated as the running value of nonrenormalizable couplings is insensitive to physics at the UV
region.
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