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2 INTRODUCTION TO EFFECTIVE FIELD THEORY

1 Introduction

These lecture notes provide reading material on Effective Field Theory following the course 8.851, which
is taught as an advanced graduate course at MIT, and its EdX counterpart 8. EFTX.

The big picture is that there is interesting physics at all scales:
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For most of your physics career you’ve been moving up this graph toward more and more general theories.
As we move up, it becomes harder to compute (e.g. hydrogen energy Levels with quantum field theory
rather than nonrelativistic quantum mechanics, elliptic orbits of planets with general relativity rather
than Newtonian gravity). In this class we’ll be going in the other direction - toward finding the simplest
framework that captures the essential physics in a manner that can be corrected to arbitrary precision (e.g.
an expansion in v/c < 1 to construct a nonrelativistic quantum field theory). This is the guiding principal
of Effective Field Theory (EFT).

2 Introduction to Effective Field Theory

2.1 Effective Field Theory Ideas

To describe a physical system, the following questions should be addressed in order to design an appropriate
quantum field theory, on both a technical and a physical level:

- Fields — Determine the relevant degrees of freedom.
- Symmetries — What interactions? Are there broken symmetries?
- Power counting — Expansion parameters, what is the leading order description?

These are the key concepts that arise when one wants to build an Effective Field Theory (EFT). Note that
in an EFT the power counting is a very fundamental ingredient, it is just as important as something like
gauge symmetry.

The key principle of EFT is that to describe the physics at some scale m, we do not need to know the
detailed dynamics of what is going on at much higher energy scales Ay > m. This is good, since it allows
us to focus on the relevant degrees of freedom and interactions, and therefore simplify calculations. On the
other hand, this insensitivity to high energy scales implies that we must work harder (to higher precision)
in order to probe short distance physics at low energies.



2.1 Effective Field Theory Ideas 2 INTRODUCTION TO EFFECTIVE FIELD THEORY

Let’s exhibit some of the key concepts of an EFT with an example.

Example: We don’t have to learn about bottom quarks to describe hydrogen. The hydrogen ground
state binding energy is

1 2 2
E,=-mea?(1+0(2e)) , Be 08 (2.1)

2 m? m?

b b
so the correction from b-quarks enters as a tiny perturbation.
e’ -~

e -
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There is a subtlety here: my, does effect the electromagnetic coupling a in MS since the coupling runs
(e.g. almw) ~ 135, o = a(0) ~ 3-). More precisely, if o is a parameter of the Standard Model, which is
fixed at high energy, then the low energy parameter o/ that appears for hydrogen in Eq. does depend
on my,. However, we can simply extract o/ = a(A%) from low energy atomic physics at an energy scale Ap,
and then use this coupling for other experiments and calculations at the same energy scale. In such an

analysis no mention of b-quarks is required. We can summarize this by writing

1
L(p.e”, 7, bsa,my) = L(p,e”,1:0]) + O(W)
b

Beyond neglecting b-quarks and other heavy standard model particles, there are various expansions
that go into our leading order description for the energy levels of hydrogen atom:

e Insensitive to quarks in the proton since m.a < (proton size) ™' ~ 200MeV, so protons rather than
quarks are the right degrees of freedom.

e Insensitive to the proton mass since mea < my, ~ 1GeV, so the proton acts like a static source of
electric charge .

e A nonrelativistic Lagrangian £ for e~ suffices since meaw < me. Here ve = |p.|/me ~ a < 1.

Note that the typical momenta in the bound state are p ~ me« and typical energies are E ~ mqa?. The
above conclusions hold despite the presence of UV divergences that appear when we consider various higher
order terms induced by the above expansions.

Unregulated diagrams:
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Such divergences are handled by the process of regulating and renormalizing the EFT. This procedure is
needed to properly define the parametters in the EFT in the first place, and the divergences can even be
exploited to track information that appears in a more complicated manner without the EFT framework.
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In general, EFT’s are used in two distict ways, either from the top-down or from the bottom-up:

i. Top down - Here the high energy theory is understood, but we find it useful to have a simpler theory at
low energies.

e We integrate out (remove) heavier particles and match onto a low energy theory. This procedure

yields new operators and new low energy couplings. More specifically, we expand the full Lagrangian
as a sum of terms of decreasing relevance Lpiqn ~ >on El(gz)u The phrase “integrate out” comes from

Kenneth Wilson and corresponds to explicitly integrating out the high energy field modes in the path
integral formulation.

e The Lagrangians Lp;g, and Ly, will agree in the infrared (IR), but will differ in the ultraviolet (UV).

e The desired precision will tells us where to stop the expansion — how far we go with the sum on n.

Some examples of top-down EFT’s are:
— Integrate out heavy particles, like the top quark, W, Z, and Higgs bosons from the Standard Model.
— Heavy Quark Effective Theory (HQET) for charm and bottom quarks at energies below their masses.
— Non-relativistic QCD or QED (NRQCD or NRQED) for bound states of two heavy particles.
— Soft-Collinear Effective Theory (SCET) for QCD processes with energetic hadrons or jets.

Note that for effective theories built from Quantum Chromodynamics (QCD), a separation of scales is
needed to distinguish physics that is perturbative in the coupling as(p) evaluated at the scale p = @ from
effects that are non-perturbative in the coupling evaluated at a scale close to Aqcp < Q.

Also note that the ) EI(ZL is an expansion in powers of the power counting parameter, but there are

also logarithms which will appear with arguments that are the ratio of mass scales or the power counting
parameter. In a perturbative EFT with a coupling like a;s the renormalization of El(:i) allows us to sum the
large logs oy In (%) ~ 1 when my < mi. Indeed any logarithms that appear in QFT should be related to

renormalization in some EFT.

ii. Bottom up - Here the underlying theory is unknown. In this bottom-up case we construct the EFT
without reference to any other theory. Even if the underlying theory is known, we can also consider
constructing the EFT from the bottom-up if the matching is difficult, for example if the matching would
have to be nonperturbative in a coupling and hence is not possible analytically.

e Construct ), £ by writing down the most general set of possible interactions consistent with all
symmetries, using fields for the relevant degrees of freedom.

e Couplings are unknown but can be fit to experimental or numerical data (e.g. lattice QCD)

e Desired precision tells us where to stop the expansion — How high do we go in the sum over n before
stopping.

Some examples of bottom-up EFT’s are:
— Chiral Perturbation Theory for low energy pion and kaon interactions.
— The Standard Model (SM) of particle and nuclear physics.

— Einstein Gravity made Quantum with graviton loops.
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Comment: The ) expansion is in powers, but there are also logs. Renormalization of ,Cl(ggj allows

us to sum large logs In (1) (m2 < mq). It’s true even when my and ms are not masses particles - it’s
usually the case that logs in QFT are summed up with some EFT.
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Figure 1: Fermion content of the Standard Model

2.2 Standard Model as an EFT

Lets look at the Standard Model of particle and nuclear physics as a bottom up EFT with El(;g =
£ 4+ £0 4 . The 0’th order is the Standard Model Lagrangian studied in MIT’s 8.325 class: QFT III
(refer to the supplement notes for more details). This Lagrangian already involves the relevant degrees of
freedom. The gauge symmetry of the Standard Model is SU(3)cotor X SU(2)yeak X U(1)y with the following
vector gauge boson content: (8 gluons Al‘j‘) x (3 weak bosons W)x (1 U(1) boson By,). The fermionic and
bosonic content of SM is described in the table below (and further detail can be found from the Particle

Data Group website at http://ptg.lbl.gov).

The question we would like to answer is What is £(1) 2 Before doing that lets review some things about
the 0’th order term. The Oth order Lagrangian is £ = Lgauge + Lfermion + LHiggs + Lng. Let us write
down the first 2 terms explicitly (Y, 7%, T4 are U(1), SU(2), SU(3) representation):

1 1 1 dood
Egauge — _ZFMVFMV o ZVVCLMI/’[/I/'ll:lu _ ZG NVG;J,V
Efermion = Z @LiML + Z \I/RiDIJR
U Up
iD, = 0+ 1B,Y + g2WSiT" + g3 ALT4

The power counting for the SM as an EFT must be based on what we’ve left out: a new mass scale at
the higher energy Ajc,. The expansion parameteter (power counting factor) should be a mass ratio of the
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form € = %, where mgys is the particle mass in the SM (e.g. my, mz, m;). Higher mass dimension
operators Op (dimension [Op] = D > 4) can be built out of SM degrees of freedom with couplings to the

4-D
order of Ay .

Before moving on further, Let us review the meaning of renormalizability in the context of an EFT:

i. Traditional Definition - A theory is renormalizable if at any order of perturbation, divergences from
loop integrals can be absorbed into a finite set of parameters.

ii. EFT Definition - A theory must be renormalizable order by order in its expansion parameters:

- This allows for an infinite number of parameters, but only a finite number at any order in e.
-Ifan £O ig traditionally renormalizable, it does not contain any direct information on Ajeqy.

Next we will look at a simple example of renormalizability in an EFT. Example: Let us look at an
example in a scalar field theory, in the case where mass dimension determines power counting. Consider a
d dimensional theory:

1 1 A
Stol = [ dia(50m00,0 - Gmie? - ot - L")

From the definition of mass dimension, [S[¢]] = 0 and [z] = —1. It is then straightforward to find

[¢] = 452, (m?] = 2, [\] = 4 —d and [r] = 6 — 2d. Assuming we want to study < ¢(z1)...¢(z,) > at

large distance z# = sx* (controlling s — oo while keeping z'* fixed - same value of z’# but cover more

distance as s goes up), then to normalize the kinetic term one can redefine the large distance scalar field
d—2

to be ¢'(2') = s 2z ¢(x):

A T
A gh=dgt _ 786—2d¢/6)

1 1
_ d 2 .2 412
Sl = /d wl(f%/ ud = gms ot - 6!

The correlation function:
n(2—d)

< (@) b(wa) >= 5" T < ¢ (@) d () >

Taking d = 4, as s — oo we find m? becoming more and more important, A being equally important
and the 7 term becoming less important at large distance. Therefore, the operator ¢? is relevant since its
mass dimension is [¢?] < d as the coupling [m?] > 0, the operator ¢? is marginal since its mass dimension
is [¢] = d as the coupling [\] = 0 and the operator ¢° is irrelevant since its mass dimension is [¢?] > d
as [7] < 0. Large distance means small momenta, therefore the energy scale decrease. If m is the mass of
a particle in a the theory at a high energy scale A > m, then the ¢ operator is a small perturbation,
and in some sense can be neglected. In the low energy scale Ap < m, this term represents some non-
perturbative description. Let m ~ Ay, be the mass of an unknown particle for a theory at a low energy
scale Ap < Apew, then in terms of mass scale m? ~ A2, A ~ A%, and 7 ~ A;2,. Since EFT looks
toward the IR of the underlying theory, the mass term of the heavy particle will not be included. The ¢*
and ¢% terms are included and they can usually be integrated out, leaving an EFT that contains only light

degrees of freedom.

Note that relevant operators can upset power counting through kinetic terms (e.g. Higgs fine-tuning).

To demonstrate the ideas of traditional renormalization and EFT renormalization we will take m = 0
(or small m such that m2s?> ~ 1) and calculate the divergences through Feynman loop diagrams (d = 4
and cut-off A):

3

2 <
XK

| i [
ko+p (k2 —m? +io)((k+p)? —m2 +i0) Jo Kk*
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This A\¢* divergence renormalizes A by the counter-term >< & A

>©< ~ ATln A divergence renormalizes % 7¢O
M ~ 72In A divergence renormalizes % ~ ¢B

Since ¢® is not included in S [¢] the theory is non-renormalizable in the traditional sense, but if 7 ~
A2, is small and p*r < 1, the theory can be renormalized order by order in A,e, (to the non-positive
power). From the above equation, the given scalar field theory is renormalizable up to A,2,. To have a
renormalizable EFT up to A2 | one should add a ¢® operator. In general, to include all corrections up to

AL, (or s77) with r non-negative), one has to consider all operators with mass dimension < d + r. This

is an important relation between power counting and mass dimension.

Although the above argument seems to be gemeric, can you think of what assumption might change
that would lead to non-dimensional power counting? Hint: look at the properties of coordinates rescaling
zH — sx'M

The SM Lagrangian £ is renormalizable in the traditional sense, since all operators have mass
dimension < 4. To get the £() correction for the SM, one can add a mass dimension 5 operator Os:
£ = 12-05 with the D = [O5] = 5 Wilson coefficient ¢5 ~ 1 and [e5] = 0 and Ape, explicit. Since
nothing in L£5) contains Apney, one is free to take Apew > mgy. Indeed, from experimental data, £0)
seems to give a very small corrections.

Let us now continue with the SM as an EFT and consider the corrections to £ = £5M (e.g. for

energy scale Ap ~ m;). Toward the IR of the underlying theory:
SM 1 2 0 -1 -2
L=LM 4 LW 4 L@ = (v AD) 4 (~ ML) + (~ AL +

Assume Lorentz invariance and gauge invariance are still unbroken, then each £ is Lorentz invariant
and SU(3) x SU(2) x U(1) invariant (take the Higgs vacuum expectation value to be v = 246 GeV, for the
energy scale Ag > v one can see the full gauge symmetry). These £ should be constructed from the
same degrees of freedom as £, Furthermore assume that no new particles are introduced at A. With
that construction, one expects to see new physics from those corrections.

Example 1: £V = << eijE%HjeleLkHl is the only D = 5 operator consistent with symmetry, with

ATLEUJ
ht
the Higgs doublet H = (

1o ) and the lepton doublet L; = < ZL ) As one can see, this Lagrangian is
L

a singlet under SU(3), SU(2) and carries zero U(1) hypercharge. Setting H = < 2 > gives the Majorana

. . 2 .
mass term for observed neutrinos %myeabygl/g + h.c. with m, = % From experimental data m, <
new

0.5(eV) so one expects the energy scale for new physics (new massive particle) to be around Ape, >
6 x 10'4(GeV) as c5 ~ 1. Note that the Majarana mass term in the Lagrangian violates lepton number
conservation.

Example 2: D = 6 operators exist that violate baryon number conservation.
Example 3: With the number of leptons and baryons imposed there are 80 mass dimension 6 operators

£ = A2 Z§21 cgi0gi. For any observable only a few terms contribute and for any new theory at Ajeq

a particular pattern of cg; is predicted. Here’s a reminder of SM charges as a reference:

10
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There are terms contributing to the muon anomalous magnetic moment Og, = Lpo**oc%rH Wﬁ,,
and O¢r = Lpo*erHF,,. The contribution can be calculated to be (¢ — 2), = (contribution from
LMy ¢ 46;\2’“} , and from it one extracts Ape, > 100(TeV) if ¢ ~ 1. For the remaining operators, see
W. Buchmuf(;ru7 D. Wyler: Nucl. Phys. B268 (1986) p621-653 for details and Grzadkowski, B., et al.

”Dimension-six terms in the standard model lagrangian.” Journal of High Energy Physics 2010.10 (2010):
1-18 for a more up to date discussion.

When enumerating these operators, the classical equations of motion derived from £5M can be used
to reduce the number of operators - this is known as the integrating out at tree level (for more detail, see
the papers mentioned above). This is obviously fine at lowest order since external lines are put on-shell

in Feynman rules, and actually the same can be applied even with loops and propagators. To see this,
consider the following theorems:

i. Representation Independence Theorem: Consider a scalar field theory and let ¢ = xF(x)
with F'(0) =1 (so that one can Taylor expand the field around ¢ = 0 with the leading term being ¢ = x;,
which can be shown to be the 1-particle representation of quantized ¢ and quantized y at the same time).

Calculations of observables with £(¢) and quantized field ¢ give the same results as with £'(x) = L(xF(x))
and quantized field .

Example: Consider the d = 4 scalar field theory with 7 < 1 as the power counting factor:
1 1
L= 50"00u0 — 5m*¢" = A" +ng1” + 1926°06 + O ()

The last term can be dropped from the equation of motion (¢ +m?¢ 4+ 4A¢> + O(n) = 0 or by making
a field redefinition ¢ — ¢ 4 1ng2¢®. The new Lagrangian is:
1 1
L= 0" 40,0 — Sm*¢* = No' +1916° + O(r°)

Explicit computation of the 4-point and 6-point tree level Feynman graphs to O(n) with £(¢) and

quantized ¢ or L'(x) and quantized y can be shown to give the same results. This holds even if one
considers loops.

11
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ii. Generalized theorem : Field redefinitions that preserve symmetries and have the same 1-particle
states allow classical equations of motion to be used to simplify a local EFT Lagrangian without changing
observables. For more detail regarging on-shell EFT, refer to C. Arzt: hep-ph/9304230 and H. Georgi:
Nucl. Phys. B361, p339-350 (1991).

A sketchy derivation for this theorem in a field theory with complex scalar ¢ can be shown as follows.
Starting from Lgpr =3, 0L (n < 1, as the power counting factor) consider removing a general first
order term %’I’]T[QMDQQZ) from £(!) that preserves symmetries of the theory, with 7] being a local function
of various fields ¢ (basically, removing linear terms D?¢ in the EFT). The Green’s function with sources
J can be obtained by functional derivatives of the partition function with respect to sources (one can see
that with this approach, use of dimensional regularization is convenient):

Z[J] = / [[Dviexp <z / A (L 4 (LY — TD*¢) + nTD*¢ + > Jpthe + 0(7]2))>
i k
Removing the term %nT[@ZJ]Dqu is relevant to redefining the field ¢* = ¢™* + nT in the path integral:

5o . 1 60 5L
_ ! do(£0) 4 = —
ZJ] /1:[1)%(%/* exp (z/d x(ﬁ +277T( 55" 8“58H<l>*)

1 1 1
+n(c™ — 5TD’Zgz/) + 5nTD%’ + ) Tkt + 5o + 0(n2))
k

From here, one can see that there are 3 changes: the Lagrangian, the Jacobian and the source term
Jg+. The claim is that without changing the S-matrix, we can remove the change in Jacobian and the
source, therefore we only need change of variable in L:

0L needs ¢* + 1T to transform like ¢*, in order to respect the symmetries of the theory:

L= L(DM6)(Dud) ~ ym*e o+ ()
= S(DRGY(Dub) — S9!+ AT (~D?6 —m?) + (.. (23)

The —%nT D¢/ term from £ after redefining the field cancels %nTDQW , as expected. Since the EFT
Lagrangian at all orders n contains all terms allowed by symmetries, all operators in (...)" are already
present in (...) as the field redefinition also respects the symmetries. Thus couplings are simply redefined,

and this poses no problem, since the values of couplings of an EFT aren’t fixed. We therefore still have
the same EFT.

The redefinition of ¢ differs from the original one at first order, so first order corrections of £(¥) (which
are also symmetry-preserving) can be all absorbed into LD couplings. £ corrections go to higher orders
in the Lagrangian, and terms linear in D?¢ can all be taken out from £(). Using the same idea, one might
cancel D?¢ to any power out of £(1) by replacing it using the equation of motion (because of the kinetic
term, D?¢ should always be there in the theory). This is also relevant to redefining the fields.

Now let us turn our attention to the Jacobian. Recall that det(0*D,,) = [ DcDéexp (z i dd:UE(—@“DH)c)
(Fadeev-Popov method) and write % =1 —i—n% which leads to éc+7766‘2%c after including ghosts. Since

the EFT is valid for the energy scale Ap < 77*%(: Apew), the ghosts will have mass ~ Aje, and hence
decouple, just like other particles at this mass scale that were left out. Note that dropping ghosts can
change the couplings.

12



3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

Example: Consider T' = O¢™* + A¢™ (¢"*¢') — (%i = ¢(1 + nd + 2nA¢*¢)c and rescale ¢ — cn_% to
have the correctly normalized kinetic term. It then becomes &(n~! 4+ O+ 2A¢"*¢')c, with the mass term of

the ghost showing that it has a mass 77_% = Apew as expected. Note that one needs a single ¢™* term in
the field redefinition for this argument, which means that a term like ¢* = U¢* + A\¢"™* (¢'*¢’) would not be
acceptable. Since ghosts always appear in loops, they can be removed like heavy particles and contribute
some correction to the couplings.

We now look at the source term. Consider a Green’s function of n-points scalar fields:
G = (0| T (9(1)..-$(wn)...) 0) = (O] T( (& (@1) + 0T (1)) (9(n) + 0T (@) ) 10) -

Here the ... on the right stand in for other fields and we use real ¢ for notational simplicity. The change
of source can be shown to drop out of (S) from LSZ reduction (e.g. field rescaling and field renormalization
cancellation, no pole, no contribution to the scattering):

/ [ O T (é(ar)é(wa)-..) 10) ~ (] W) (prp2---| S Ipjpjs1...

2 2
b +m; + 10

T

Example 1: Consider a scalar field theory with the field redefinition ¢/ = ¢ + n¢ = (1 + n)¢ i.e.
T[¢] = ¢9%*¢. The 4-point Green’s function gives a prefactor (1 + n)* after redefining the field, and
it’s cancelled by the renormalization of the field v/Z = 1+ 7. This is the field redefinition and field
renormalization cancellation.

Example 2: Consider a scalar field theory with the field redefinition ¢’ = ¢ + nge¢® i.e. T[@] = g¢>.
The four point function will get extra terms, for example, the corrections coming from Feynman diagrams
similar to:

=g (0 T (¢/ (21)¢ (@2)¢ (23)6"(24) ) 10)
]

Here, the ¢® doesn’t give a single particle pole at x4, so it has no contribution for scattering (external
fields are taken on-shell), which means that the S-matrix stays the same after the field redefinition.

Example 3: Consider a scalar field theory with field redefinition ¢ = ¢' +09?¢' = ¢+ (0% +m?)d — m?¢.
The second term gives no pole and therefore not contribute to the scattering, and the 3rd term can be
treated in the same way as in example 1 above.

3 'Tree level, Loops, Renormalization and Matching

3.1 A toy model

To demonstrate the ideas behind the matching technique through tree level, loops and renormalization
with a simple calculation, consider a toy model with a heavy real scalar ¢ of mass M and a light fermion
1 of mass m. The Lagrangian (call it theory 1) can be written down as:

Ly = 9 — )y + 5060,0 — 5 M + g9

13



3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

If the energy scale of interest Ap < M one can integrate out the massive degrees of freedom ¢ and
build a new theory of the light fermion 1 alone. Interaction terms in the theory of fermions (call it theory
2), can be written down under the requirement of preserving the gauge symmetry:

B(ig —m)p + ~ mw + M2 2 b + me + WW% + L + .

Let us look at the 4-point fermion interaction term in theory 2. One can immediately do the matching
to tree level (loops contribute corrections, and one should do the matching at relevant orders) of theory 1
and find that co = —¢4 = g%

. .9 .99
e i igh | igPq
(i9) 7q2_M2N—M2+ 7 + ...

Uj_m{w

Since the scalar propagator always comes with an even power contribution of M7 we can see that
¢1 = c¢g = 0 from tree level matching. Indeed, to match c;, c3 and even ¢, one should go through detailed
calculations with loops.

Another way to see this is using the classical equation of motion for ¢ to simplify the theory:
1 O
¢—9¢D+M2¢ ¢(W_M4+ L
Plug this back into the Lagrangian and we find the same results for the Wilson coefficient ¢ from matching

at tree level.

Calculations with loops require a lot more care. Let us briefly review some important concepts:

e Regularization is the technique to cut-off UV divergences in order to obtain finite results. Different
regularization methods introduce different cut-off parameters (e.g. hard cut-off A2UV, dimensional
regularization d — d — 2e¢, lattice spacing).

e Renormalization is the technique used to pick a scheme to give definite meaning to each coefficient

and operator of the QFT. It might also introduce some renormalization parameter (e.g. p in MS,

p? = —,u%% for off-shell subtraction scheme, A for Wilsonian). The relation between bare b,

renormalized a™" and counter-term da coefficients a in different renormalization schemes (UV cut-off
with integrated momenta p, Ayy < |p| and M S dimensional regularization) are related:

a"™(Ayy) = a™(A) + da(Ayy,A) , a”e(e) = a™™(u) + da(e, p)

Let us now show the difficulties with loop calculations and renormalization of coefficients:

i. Regularization and Power Counting: Consider in d = 4 the self interaction and mass correction

in theory 2 ( ; which corrects the fermion mass at order A”}[—QQ by Am ~ }\222 d%m

Q.

STEl f K2 + E_ (using a Wick rotation from Lorentzian to Eulidean signature k¥ — k). Before performing the

calculatlon note that the higher dimension operator (which is Suppressed at the low energy scale), should

give rise to a small correction. The physical part of the intergation f 2 m? (at the very same order) at

+ 2
that energy scale should be insensitive to M (since the contrlbutlon from that mass scale will disturb power

~ m?, as the small correction must be

counting), and from dimensional analysis one can guess f

A

k2+2

M; with kg ~ m domination. Doing the math in different regularization schemes gives:

14



3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

e UV cut-off with Ayy ~ M, since one excludes the physics at around that energy scale. This regu-
larization breaks Lorentz symmetry by imposing a hard cut-off momentum:

A 2 2 2 4
com vV kg com (AUV—i—m—ln m m n )

M2 Jy  RE4m? (Am2\ M2 M2 (A%]V)_MZA?UV

The first term in the bracket is in the power counting order of O(1) is dominated by kg ~ Ayy,
which is not a correction coming out of the expected order. If one tries a normal way of absorbing
the physics from energy scale A to Ayy with a piece Gz OAUV kﬁdfiw 5
ém(Apv,A) to improve things, terms with different orders 7% and In (T—;) will be present in 4-point
fermion interaction renormalization ((3))2)***(A). To recover the right power counting, a counter-
term should be introduced to absorb the whole O(1) term instead. In this regularization the power
counting only applies to renormalized couplings and operators order by order, power counting breaks
down (the power counting factor §; is incorrect because of the mass dependence of the regulator

AUV)-

e MS with dimensional regularization d = 4 — 2e:
com / > dd kE
M2 0 k’IQE + m2

The first term can be absorbed into the MS counter-term, and note that it can be related to a similar
term in UV cut-off regularization when € = —AmLQV. The second term inside the bracket has the same
log behavior with the similar term in UV cut-off regularization if p = Ayy. The third term inside
the bracket corresponds to the domination of the integration around the Lorentzian pole k% ~ m?2,
giving a small correction Am ~ 012\2”23. The regularization does not break the power counting (the
A’Z—z term is still there, in front of a divergent term and non-divergent terms, keeping track of orders)
because the regulator doesn’t depend on the mass scale M (the infinitesimal dimensionless €), and

one can still do power counting.

in the fermion mass counter-term

2 2
614 com /m 1 m
(Gp(-c+Cs

d—a—-2¢  (4m)2

)=1) +0())

In principle any regulator is acceptable, but if one can choose the regulator to preserve symmetries (e.g.
gauge invariance, Lorentz symmetry, chiral symmetry) and also preserve power counting by not yielding
a mixing of terms of different orders in the expansion, the calculations become easier because, in general,
operators will always mix with other operators of the same dimension and same quantum numbers (with
a matrix of counter-terms). For power counting, this corresponds to using mass-independent regulators
(strictly speaking, a new mass scale may still appear but in a way that doesn’t directly change the power
counting factor, and it’s mass-independent in the sense that it doesn’t see the thresholds of particles’ masses
in the theory). If the regulator doesn’t have these desired properties (e.g. Supersymmetry is broken by
dimensional regularization), one can still use counter-terms to restore symmetries and power counting,
therefore simplifying the calculations.

Now Let us do the matching explicitly with 1 loop. Consider the self interaction diagram in theory 2
and absorb the mismatch with theory 1 by redefining the field and mass with §Z,, and ém (counter-terms).
Note that the last term can be added into the mass counter-term, too:

k 2 2
Q_‘ = (14 6Zy)p— (m + 0m) — —22 (1—1n%)

a 1672 M2
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3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

A loop diagram in theory 1 that is relevant to the 1-loop self interaction in theory 2 should be used
(the calculation is taken in the limit when M > pg ~ m):

k
-+

s 2 2 2 2 2 2 2 2
s g ( 1 | M 1 m D | M m m P >
———— =p—m— —In— — - — —1—-—In— —
bk P=m= 152 PG s — 1t e ~ ) T ERYEREIVEL
The terms in this loop calculation of theory 1 with p? and pp? from the point of view in theory 2
come from the interaction ¢; and ¢, and therefore can be matched to give non-zero results. c3 can also be
matched if one expands further to p*. Note that the matching shows that ¢; and ¢ are in the first order of
power counting 17 so instead of redefining them to become operators at higher order of the form myUh)
and m[0%y which would make the Wilson coefficients be of order 1, one should think of the old Wilson
coefficients are zeroes plus some correction. The rest can be matched to the self-interaction calculation in
theory 2, with 02, and dm defined as:
2 2 2 2 2
g 1. M 1 m co 1. M 1 m
67, = — Y/ -S4 Y= (Zln
¥ 62 oM "1 ) T T2 T 1T
2 2 2
M M
I i —1)= 2 (In— —1)
1672 p2 1672 p2

)

om =

The final part of the matching is then ]\"% In A”}[—z = ]\"% In 7}—22, giving the unphysical mass scale in dimensional
regularization a physical meaning, ; = M, the mass of the heavy particle in the theory.

Example: Dimensional regularization in supersymmetric field theory breaks supersymmetry, and the
counter-term is usually chosen in a way that the renormalized results are supersymmetric.

ii. More on Dimensional Regularization:

Some useful axioms:

e Linearity (complex numbers a, b): fddp (af( )+ bg(p ) = afddp + nfddp
e Translation (vector q): [d%pf(q+p) = fddpf(p), and also Rotation

e Scaling (complex number s): [df(sp)? = s~ [d?pf(p)

These 3 axioms together give a unique definition to the integration up to normalization: dimensional
reqularization (see Collins p. 65 for ruther details of the proof).

w\m

In Euclidean space: d% = dpp®~1dQg = dpp®'d cos 0 sin® 3 0dQ,_; with [dQ, =

(%)
For spherical symmetric intergration d%p = ’(’ ’ )12F(%)dp
4m)2
P _ 1 ydraplB-a—atd) j
Common integration: fddp PEAP Az ) NG fddp =0 (see Collins p71)
F ’ tric integration formula: Loy = {5k f1d w1
eynman’s parametric integration formula: 7 = 0 x(AHB(l G

Dimensional regularization introduces d = 4 — 2e, Where e > 0 will tame the UV and € < 0 will tame
the IR (the sign does not depend on the sign of the divergence, it’s just a convention). The results are

always expressed using Gamma functions of the form I'(—n + €) = (_nl!)n (% +¢Y(n+1)+ O(e)).

Example: The Euclidean I4(g,n) integration with dimensional regularization:

B d%p (=P n
Li(q,n) = / (p? + 2pg +m2)" (2 —n)! I'(n)

d
2

(m? ~ )3 (2 4+ (3 - n) +0(0)
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3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

: _ —4_ i (1
Note that for the diagram of the massless scalar field loop > X = J dpp=* = 652 (EUV E) =0
at d = 4 (eyy = €1R), since the counter-term (always needed when there’s a UV divergence) is only meant
. . . i 1
to cancel the UV divergence for physics at a high energy scale >< = _ﬁmv so "> K + X
i 1

1672 €rp
Dimensional regularization is well-defined even with both UV and IR divergences by separating the UV

and IR poles, using analytic continuation.

Example: Consider a well-defined spherical integral in the dimensional range 0 < d < dj,42, to extend
to the lower limit —2 < d < d 4, First of all one can split these UV and IR parts by using the scale c:

Cd
| amt ety = [ a6 + [t (067 - 1) + G 500)

For —2 < d < 0, take the above equation as an analytic continuation and using dimensional regular-
ization differently for these UV and IR parts with different values of d, then put them back together and
get the final result after regulating the divergent poles that should be independent of the scale ¢. Take
¢ — 0o, then the integration can be simplified to fooo dpp?=1 (f(pz) - f(O)).

Now, let us look into renormalization after dimensional regularization:

e MS scheme: a mass scale i is introduced in order to keep any renormalized couplings dimensionless.

Example: Consider the gauge coupling interaction ¢gP*°¢ Av. At d = 4 one has [gP¥¢] = %d =€ in
dimensional regularization. In term of the dimensionless renormalized coupling and the dimensionless
renormalized factor, the bare coupling should be equal to Z,ug(1) as g(p) depends on the chosen

mass scale . Note that the p® factor is not associated with loop measure.

e M S scheme: The chosen mass scale is slightly different from the MS scheme p? — ;ﬂe% so that the
large universal constant is removed. The advantages of this scheme are that it preserves symmetries,
it is technically easy to calculate multiple loops and often gives manifest power counting. The
disadvantages are that the physical picture becomes less clear (e.g. we lose positive definiteness
for renormalized quantities), it can introduce renormalons (poor convergences) at large orders in
perturbation theory and it does not satisfy the decoupling theorem .

Decoupling Theorem: Consider building an EFT by integrating out the massive fields. If the remaining
low energy theory is renormalizable and we use a physical renormalization scheme (e.g. off-shell momentum
subtraction), then all effects due to heavy particles (of mass scale M) appear as a change in the couplings
or are suppressed as ﬁ Since the MS scheme is not physical, because it is mass independent (doesn’t
see the mass threshold), one must implement the decoupling argument of the theory by hand, removing

particles of mass M for uleqM.

Example: The M S scheme of QCD has 3(g) = ,ud# g(p) = lﬁﬂ_gb +0(g°) < 0 with b, = Yea—3npTr.
The QCD fine structure constant a(u) = 2( ) then runs as o (p) = % from the lowest order

solution, which behaves assymptotically free. Define an intrinsic mass scale AQC D = ,uexp(—b(j%) (by
replacing as(p) one can show that it is independent of the choice for p) to get the nice form ag(p) =

2n , which specifies the energy scale when QCD becomes non-perturbative (~ 200(MeV')). Note
bo In (#/AQCD)

that AQCD depends on b, (and thus on the number of light fermionic flavors ng), on the order of loop
expansion for 5(g) and also on the renormalization scheme (beyond 2 loops).
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3.1 A toy model 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

ofs ()

oLslmy) =. 1

The problem comes from heavy quarks (e.g. top, bottom) contributing to b, for any p from the point
of view of the unphysical M S renormalization scheme and that contradicts the decoupling theorem at low
energy scale compare to these quarks’ masses. Therefore decoupling should be implemented by hand by
integrating out and changing the fermion number ng (allowed in the loop, effectively) as u gets through a
quark mass threshold. Specifically, np = 6 for p > my;, np = 5 for mp < p < m; and so on.

The matching condition (perturbative diagrams and couplings) between effective theories after remov-
ing the heavy degrees of freedom should be based on the characteristics of the S-matrix (not the couplings):
at the transition mass scale m(~ p, = p) = ,u(Q)) the S-matrix elements with light external particles
should agree between theory 1 and 2. The leading order condition for couplings (which makes them
continuous at the mass threshold) can be shown to be agl)(um) = al? (tm,)-

Consider matching between theories, say np = 4 and np = 5 (for the number of active quark degrees
of freedom) at the bottom quark’s mass threshold. Then at leading order we get alt )( p) = ol (myp).
At higher order, more complicated Feynman diagrams contribute and create the mismatch (e.g. from the

b
effect of including the bottom quark in theory 5 gives contributions through loops of the form ..
3
at the next order):
®) 1. 2 Ol (1) 5, 11 11 1 2
Wy = a® (10 S W 1 py a1 11 ot 1 o ‘
) = o) (1 -+ =5 g T Gy +36 §)+'“) oy
l U 9(5(C>
M+t v math
\L ' (s)
m,y ff“(«L\
j/ ~on {'13
mn.%‘(,['\
i{ (3)
LB IaY o(_;

The general procedure for matching EFT’s £ — £2) — . — £ top-down for mass thresholds
my > mg > ... > my, (going from higher to lower energy scale) can be summed up as follows:

1. Match the theory £(}) at the scale m; onto £2) by considering the S-matrix.
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3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

2. Compute the S-function and anomalous dimension in theory 2 (which does not have particle 1) to
run the couplings down from the evolution equations, then run them.

3. Match the theory £(?) at the scale m; onto £®) by considering the S-matrix.

4. Compute the S-function and anomalous dimension in theory 3 (which does not have particle 2) to
run the couplings down from the evolution equations, then run them.

5. Follow this procedure for any number of additional steps required.

If one is interested in the dynamics at a scale my,_1 > p > my,, then one should stop at L™ and do the
calculations for observables (e.g. matrix elements) using this Lagrangian.

3.2 Massive SM particles

Usually the heavy particles t, H, W and Z are removed simultaneously from the SM. The reason for
integrating them out together is because if one tries to firstly integrate out the top quark only, then
lr
br

component (the problem can be solved by including Wess - Zumino terms). Also note that % ~ % is not
a very good expansion parameter. The disadvantage of removing these particles at the same step is that

SU(2) x U(1) gauge invariant of SM breaks since the top-bottom quark doublet < ) loses the top

2
one misses the running m; — myy, as the analysis treats as(my ) In TZTV;’ perturbatively.
t

Example: Consider the process b — cud at tree level with LM — %W;ﬂLq/“VoKMdL + ...

N 192 . L, KkMEY —1 _ -
= (7)2‘/613 ud(nu ) 2 (C’YuPLb)(d'YVPLU)

\D 7/\((, \/§ mW)k2_mW

g

. 2
Expand the W boson propagator to :ZTZ + O(%) at low energy scale ~ my:

2
w w
n A
4GR . - \/ig%
' L><c = _W‘/vaud(c’)/”PLb)(d%tPLu) , Gp= am?,

The EFT of electroweak interactions in the SM after removing t, H, W and Z is called the Electroweak
Halmiltonian. The above interaction from tree level matching can be written as:
4G

Hew = —Lew = —2 Vo Vi5,C (" PLb) (dy, Pru
5 VeV (ey" Ppb)(dry,Pru)

The coefficient C' is just equal to 1 at tree level. To go further with matching involves loops. First of
all one needs to build the most general basis of operators with symmetries (complete set of structures with
these degrees of freedom that can possibly occur). At the energy scale . ~ myy one can think of b, ¢, d and
u as effectively massless fields to get the coefficient C' (which contains information about the removed mass
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3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

scales) since their masses only show up in the operators, and the massless treatment makes a connection
to chirality as QCD does not change the chiral nature from the original operators to the effective ones.

Example: Consider the ¢Xb part of a possible operator in the EFT, using chirality information we can
guess the X term in the middle: P; and an odd number of v matrices. But since 3 -+ matrices can be
reduced back to 1 v matrix via the relation vovsvs = gag¥s + 9857 — GasVs — i€apsrY V5, only ¢y, Prb
is left. Also spinor and color spinor Fierzing can be used to reduce the number of operators as they are
equivalent (e.g. (Y1v*Pr)(¢3v,Pripa) = (V1y* Pripa) (Y3, Pripe) from Fierzing with fermionic fields).

A generalization for the D = 6 interaction term (C;(u) = C; (ﬁ, avs(p))) with matching includes loops
and can be written down from those above arguments:

4G
V2

Compared to the matching at tree level, one more operator can appear from a possible arrangement of
color indices:

Hew =~ VaVia (CLO1 (1) + Cal)O2(p))

O1(p) = (4" PLb®)(d™yuPru”) , Oa(u) = (9" PLb™)(dy, P’
The coefficents (at p = myy from tree level) are:
Ci (1L, as(mw)) =14 O(as(mw)) , C2(1,as(mw)) =0+ O(as(mw))

An interesting fact about the matching is its independence from the choice for states and IR regulators
as long as the same treatment is given for both theories. A clearer way to say this is that the UV matching
is independent from the IR physics. Even for hadronic bound states (e.g. B, D, ), the result is valid
through the use of free quark states - indeed, these stated are used because of the convenience to the
matching process in calculations.

Now let us carry out the matching for C7 and C5 in more detail at 1-loop in the M S scheme (d = 4—2¢).
First of all, renormalize the effective field theory (assume that the dynamical contents of SM are already
1

normalized) starting with the wavefunction ¢ = ™" = Z;il/}bare (Zy = 1— % with Cp = 1\;%\7—01)
Leave out the prefactor % oV since it will always be there so one can add it again in the end of all
calculations.
The tree level matrix elements are S; = (cud| O |b) and So = (cud| Oq |b) ’ , and diagrams with
ee tree

1-loop can be calculated based on the values of S7 and S; .

X X X X XX

Let’s use off-shell momenta p as our IR regulator and assume the external particles’ masses vanish.
The calculations for bare operators with 1-loop corrections produce mixing of S; and S5 since gluons carry
colors:

. as 1 u? 3 a1 w2 3a 1 2
1 u? 3 as 1 2 3ag 1 @2
o = (1+20p22(c+ L))+ S0 CmL)s - 2 C e Ly
(©2) + F47T(6+ n—p2) 2+N,;47T(e+ n—pQ) 2 47T(6+ n—p2) Lt
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3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

The divergences can be killed by using wavefunction and coupling renormalization. There are 2 equiva-
lent methods to renormalize the interactions (for more details, refer to A. J. Buras http://arziv.org/abs/hep-
ph/9806471):

1. Composite operator renormalization: OPa® = Z;;0,(1)*¥¢) therefore (O;)Pa¢ = ZJQZij (Oj)r*, with
(Oj)"™ is a renormalized amputated Green’s function

3 3 are are C ren are ren are C
2. Renormalize coefficient: (H) = CPare(0; (yPare)) = (Z,L»(j )C'j )(Zi(Oﬁb ) = Crn{(0;)P —i—(ZiZZ»(j )_
5ij)C;en(Oi>bare. The last term is the counter-term chosen in such a way so that the final result is

(H) = Cr™(O;)™".
The relation between these 2 ways can be understood by looking at the matrix elements:

Ziz](f)c{en<0j>bare _ <rH> — Cl'renZiZi;1<Oj>bare = Z;l — Z](zC)
In the M S scheme, the operator-mixing renormalization matrix can be read off (after absorbing the
most divergent terms % into the counter-terms and leaving the matrix elements of the renormalized (O)™"

and (O2)™" to depend on S, Sp and the renormalization scheme’s parameter In g—j) from detailed cal-
3/N. -3

: _ as 1
culations to be Z =1 + ( ~3 3N,

e > With this information, one can construct the anomalous

dimension matrix:

1. For method 1, the anomalous dimension matrix for operators is defined as M%Oi = —;0;:
d bar d d ., d
0= M@Oia ¢= (M@Zz'j)()j + Zij(M@Oj) = %ij = Zi, M@ij

Note that oy also runs with ,u%as = —2¢ea + ..., therefore v = —g—; <

)

2. For method 2, the anomalous dimension for the coefficients can be found from the independence of
CzbareOEare = C;0; on the energy scale p (we drop the “ren” notation for convenience):

d d d d
0 = p—(CPeOP™™) = 11— (C;0;) = (u=—Ci)O0; — C7i;0; = u—Ci = Cjvyji = 750y
'udu( i i) 'ud/l( ) ('udu ) VijUj Md# 3750 = Vigi
In order to do the running, one can start by diagonalizing operators via O+ = O £ O3 and coefficients

via Cy = 3(Cy £ C3) (hence at tree level Cy(my) = 3) and get the anomalous dimensions v = 44 =

—g‘—;(N% —3), - =y = —%(N% +3) and 74— = y—4 = 0 (for SM, N, = 3). The running of coeficients
at p > AQCD (ﬂo = %CA — %np) is:

udjici(m — i (0a()) O () = M;L In C (1) = e (a()) uias<u> = Bo() = —26002()

Note that the anomalous dimension v only depends on the couplings a,(u) because of the EFT structure
in the UV region (e.g. poles, divergences). If we perform a change of variable y — «; (this trick can also

be used at higher orders) and %‘ = —ﬁ da";s, then (running down puw ~ mpy > p):
Ce(p) / by 1 / i o, o (1) 1 1
In(—F——) = — Yt = —— —7+(as) =as+ln ;oag = , G- = ———
(Ci(MW) ww M T 250 os(pw) O‘g (o) - (O‘S(MW)) " 27 Bo 7Bo
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3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

The boundary condition C4 (uy) is typically chosen at pw = my, 2my or “5%. One should think of
Ci(pw) as a fixed order series in as(uw ). The evolution of coefficients is:

O (1) = O ()™ 505 = O () (“;Em))“i (3.6)

The decay process of interest is b — cud so the energy scale should be set to u ~ mp < my. The answer
Cx(n) can be expressed as the sum of an infinite series of leading logs (LL) as as(uw) In (5) ~ O(1):

Cali) =5+ (i) () o) 0 () o) 1 (A2 4 (3.7)

The physical picture of the running can be seen as:

e (P~

Mw

(\Unafna) Sum.ys dege_ Loj.r

S S
™Mb Q—hﬂ'v(ﬁ/mg.)’”[

The above analysis is for v+ and § at the lowest order in «s. At higher order, the general structure for
the evolution of the coefficients is C;(1) = C;(uw )Uji(uw, i), where Uj;(pw, 1) is the evolution matrix.
The effective electroweak Hamiltonian can therefore be written as He,, = Cj(pw )Uji(w, 1) O; (1), relating
coefficients at high energy scale and operators at low energy scale. The order expansion of C;(u) is now
receiving a correction at higher order in a; (the first order is the leading log(LL), the second order is the
next leading log(NLL) and the next order is the next next leading log(INNLL)), which is a perturbative
improvement for the renormalization:

Ci(n) = .+ . ZO‘SMW ln( Wy 4o (i Zas,uw)ln( )+ ..ol (pw Zasuw)ln( )+ .
k K . i - 0

At the same log order, the matching C;(uw ) is at 1 order diagrammatically higher than the calculation
for the running of 7. At LL the matching C;(uw ) is at tree level while the running ~ is at 1-loop, at NLL,
the matching C;(uw ) is at 1-loop while the running « is at 2-loop and at NNLL the matching C;(uw) is
at 2-loop while the running ~ is at 3-loop and so on.
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The renormalization group flow induces the coefficient of operator Oy through perturbative improve-
ment at LL as the higher log order terms are of O(1), although the matching at tree level gives Cy = 0.
The value is C1(mp) = 1.12 and Ca(my,) = —0.28.

The process b — ciid gives the decay B — Dx (or in quark components (ub) — (uc)(ud)), and the
contribution to the scattering amplitude (D7| Hey, ‘B> can be written in 2 ways:

(D7 Hew | BY = Ciluw) (D] Oy} | B) = Cil) {Dre| Oi(n) | B)

The first way has large logs from the terms ~ In (TZTV;’) and is therefore troublesome for analysis and
calculation via lattice quantum field theory. On the other hand, the second way has no large logs (these
are absorbed in the coefficients and summed by the renormalization group expression) and the operators
are at the same scale with the process ~ my. Physically, C;(u¢) and O;(u) are the right couplings and
operators to use.

Now, let us compare with the full theory in the SM. The EFT is already renomalized in the M .S scheme,
and since the calculations in the full theory involve the weak conserved current, the UV divergences in
dressing vertex and the wavefunction cancel out to give UV finite results. The 1-loop diagrams in the full
theory are:

N Y Y Y -
/N SN/

We now look at tree level S7 and log terms. The full theory and the EFT (at leading order C; = 1 and
Cy = 0) give:

2 2
. ql-loop _ Qs 7 3 as miyy
iA (1 +20p (L ))s1 e (S (3.8)
2 2
1-loop  _ %y (A 3 Qs
(01) (1 +20p 5" ln(_p2))5’1 (s (3.9)

where here the (...) contain non-logs and Sy terms. The above equations are almost the same, except
for a difference in mIz/V and p2. This can be understood as my — oo from the point of view of the EFT,
therefore the role of myy and p are similar (cut-off). The calculations for EFT involve only triangle loops
(since the W boson propagator is effectively shrunk to a point in the Feynman diagrams and all the physics
at the high energy scale is absorbed into the mass scale 1) so it’s much easier than the full theory (moreover
the % term is all that is required in the EFT to compute the anomalous dimension, which is a lot more
convenient than the SM). The In (—p?) terms are matched between these theories, which means they agree
in the IR region. This check tells us that the EFT has the right degrees of freedom at the low energy scale
(it’s kind of obvious in the case here, but in other theories it can be non-trivial).

The difference of O(as) gives the matching at 1-loop (at tree level, i 4 = C;(O;) = S1):

0=id— (01<01> + 02<02>) = jAlloor _ oD g (0,)0s) _ Vg, —
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3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

The index indicates the order in term of oy as C1 = 14-C} (1) ..and Cy = 0+C, (1) . From the terms
Siln(...) one can find that Cfl) = —NiascF In (- 2 ). One can also show that C’(l) 3a50F In ( 22 ) with
¢ W My

a similar calculation for the Sy In (...) terms. The coefficient is independent of the IR regulator (IR region
diverges as the off-shell regulator —p? — 0). At this point it is clear to see that u separates the UV region
at scale ~ myy and the IR region at scale —p? — 0 in the full theory from the point of view of the EFT. In
other words, we can see the full theory as a cross between the EFT at large momentum and the EFT at

2
small momentum. The EFT large momentum part In (24 2 ) is absorbed in the renormalized coeffients and

the EFT small momentum part In (_—;2) is encoded in the renormalized operators with all light degrees

2
of freedom, and together they reproduce the full In (’f—;g) Note that the multiplication becomes addition
through expansion at the same order in ay:

m2 m2 2
14 a,In (_—;g) - (1 +ayln (/TgV)) (1 +asln (_”72))

Order by order in a(p) the Inp terms cancel out. The p dependence of C;(u) and (O;(u)) should be
gone since C;(1)(0;) = iA, which is p-independent. The result is p independence at any a4 order one
works with, even that oy itself depends on p (the cancellation for ;1 dependence of as(p) comes from higher
orders).

Now, let us do some sketchy calculations at NLL. Ignore the mixing for simplicity i APFT = C(u)(O(u))
and note that the coefficients, operators (matrix elements) at next leading order are scheme-dependent
(however, note that the 1-loop anomalous dimension is scheme-independent as long as the scheme is mass-
independent). The matching is:

3O 2, © ’
Qs (77 1) - AEFT _ Qs i H (1)
A= 14 P (= T (TR + AN AT = 0 (14 T (- () + BY))

Therefore C(uw ~ mw) = 1+ 2 (7( Ln (L ) +AM _ pa >). With 8 = %02 — Cynp — 2Cenp,
the run at NLL originates from these evolution equa‘mons

d %s As d als als
WO =) = O | @elihye g s ) = —20s () (60% (2 )W(M))Q)

47 4 4
The trick 4 — a5 gives in general %‘ = 5‘%2‘2 7, and an all orders solution for C(p) is ln(cc(vi’:g 5) =
© )
S ) do &, For NLL, with J = Y28t — 3o (take puy = miy):

(0)

U, 1) = exp / (::V) dasggj) = (14 %1 ) (a;(s’?;)”)% (1 sl

Combining next order matching and NLL running:

_ as () as(mw ) % as(mw) 1) pQ)
Cu =1+ =50) (T ) (L =@ - 50 - )

Of the EFT scheme choice, in the above expression B, 4N .7 C(u) (and also (O(u))) are scheme-
dependent. On the other hand Sy, 1, 9, AW, BO) 4 g (and also C’( )(O(w))) are scheme-independent.
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3.2 Massive SM particles 3 TREE LEVEL, LOOPS, RENORMALIZATION AND MATCHING

Example: A sketchy derivation for B! 4 J to be scheme-independent starts with (O)’ = (1 + 25)(0)

in a “primed” and a “un-primed” scheme, with s being some constant. From this Z’ = (1 — 728)Z and

therefore C' = (1 — §25)C, BMW = B 1 5. Also 'y(l)/ =~ 4255, and from the scheme independence
C(u){O(n)) = C"(w){O(W))" (or C(mw )U(mw, 1){O(n)) = C"(mw)U' (mw, 1){O(n))’):
. as(ﬂ) as(mW)

- —
e p s)=J =J—s

It is then clear to see how B’ +J" = BW 4 J, and therefore A — B — J i scheme-independent.

L

The LL result gives <%TZS’))W scheme-independent, and that means the scheme-dependent part

<1 + O‘Z—(W“)J ) of C(p) should be cancelled by the scheme dependence of the operator (O(u)) at the lower
end of the evolution (at ).

Some remarks for the EFT of SM, in general:

o v° = iy%y14243 is inherently 4-dimensional, and it must be treated carefully in dimensional regular-
ization.

e In 4 dimensions, the set of 16 matrices {1,7°,v#,45y*, 7"} is a complete basis, but that’s not true in
general in d dimensions. Additional operators are called evanescent, and in dimesional regularization
one might need these operators, although they are vanish as e — 0.

From the electroweak Hamiltonian, one can do some phenomenology.

Example: Consider the b — sy flavor changing neutral current process. Since this process doesn’t

b s
N
appear at tree level, it is sensitive to loop corrections (e.g. S}C?/ ). Some of the effective operators
37

after integrating out the ¢ quark and W boson contribute to this process:

e2

O?»Y = @mbga’w(l + /75)bF,u,V
Os¢ = #mbﬂma’“’(l + 75)bGZV
0 = (57“(1 +'y5)U) (ﬂw(l - 75)d) , 02,03,...,019
% 7
Let us go through some diagrams. At leading order “_ | = C7L70 = C%VO("%’) ~ —0.195, then
O7v
,_X
at 1-loop level = 0 (in the 't HooftVeltman scheme for +®) and 2-loop level

&l
divergences give the leading order in the anomalous dimension 4(°) at first order . From all diagrams
and doing the matching, the LL evolution at pu = my, gives 50% bigger value (which means the branching
ratio Br(b — s7) is enhanced by (1.5)% = 2.3 times):

8
C7V(N = mb) = (M)Tsc%70+§((Oés(mW))g_(Oés(mW))ﬁ)CBLGQ_i_Z hi(a (mw)
=1

S a; ~LO .
as () 3N ag(p) s (1) a0 )" CEO ~ —0.300

QCD corrections are crucial for using b — sy to constrain new physics.

25



4 CHIRAL PERTURBATION THEORY

4 Chiral Perturbation Theory

Chiral Perturbation Theory (ChPT) is an example of a bottom up EFT, with non-linear symmetry repre-
sentations. In this EFT, loops are not suppressed by the couplings but by powers (in the power expansion),
therefore it has a non-trivial power counting (power counting theorem).

Let us briefly review QCD chiral symmetry for light quarks (approximately massless):
Loop = Vil = Yrilppr, + vrilPor 5 r — Lr , ¢Yr — Rig

Under the unitary chiral transformation (L and R) the physics of the theory doesn’t change. In QCD,
the full chiral symmetry (with both left and right) is broken (the axial symmetry is broken and only the
vector remains) because of the mass terms:

M " o H f&f; Goldstone s ,E&(i g D
SUG) L x SUp > SUG)y (é) g TR Muss L
% oen . Fgen. 8 en Naco 3
SU() x SuG)a > SURWV ( :} 2 qr Mo d L
3gen Pgen. 2 gen. '-/C:;-a 50

4.1 SU(2) ChPT

The goal for ChPT is to find an effective field theory for the Goldstones (light degrees of freedom, bound
states of the quark fields in the original theory). The matching at Agcp is non-perturbative, so a better
approach for the EFT L, is just using the symmetry breaking pattern (and the degrees of freedom). The
Wilson coeffients for operators in the EFT can be fixed through experimental data or with numerical values
from lattice QFT. In the bottom up point of view, any theory with the same symmetry breaking pattern
will give the same £, but different coefficients (the high energy physics is encoded in the coefficients). For
now, Let us stick with ChPT for the bound states of v and down quarks, the 3 pions.

Consider a theory with a similar symmetry breaking pattern: a SU(2) linear o model with 7 = o+i7%7¢
(7% is a Pauli matrix). The Lagrangian of the full theory is:

2
Lo = irﬁ“ (OFmO,m) + Mzrﬁ" (xim) — %G(Tl" (WT?T))2 +Pridvr + YridYr — g(VrmdrL + YRTVR)

where the first term is the kinetic term, the second is the mass term and the last 2 terms couple our
Goldstone with a fermion. The theory has a global SU(2)r x SU(2)g symmetry with the transformations

Y — Iapp, Yp — Ryp and 7 — LwRT (explicitly, L = exp (5af7?) and R = exp(%aaRT“)). This
symmetry is spontaneously broken since the potential V = —“72(02 + 7)) 4+ %(02 +7%7%)? has minimum

at o2 + 77 = "72 Take (0o |0) = v = \/“72, ¢ = o0 —wv and (0|7 |0) = 0 (so the vector part of the
symmetry is still unbroken). The new Larangian after the change in variables is:

1 1 A
L= 5(8“58u5 —2u%6%) + 56“#“ T — MG (52 + ) — 2(52 + 77?2 + O()
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4.1 SU(2) ChPT 4 CHIRAL PERTURBATION THEORY

The unbroken symmetry is global SU(2)y with the transformations & — & and 7@ — Vr®VT (as
L = R). The Goldstones 7 are massless, the & field gets a mass ms = 2% = 2 v? and the ¥ field gets a
mass my, = gv. Take v to be large so that there is a clear separation between the low energy degrees of
freedom, the massless 7, and the other massive degrees of freedom. The EFT of interest deals with 7%
without worrying about & and 1.

Field redefinitions can be used as an organizational tool to produce a nice formulation for the EFT.

Example 1: The square root representation uses S = /(6 +v)2+ m7% — v(= & + ...) and ¢* =

#:aa (= 7+ ...) to produce the following Lagrangian:
1 1 S AGH AL ALY AP
Lon = (050,58 - 28%) + 5 (L) @rora,en + ST

A _ S.
~wS® = 281+ Bigt — g (T2 ) (VT = g — i)

Since the expansion of S and ¢® gives a term linear in ¢ and 7%, the representation independence
theorem can be used to quantize the theory and give the same results for observables.

Example 2: The exponential representation uses the same S as the square root representation in addi-
tion to o + it%7% = (v + S)¥ with ¥ = exp (#) to produce the following Lagrangian:

N (v+9)?

Lexp = %(8“5(%5—2/1252) Tr (9#£0,%1)

WS~ A8H i — g(o + 8) (D1 T + YrSty)

Once again, we see that representation independence theorem works for the fields .S and I1*. Dropping
the massive S and v fields in the above Lagrangian (integrating them out in the lowest order is equivalent
to simply dropping them), one gets the non-linear o model Lagrangian £, = %Tr (8“28#27). This action
is equivalent to the original one for low energy phenomenology of the pions. To see this, let us do a tree
level calculation for the scattering process of Goldstones 7770 — ¢*70 with the momentum transferred
q =7y —p+ =po— py. We have 2 possible types of diagrams - direct scattering and exchange scattering:
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4.1 SU(2) ChPT 4 CHIRAL PERTURBATION THEORY

+

\
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The quantum theories of these 4 Lagrangia all agree at (’)(g—z). From the above results one can see
that the linear action is the most inconvenient since the derivative nature of the interactions is only seen
by cancellations between graphs, and the non-linear action is the most convenient since it only has the
appropriate low energy degrees of freedom Y and contains the derivative couplings.

Under global SU(2)f x SU(2)g transformation we see S — S and ¥ — LY R' (since 7 — LmR'), so
the field II* transforms non-linearly (while ¥ and 7 transform linearly). The infinitesimal transformations
of these fields are II* — II* + %(af — a%) + O(II?).

Instead of going through all of the above analysis, one can write down £, from the start, in general.
Consider a symmetry breaking from G — H and parametrize the coset G/H by X. It is in this coset that
the Goldstones transform. The transformation generator g = (L, R) € G is broken to (V,V) = h 5 H,
and the parametrization for the coset can be thought of as g = (g1, gr) = Zh (the symmetry broken part
= = Z(x) can have position dependence). The transformation is = — g=h~!.

Example: For G = SU(N)r x SU(N)gr and H = SU(N)y, look at the separation (9r.9v,9rg9v) =

(ngE, 1)(9rgv,9rgv) (using gRgE = 1 as a SU(N) generator). Note that (grgv,grgv) € H, so the
broken symmetry (ngj?u 1) can be parametrized by a SU(N)4 matrix ¥ = ng}% which transforms as
¥ — LYR' (this can be read off from the form of ¥).

A good way to parametrize G/H is to use the components I1%(z) of the broken generators t* in Z(z)’s

exponential form E(z) = exp(%). This is known as the Callan-Coleman-Wess-Zumino (CCWZ)

prescription. One has the freedom to pick a choice for ¢%.

Example 1: Pick t* = 77, then E(z) = (exp(%),eo) = (X(x),1). The transformation law
satisfies:

e — = 1_ = ‘/ = I = T

1To11% ()

—),exp (—

Example 2: Pick t* = 78 — 7%, then E(z) = (exp ( %)) The transformation law
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4.1 SU(2) ChPT 4 CHIRAL PERTURBATION THEORY
satisfies:

, -1
E’:(% 29_1)29 hl= < )< o >(‘g 3) =¥ =LV ' = VR
_ I

For QCD, the common convention is v = = so that ¥(z) = exp(%(z)) with M(z) = Tar\[;%(a:) =
" < 0 It — 4112

[1]

75\ I 4 i 110 ), and the chiral Lagrangian £, becomes:

2 2
L, = LTr (0"%0,51) = Tr’/ exp ( 2ZM )8(2ZM)eJ:p(2ZM(1—s))‘
8 f f f
3 2
_ %Tr OM + %{M, oM}~ %5 2_(OMM? + MOMM + M29M) + ‘
_ %Tr (9" M3, M) + 6}2Tr ([M, 0" M][M, 8, M]) +
— Lot — Y mogrpieg, e
T2 HE 32 pi

, where the first term is the kinetic term and the second is the 4-point interaction.

The chiral symmetry is explicitly broken in the SM because of the quark mass terms —@LquR —
&Rqu 1, so the Goldstones become pseudo-Goldstones. If we treat the quark mass matrix as a spurion
field and say M, transforms as M, — LMqRT7 the symmetry breaking terms become invariant under the
transformation. By fixing this term, M, explicitly breaks the symmetry, and from the lowest order term
of the mass matrix in the effective Lagrangian one can find the masses of the pseudo-Goldstons :

2
——'u(mu + mg) I +

L350 = uTr (M= + ME) = — 5

my

where we have used that M, = ( 0

73 ) . These Goldstones have therefore the same mass-squared
d

m¥ = ;lf; (m2 +m?2) at this level of analysis.
In QCD the left chiral current is calculated from ‘]gu = ’(E’YNPLTG’QZJ (with a similar equation for the
right current), and it can be coupled with a vector field I, = 70}, in the Lagrangian so that Jz# = —%ﬁi‘.
n

Similarly, with the spurion left and right vector field I, = t*Ij; and r, = t%rj;, the EFT theory can be
made locally gauge invariant by using them to change the derivatives, with a specific transformation rule
l, — L(z)l,Lt(z) + i0,L(z)Li(z) and r, — R(z)r,R'(z) + i0,R(z)R'(z). In detail, 9,% — D,% =
02 +il, X — iXr#. With this trick, one can find the left and right Noether currents to be Jgu %ﬁi‘ =

—%Tr (t*%9,5") and Tk, = —%ﬁ%‘ = —ET (t*%79,%) respectively. Note that the axial current has the

expansion J§ , = J7  — Jp, = —%@LH“ ., hence the matrix element (0| J4 A }Hb i 09p,, at tree level

gives the pion decay constant to be %
Next we turn to look at the Feynman rules, power counting and loops in ChPT. The lowest order
Lagrangian is given by:

f2
Eg{o) _ gTr (5MET3M2) + pTr (MQET + MJE)

2. We will expand in the power counting factor /Ié < 1 as well as
X

Here, 9% ~ vomy, so p* ~ m2.

Notice that we have both a derivative and mass expansion simultaneously. A, is a (large) mass

X%JLSI\J
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4.1 SU(2) ChPT 4 CHIRAL PERTURBATION THEORY

2
scale, and it is natural to choose A, ~ f since the 4-point pions vertex is ~ ?—2 from the interaction

6]1”2 Tr ([M, 0" M][M,,M]), and ~ Tr (MgM*). Also from experi-

mental data we get f > mi.

Now let us take a look at one of the 1-loop diagrams (e >d § m

FM (~ ?) from the interaction 6f4

< /dd (p — D= py)? L mi {ptmE)

S 2t ((—pr 2 —my) T (42

In this equation, {p?,m2} indicates the power counting, as those two are equivalent. Additionally,
we used dimensional regularization to preserve chiral symmetry and power counting. The (47)2 in the

{p r[}

denominator is the loop factor, and since is the order of tree level, the loops are suppressed by

{f 1 %HQ}, hence A, is often chosen to be 47 f ~ 1.6 GeV. Another choice for A, is the mass of p (the lightest

pseudo-Goldstones integrated out of this ChPT), with m, ~ 800 (MeV).

In the MS scheme [M] =1—¢, [f] =1 — € and [pu] = 2 — 2¢ and therefore with the renormalized
mass scale parameter A one gets "¢ = A=¢ and ;" = A=2¢y (in ChPT the loops do not renormalize
the leading order Lagrangian, so counter-terms aren’t needed). There’s no A dependence in M, and my

—€

since % = uf%. The loops have UV divergences of the form % + In (1;—22) and % + In (Tﬁ—z) which enter
11

at O(p*, p2m2n, mf-[), and counter-terms for these poles should come from the Lagrangian at higher orders.
These new operators are:

LO = Ly (Tr (0"28,51)? + LyTr (920" =N Tr (9,20, 51) + ... (4.2)

Let %QX = pMy,. The equation of motion, (L)X — Z(OLT) — xS + xT + 1Tr (xST — xT8) = 0,
can be used to remove [J terms, and with SU(2) identities the Lagrangian can be further simpliﬁed (e.g.
Tr (6#$0,2790%0,57) = §(Tr (8“28MET))2). At O(p*) one can include both loops with p in terms
and p*L;(A) terms from higher order interaction to eliminate the divergence by the counter- terms 0L;
(the A dependence, by construction, is cancelled between these contributions). A can be thought of as a
cut-off dividing UV and IR physics between the low energy physics from the A-dependent matrix elements
of the loops (with pion fields as light degrees of freedom) and high energy physics from the coefficients

L;(A). The expectation value for couplings can be guessed as Li f(f ) — i 47r1f)2 (az ln( ) +b; ) with a; and b;
encoding high energy physics. From naive dimensional analysis, because changing the mass scale A moves
pieces between the loops and the coefficients L;(A), one expects them to be at the same order of magnitude
Q; ~ bl ~ 1.

In practice one has to pick a value for A, and it’s typically chosen at a high mass scale A ~ m,or A, so
that the large logs are placed in the matrix elements instead of the coefficients, as the dimensional analysis
holds for them and the power counting estimation works. Note that there is no infinite series of large logs
to sum over in this EFT, since the kinetic terms don’t get renormalized (when e — 0)

If the regularization is a hard cut-off A, then the 1-loop diagrams involve terms ~ =% ¢ that break chiral

symmetry (and therefore effectively cannot be absorbed by counter-terms in L, Wthh preserves chiral
AZp®
A4

symmetry), terms ~ that break power counting (which should be suppressed as O(p*) for the right
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4
power counting) and are absorbed in O(p?) to restore power counting, and terms ~ I)}\%AC that can be
X

eliminated by the counter-terms of p*L; (similar to dimensional regularization). There are difficulties as
mentioned above, so this choice of regularization is not often chosen for ChPT.

A difference between a theory with gauge symmetry and chiral symmetry is the structure of IR physics.
In ChPT, the derivative 9,, couplings make the IR region nicer since one usually has good m% — 0 and
p? — 0 limits.

ChPT can be used for phenomenology.

Example: The pion scattering process mm — 7w below the inelastic thresholds can be described by a

simple quantum mechanics S-matrix, which we can enumerate channel by channel. For example, S;; = €201

with [ is for partial wave (angular momentum state) and I is for isospin. The effective range expansion for

)

0
rl(I I

the phase-shift gives p?*1 cot ;7 = —% + 5= + .... Detailed ChPT calculations with the direct 4-pion
2 2

scattering predict the values for a;; (e.g. agy = 127::7;}2 and age = —82:—“2, with fr; being the pion decay
II II

constant), which are parameter-free after myy and fi; are known.

Now let us go back to the power counting of Feynman diagrams in ChPT. Consider a diagram with
Ny vertices, Ny internal lines, Ng external lines and Ny loops. Expand Ny = ) N, so that N,, counts
the number of vertices in O(p", my;). We use dimensional regularization, so that the power counting isn’t
ruined. Let us count the mass dimension (A, factors) for a matrix element with Ng external pions:

(4—n)

e Vertices give AXE" N , where the factor (4 —n) comes from the mass dimension of the couplings.

e f(~ Ay) contributions from the pion lines A} 2Ni=Ne (internal lines is the contraction between 2 pion

fields while external is 1), because each factor of pion field comes with a factor f through H7a

Topologically, one has the Euler identity to put a constrain Ny = N+ Ny —1 and this can be used to re-
move Ny from the calculations. Hence the mass matrix elements should be ~ Af‘(_NE_D{p, mH}Dg(W),
where D can be solved to be 2+ > N, (n —2) + 2Ny, > 2. The term 4 — Ng in the exponential comes
from the dimensional analysis of the scattering amplitude. Adding vertices or loops always increases D
(more power in {p, mr}), and they correspond to a power suppression.

In conclusion, one just has to count the number of loops and vertices (momentum counting).
Brample: X p7 D=2 [  D—4 >‘ﬁ< D=4
Example: PoD=2 SO Ped -

4.2 SU(3) ChPT

In the SU(3) case one has an octet of pseudo-Goldstones (in the charge basis):

JIC/N + 0
My 0 0 A\eTIe V2 T V6 H(}_[ KO
_ . — — - _ 1 _n
Mq = 0 mgq O ;o M= \/i = 11 \/5_—1— /6 K
0 0 ms K~ KO _%7]

We can expand the mass term uTr (M, X1 + MJ %) to get the masses for the mesons: m%., = m%—(o =

%(md—i—ms)) and m¥. = %(mu+md). The masses of 7 and IV are mixed in the mass matrix (with a spin-

o . . . Mk mg P
violating off-diagonal term ~ m,—my that is often treated perturbatively) Mo, = Ma—my mu+mj+4ms

V3 3
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5 HEAVY QUARK EFFECTIVE THEORY

If we ignore isospin violation via m, ~ mg = myq = W < my, then m%o ~ %‘(mu +myg) ~ %mud

and m?7 ~ ?f%(mu +mg +4dms) =~ %(mud + 2my).

Including the spurion left and right chiral current d, — D,,, the lowest order Lagrangian is:
0o _ f? f?
0 = oo (D*SID, Y + 2t +xTE) | X =M,

The momentum power counting gives ¥ ~ 1, D3 ~ p, l,, ~ r, ~ p (recall that these are the spurion
source chiral currents), x ~ p? (which behaves like a scalar source) and my ~ mg ~ p. The next order is

O(ph):

£? = L(Tr(D"sD,xh)’ + LT (D*sD'sNTr (D,£D, =) + LyTr (D"sD, = D"ED, o)
+LyTr (DD, SHTr (x=F + x'8) + Ly Tr (D#2D, ST (xS + XT8)) + Lo (Tr (= + xT%))?
L (Tr (xET = XT2)? + LeTr ((=Tx = + XISy ') + LoTr (D, 2D, 5t + R D, 31D, %)
+LioTr ("SR, SY) + HyTr (L Ly, + R Ry,) + HoTr (xx')

In the above Lagrangian, L,, = 9dul, — 0,1, + i[l,,l,] and Ry, = 0ur, — Oyry + i[ry,r,]. Simi-
lar to SU(2) ChPT, the equation of motion can be used to remove (0¥ terms, and the SU(3) relation
also helps to reduce the number of operators (e.g. Tr(D*ELDVXID,¥D,XT) = I(Tr (D”ZDMET))2 +
Tr (D*EDYSN)Tr (D, XD, X1 — 2Tr (DD, STDVYD,X1)).

One can make a correspondence between the SU(2) and SU(3) case since they both describes pions.
The heavy particles (kaons and eta) in the SU(3) case can be integrated out and the coefficients can be

matched between these two theories, where the kaon and eta physics will be encoded in the coefficients of
the SU(2) ChPT.
SU(3)

Example: An example for the matching is 2LfU(2) + LgU(Q) = 2LfU(3) +L; - m (1+1In (%))

We now quickly look at the renormalization of these operators. The renormalization of L; starts with
L; = Li*" + §L;. The counter-terms absorb divergences ~ % —1In (47) + v — 1 in the M S scheme.

Example 1: In the SU(2) case, - causes a mass renormalization of the Goldstones,

shifted from the tree level answer m?2 ~ 2B,myq (B, = j%’;):

16m? m?2 m?2
2 a2 o ren ren ren ren o o
i (A) = (1= = (LE"(A) + LE™(A) — 4LE™(A) = 208" () + (2 i (555))
Example 2: In the SU(3) case the pion decay constant gets renormalized as:
_ 16myaBo  en 16B, ren om m?
Fn(A) = 7 (1= 20 = G + LS )+ g Cmu m ) L)) G = s ()

with f being the parameter in the leading order Lagrangian.

5 Heavy Quark Effective Theory

Heavy Quark Effective Theory (HQET) is an example of an EFT where heavy particles (that are not
removed) “wiggle” under the influence of light particles. It has degrees of freedom that will come with
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labels and encodes heavy quark symmetry (which is not apparent in QCD) with covariant representations
and reparametrization invariance. In this EFT the anomalous dimensions are functions (not just numbers)
and the renormalization scheme M S shows limitations that come from the scale separation for power-law
terms and renormalons.

Instead of integrating out the heavy particles, they are viewed from the EFT as sources that can wiggle.
Consider a heavy quark @ sitting in a bound state of a meson Q¢ and being surrounded by light degrees
of freedom @, similar to what’s going on in B® = bd.

In this example, the size of the meson is 7! ~ Agcp <€ mg, so that a good expansion factor is
~ %. To describe the fluctuation of the heavy quark due to the light quark, one needs a top down EFT
that takes the low energy limit of QCD:

LrpT = mggloo ACQCD = mgglooQ(ZlD— mQ)Q + ... (5.1)
One needs to find a way to expand the Lagrangian.

5.1 Preliminary Treatment for Heavy Quark

In the low energy limit of QCD, consider the propagator of the heavy quark with v?> = 1 and on-shell
momentum p = mqu. After receiving a kick from the light degree of freedom (soft modes), the momentum
wiggles p, = mquy + ku (ku ~ Agep < mq) and the off-shell part should be encoded in the effective
propagator:

i(p +mgq) imQ¢+mQ+k:i(1+yﬁ)i+O( 1 )

p? — sz - 2mquk + k? 2 ok mQ

Vertices can also be expanded from the 2 legs of the heavy quarks with (#)'y”(#) = v“(#):

~
7

% = —igy*T* — —igv'T®

Without expanding the full Lagrangian, one can guess and write down an effective Lagrangian for those
modifications from the change in the Feynman rules. This is actually the HQET Lagrangian Lyqrr =

Q.ivDQ, with the degree of freedom @, satisfying a projection condition (#)Qv = Q.

A more direct derivation of the Lagrangian can be started by decomposing the heavy quark field:

—im 1+ 1-—
Q) = e (Qua) + Bu@) 1 ()@= . (5B =B,
Another way to write down the projection condition is ¥Q, = Q, and ¥B, = —B,. The derivative can

be expanded as il) = ¢iv - D + i[Dr, with the transverse derivative Dr, = D, — v,v - D (which leaves us
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will the desired relation v - Dp = 0). Then, the Lagrangian for the heavy quark becomes:

Lo = QG — mQ)Q = (Qu + Bv)eimQ”(ﬁivD +ilpr — mQ)e*"me(Qv + By)
= (Qu+ By,)e™av e MRV (4 — 1)ymg + ¢ivD + iPr) (Qu + By)
QuivDQy — By (ivD + 2mq) By + QuilPr B, + ByilPrQ.

where we have used JDT(%) = (#)JDF Therefore, with only @, as external particles, B, can be

e

1 . .
decoupled O Bo gy "~ mg 8 Mm@ — 0o since B, effectively have mass ~ mg. After

integrating out the terms with B, fields, one has the Luqrr. The field redefinitions are at tree level so
the above analysis is valid to leading order in O(miQ) and O(a(mg)), but one can still correctly describe
the couplings to k, ~ Agcp < mg gluons with this tree level HQET. Physically, @, corresponds to the
heavy particle and B, corresponds to the heavy antiparticle (this can be seen if we go to the rest frame
with timelike v,, = (1,0,0,0), then the projection % = # on the Dirac representation singles out
the particle part and eliminates the antiparticle part of the spinor), and by choosing to pull out the phase
e~mQVT one can focus on the on-shell fluctuations that are close to the particle (the opposite phase e™m@v*
deals with antiparticle on-shell fluctuations). Also note that when one redefines the fields, the velocity v
becomes the label on fields, and it is conserved by low energy QCD interactions.

In short, HQET helps to study heavy particles close to their mass-shell as one looks at the physics
of the fluctuations near mg - the antiparticle fluctuations are 2mg away, so they can be decoupled and
integrated out. Hence pair creation-annihilation is not part of the theory, so the number of heavy particles
is conserved, which results to a U(1) symmetry for HQET that QCD (the top down origin) doesn’t have -
an emergent symmetry of the EFT. A generalization of that is the heavy quark symmetry in HQET:

e There is a flavor symmetry U (N},) where N}, is the number of heavy quarks, since the LyuqgT is blind
to mg so it does not know about flavors of the quark from QCD.

e Spin symmetry SU(2), the independence of the remaining two spin components of @,, emerges
because Lyqrr depends on the scalar derivative v - D instead of the matrix derivative I with spin
indices; in the rest frame it can be seen from the heavy quark spin transformation @, = (1+iaiSb)QU

and 0LuqQer = Qv[ivD,iaiSég]Qv = 0 (which is obvious, because v - D is a scalar) with Ség =
ot 0
3 ( 0 o ) = 150"
e Together these make the U(2NNy) heavy quark symmetry, where @, is fundamental with N} spin

up and N, spin down degrees of freedom. This emergent symmetry has an impact on calculating
observables.

The power counting in HQET is based on the power counting factor %Q? as the leading order Lagrangian

has no mQ and the next orders Lagrangian are suppressed by %. From the mode expansions for the full

field Q(z) = [ \/ﬁ( u®(p)e”P* + ), one pulls out the particle fluctuations Q,(x) ~ e~*** and gets

iauQv(:c) ~ kuQy(x) without a factor of mqg. The variation in coordinate = of @, corresponds to the low
energy fluctuations of the scale Agcp, which is what one wants from this EFT. Looking at the sub-leading
Lagrangia and the external operators, all the powers of mg are explicit, which makes power counting easy.

There is a catch, however, and factors of mg can hide in states. Consider a relativistic normalized state
in QCD of a hadron H of the form (H(p')| H(p)) = (27)32Ep5) (p—p’) (spin labels are suppressed), where
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the state has mass dimension —1. The mass m is hiding in the physical on-shell energy £, = \/m%, + p?

(e.g. mp of B mesons has the heavy quark mass my in it). The state in HQET from the leading order
LuqeT quantization for the hadron |H (v)) must include a different normalization as well as %Q corrections:
|H(p)) = /mu(|H(v,k)) + O(miQ)) and (H(v', k)| H(v,k)) = (27)320°6, ,,6®) (k — k'), from which one
can see that the state has the mass dimension —%. A similar treatment can also be done for Dirac spinors
u®(p) = /mpu’(v), where we include the \/mpy factor to cancel the \/% in the mode expansions.

Example: The Dirac spinors are relativistically normalized so that @®(p)y,u*(p) = 2p,, and normalized
in HQET to satisfy u*(v)y,u®(v) = 2v,, which can be shown to be related by v*(p) = \/mpgu®(v)

With the heavy quark symmetry in HQET, one can do some spectroscopy. Light quarks and gluons
are still described by a full Locp without heavy quarks. As mg — oo, a complicated bound state hadron
Qg has the quantum number of the heavy degrees of freedom ) and light degrees of freedom of ¢, any
number of ¢¢ and any number of gluons. Similar to QCD, the total angular momentum J is conserved
(although the Lorentz boost invariance is broken), therefore it is a good quantum number (J? = J(J +1)).
In addition, the heavy quark spin Sq is also unchanged, and that can be used to read off some extra
information about the bound state by defining the light quark spin S; = J — S to get the new quantum
number satisfying S? = 9;(S; + 1). Organizing the particles by S, one arrives at the symmetry doublet
for the mesons (with jL = S; + %)

-
Sa Merons

— ¥ .
3 4 G, . 3= o, |

‘ " 5 :
Al Bo ){3} J = 9 \
1

)‘v -

ET @l ' ’Bl* \.}T“ l,z
e

This is because the Lagrangian and the dynamics in HQET are independent of Sg, so it can be added
or subtracted from the S; to produce different j that will belong to the same symmetry doublet. So heavy
quark symmetry relates particles in a doublet of a given S;. The same thing can be done for baryons:

Sa Boryons
o~ Ay L
— 7 7‘_
+ ¥ . -
I <L ) 2 Bl L:, ) 5/,

More predictions can be seen from the covariant representation of fields, which encodes heavy quark
symmetry in objects with nice transformation properties. Consider a field ngQ) (the @ index denotes the

flavor) that annihilates the meson doublet for the gound state mesons:
1+9,, . .
HY = (=) (P +iP[ D)

This is a bispinor field with indices of Qg and HE P = —H@ (because v - P*(@) = ). The pref-
+7

actor (IT) projects out the antiparticle part of the heavy quark degrees of freedom, PJLQ) is a vector
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field (it is replaced by the polarization €, after acting on the state, with € = —1land v-e = 0) and
z'Pv( )fy is a pseudoscalar field. Under Lorentz transformation A, it transforms like a bispinor H ; (Q) (') =
D(A)HéQ)(x)Dfl(A), where v/ = Av, 2/ = Az and D(A) is the spinor Lorentz transformation. It also
transforms as (2, 2) in the heavy quark and light quark symmetry Sg ® S;. To see this, simply go to the
rest frame v, = (1,0,0,0) with X = £e%[y7 4*] then 1Sh, H 59)] = %E’Hq(,?) and [S}, H, 57. )] = —%Hé,. )5,
Also under heavy quark spin transformation H, (@ D(R)oH jzeSl (5H1(,Q) = i[aiSé), HéQ)]), then after some
Dirac algebra one finds dP,, 2ozzP* ¢ and oP; ‘= 1 €k aj Py, — %aiPUT as these fields are mixed.

With Hf,Q), one can easily read off the heavy quark symmetry prediction.

Example 1: From QCD, the heavy quark decay constants of B,D can be guessed from just Lorentz
symmetry, parity and time reversal to be (0| gy*v°Q |P(p)) = —ifpp" = —ifpmpv*, and also for B*, D*
to be (0| gy*Q |P*(p,€)) = fp+e* (fp has mass dimension 1 and fp+ has mass dimension 2). With heavy
quark symmetry in HQET one can relate P and P*.

In HQET, these vector currents can be expressed as qgI'*@Q = qI'*Q, + O(mLQ,as(mQ)), the matrix

element in this EFT is (0| gT*Q, |H (v)) with H(v) denoting either P or P* of zero residual momentum k.

Under the heavy quark spin transformation @, — D(R)gQ., the current changes gI'*Q, — qI'*D(R)qQy.
(@)

It is convenient to rewrite gI'*(Q), in terms of Hy*’ which has P and P* inside, and to preserve the same
transformation law under heavy quark spin rotation, using the trick pretending I'* — I'*D(R)~! so that
the currents are spuriously invariant. Since Hi(,Q) — D(R)HqEQ), each of these spuriously invariant currents

(@)

should have a single term I'* Hy, *’, because it only contains a single initial state heavy meson field. Lorentz
covariance requires that the currents must have the scalar form Tr (X THHE )=Tr (F“Hf,g X), where X is

a Lorentz bispinor which is generally of the form MW Call a = ag(v?) — a1 (v?), then the trace
becomes to —iav* P, when I'* = v#~4° and aP;}* when T* = v, One arrives at:

0lay"°Q|P(v)) = —iav" : (0]gy"Q |P*(v)) = ae"

The first prediction from HQET is that a (~ A?é/éD) must have the same values for B, D,B* and D*.

The connections between states in HQET and QCD gives fp = \/;‘TP and fp+ = a,/m}. The second
3/2

prediction is the size of the decay constants for the mesons, such as fp ~ Qlc/f ~ 180 MeV as well as the
mp

ratio between decay constants, such as ;B ~ %—g ~ 0.6.

Example 2: Semileptonic decays B — DIy and B — D*lv are greatly simplified in HQET, since in
QCD one has to deal with 6 unnormalized form-factors while they can all be reduced to only 1 normalized
form factor (Isgur-Wise function) in HQET

5.2 HQET radiative corrections

HQET has an interesting renormalization structure for the Lagrangian Lyqrr and the current J,. This
can be used to match with the top-down origin QCD, e.g. J,?CD = C(mL)JHQET + O(

1/2

g

The wavefunction renormalization Qb = @, in HQET, using dimensional regularization (in
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Feynman gauge, and using the M .S scheme which introduces the extra factor becomes:

H2€ )
(4me=VE)€

%
A: 'CF92 1
=-C dl - ! vp— + ...
4 +P " / ! Q+p) gn2 e

To carry out the above integration, we used ﬁ = 2f0°° (mfé#)? with @ = ¢%, b = v(qg + p) and
(12 — A)? = (¢® + 2)vq + 2 vp)? with t = ¢ + \v, A = A\(\ — 2vp):

_ e 22— ) 4y o vdo
Crg® / d'q5—— o +p) = (=Crg°) (4" /0 dAXZ77(X — 2up)
; 3 _ d d _ i 2
_ (_CFQQ)Qllfl;T(r;) ['(3 ;3/;(2 1)(_vp)d73 _ (éizg vp% (5.4)

The wavefunction counter-term can be calculated - it will differ from Zy, in QCD because of the different
loop integration for heavy quark degrees of freedom compared to light quarks:

C 2
TS i -Dp= 2y =14 2FI
8m2e

Note that there are usually 2 choices for doing the renormalization in this case: if one uses the M.S scheme
(as above) one only needs to keep the pole divergence, while in the on-shell renormalization scheme one
gets other extra terms. The matching result from both these methods must be the same in the end.

The next step is to renormalize the local operators. Consider a heavy-to-light transition, b — ue™v.
To describe this process we use an operator of the form Ol(f)) =g FQS,O) with a light quark ¢ and a heavy
quark @,. The renormalized operator (grouping all the renormalized factors in the counter-term) becomes:

Or = -0l = a1Qu + (Y2~ 1)are, (5.6)

By evaluating the diagram and including wavefunction renormalization, one arrives at Zp =
2

1+ %226. The anomalous dimension is vo = —49? = —%, corresponding to the renormalization group
evolution below the heavy quark mass m¢ (the conserved current above mg has no evolution) since this
mass is treated as UV information of this effective field theory. Note that in this calculation independence

on the spin structure of I' originates from a HQET symmetry.

For a heavy-to-heavy transition, such as B — D*e~ v (with quark content b — ce™7), the operator of

interest has the form 7T 1&0) = Qf}(,))FQz(,O (hence renormalized Tt = Q,I'Q, + ( ~1)QuT'Qy). The diagram
calculation (in Feynman gauge) has both UV and IR divergences, and takmg the external momentum of
the quarks to be zero for the sake of simplicity, we get:

4 %
a’
5 = —Z'CFQQ(W,)/QQ(WJ;I(U'Q)

U

37



5.2 HQET radiative corrections 5 HEAVY QUARK EFFECTIVE THEORY

Combining this with the contribution of the wavefunction renormalization and looking at the UV behavior,
with w = v - v and r(w) = %, one arrives at Zp =1 — 67’;—226(wr(w) — 1), leading to a non-trivial
anomalous dimension yp = %(wr(w) — 1). Once again, the anomalous dimension is independent of the
spin structure I', which is easy to see from the Feynman diagram from the heavy quark symmetry, because
both non-I" vertices and propagators don’t have any spin structure characteristic. However, the result does
depend on the structure of the heavy quarks’ hard motion, a complication that arises from the fact that

In (-2-) in QCD splits into In () in HQET and In (mLQ) in the Wilson coefficients, and the anomalous

QCD cD
dimension has to sum over both of these large logs.

The Wilson current in general must depend on these indices (i, v, v’), and because it is a scalar we
can write:
Clas, u, mpvt, m™) = Clas, ,u,mg?mg,w =v-7) (5.8)

Example: In B — D*e™ 7 let pfy = mpv* = mp«v" 4+ ¢* (¢" is the 4-momentum transfer), hence w =
/ mQB“!‘m%*_qZ

Vv = which is fixed by kinematics (the allowed kinematic range is 1 < w < 1.5).

There is more interesting physics to be noted from the study of these transition operators:

e In QCD the vector current §iv*qo is conserved for massless quarks so no anomalous dimension
contribution arises (masses don’t spoil this, as p > m). However, in HQET the scales are u < m
and therefore the currents g1v*Q, and Q,~v*@Q, are not conserved.

e From the results at leading log order the matching at p = mg (so that C'(u = mgq,...) = 1) yields

_
Crr(p,...) = C(mg)U(mg, 1) = (%) % (similar to the Electroweak Hamiltonian), where v is

a constant for heavy to light operators and v = v (w) for heavy to heavy operators.

e The corresponding p-dependence arises in HQET matrix elements, e.g. the decay constant matrix
element (0| gy*v°Q, |P(v)) = —ia(p)v* is a function of y (note that this works for a perturbation
theory cut-off scale 1 ~ 1 GeV 2 Agcp, since a(p) has no large logs and other complications).

With the knowledge gained from the study of the renormalization group evolution, one can move on
to the matching analysis. We will use the MS scheme everywhere and consider perturbative corrections
corrections at the scale mg, as(mg). Before matching onto HQET, we integrate out the weak interaction
exchange partners to get to to QCD with H.,,. This is then matched to HQET by considering perturbative
corrections in the heavy quark mass scale and integrating out the heavy degrees of freedom below their
mass scale. A pictorial view of how H.,, of QCD is matched onto HQET is:

M.,

Hu

HeeT |

Consider a matrix element in QCD with Electroweak Halmintonian H,, (setting the light quark momentum
to zero for simplicity). The finite residue factor coming from UV corrections of the light quark wavefunction
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(in MS) is R'9 and of the heavy one is R(9), and v; (1) comes from the vertex correction:

(90,5 7v"Q1Q(p, s)) = VRDR@au(0,5") (v + as(p) v} ) u(p, s) (5.9)

This will be matched with the following matrix element in HQET, with a finite residue factor of UV
corrections of the light quark wavefunction being R(? and of the heavy quark wavefunction being R,
and also with a vertex correction of HQET v HQET

{q(0,5)| a0Qu |Q(v, 8)) = VRORMu(0,s) (1 + ag(p)vy @) Pu(v, 5) (5.10)

Note that vfIQET is independent of the spin structure in I', while v7 is not. Indeed, the vector current in

QCD matched onto HQET gives 2 currents, C’%v)(j’y“Qv and Cév)(jv“Qv (this can be easily seen from the
fact that in QCD the index v is internal while in HQET it’s external; also note that a current of the form
go*v,Q, is reducible).The final results are:

W) _ 1, @s(p) mqg, 4 () _ 20as(p)
o) =1+ =2 (m(u) 3) Lo =R (5.11)

Example: There’s a nice trick to arrive at the above results. Let us pick an IR regulator to make the effective
theory as simple as possible (one has the freedom to choose this regulator, as the Wilson coefficients and
the anomalous dimensions will not depend on the specific choice): use dimensional regularization for both
UV and IR divergences in the M S scheme. With that, all HQET graphs with on-shell external momenta
scale as ( €U1V — ﬁ) The UV divergent piece ( 1 ) gets removed by the counter-term and there’s no
finite term leftover in MS. One is then left in the end with = . This simplifies the matching process,
since the IR divergence of the full QCD with H,, must match To be precise, the UV renormalized QCD
graphs (dimensional regularization with similar IR regulator) gives E( )+ In( Q)( )+ (...), and the
first term cancels when one subtracts with HQET. The matching is then just the second term. Hence,
without any calculation in HQET, the matching can still be read-off, if one trusts that the IR behavior

should be matched - which should be the case when the effective field theory is done right.

5.3 Power Corrections and Reparametrization

At the lowest order HQET is realized and used for perturbative calculations. It’s natural to take further
steps by going into the physics at higher order in the power counting expansions (series in %Q) Recall

that the Lagrangian supports integrating out B, at tree-level (¥Q, = @, and ¥B, = —B,):

M (5.12)

Lo = QuivDQy — By(ivD + 2mq) By + QuilPrB, + ByilPrQ, , 65 Lo =0= B, = 7D + 2meg

Performing a field redefinition from the equation of motion:

Lo=Q, (wD +ilDp- iPr)Qu = QuivDQ, - Qler Qut .. =LY +L) +.. (5.13)

) D+2mQ

The above result for the first order Lagrangian ES) can be further simplified with JDTQ = D2 + oM Gy
(the commutation relation of gauge derivatives is [D,, D,] = igG.):

D2 ~ oM GW

£5) = ~Qugp-Qu=9Qu =20, (5.14)
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The first term is the kinetic part that breaks flavor symmetry and the second one is the magnetic mo-
ment part (~ cB) that kills the flavor and spin symmetries. Can you see that? Hint: think about what
information is stored inside mg and o

There’s another way to arrive at the effective field theory from the bottom-up point of view. Since the
above method is based on tree-level results (classical physics), which means that loop corrections (quantum
physics) are not included, some operators might be missed since they are vanishing at tree-level. The more
general procedure (also more correct) is to write down all possible operators allowed by symmetry:

e Power counting: powers of %Q are made explicit, outlining the mass dimensions of the field content
needed.

e Gauge symmetry: taking into account the gauge derivative D,,.

e Discrete symmetry (the symmetries of QCD if the famous #-term is dropped): charge conjugation
(C), parity (P) and time reversal (7).

e Realization of Lorentz symmetry in HQET: part of the Lorentz group is broken. For the rest frame,
v = (1,0,0,0), we can see that the part of the Lorentz generator M,,,, that is transverse with
respect to v (purely rotation Mja, Moz, Mi3) is preserved while the others v#M,,, (purely boost
Moyi, Moz, Mys) are not. Indeed, introducing v means having a preferred frame, therefore the full
Lorentz symmetry should be broken. However, there’s a hidden symmetry on v itself (order by order
in power counting) in this effective field theory that restores Lorentz symmetry at low energy by
reparametrization invariance (RPI).

Let us take a closer look at the last statement in the above list, considering how much freedom is allowed
when choosing v. A heavy quark 4-momentum is split into 2 pieces p‘é = mqu* + k* quite randomly (one
can move pieces back and forth between these 2, as long as they don’t violate power counting). This can
be realized as an invariant under v* — v# + % and k* — k* — e with € ~ Agep (let’s think of it as

infinitestimal). Also, there’s a constraint coming from v? = 1, which means that € -v = 0 as one has 3
degrees of freedom stored in €. Under this transformation, fields become:

¢ ¢

?éQv(O) = Qv(o) - (¢ + 7)(@1} + 6@1}) - Qv + 5@1} = 5@1} = 7@1} (5'15)
mQ 2mg
Summing up, RPI is realized through the following transformation:
oot L Qu) = (14 L )0u(a) (5.16)
mg 7" 2mg’ " '

Note that the extra phase e’ in @, is nothing but the change of id, — i, — e (k" — k* — "), and this
restores the Lorentz invariance of the original symmetry under a small boost (e ~ Agcp < mg), which is
exactly the region of validity for the EFT of interest.

Now we consider ML operators for ES ) from a bottom-up point of view. While in general, there might

be some radiative correction hidden inside cx and cg at this order there are no missing operators from the
tree-level field redefinition approach. So, we have:

2 uv
(1) ~ D7 ~ oGy
= - v - v Yo 1
Ly cx@Q oma crgQ o Q (5.17)
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RPI puts some requirements on the effective theory, but since this phase is only leading order change,
hence ES) is invariant at order qu since ve = 0. At E(Ql ), RPI gives a mixing piece, since the RPI-realized

transformation gives:

© 2O 5, _ 514 Ve—iewi(y 1 € \Deicr( 4 F 500 _ g, €D .
Ly =Ly +0L5 = Qu( +2mQ)e z(v—i—mQ) e ( —i—er)Qv , oL vaQQv (5.18)
Going through this transformation gives some change to E(Ql) at this order:
_ 1eD
658) = _CKQUHQU =cxg =1 (5.19)
mQ

For the symmetry not to be violated, cx = 1 indeed is true to all order in o as long as the renormalization

scheme and the chosen regulator don’t break RPI. However, there’s no constraint for ¢y and it will run as
Ca

cp(p) = (a;%f)?)) % (where Cy4 is the non Abelian adjoint Casimir number C4 = N = 3).

RPI can in general also be used to get information about power suppressed operators operators by
relating the Wilson coefficients in subleading order to those of the leading order currents. Considering
mass corrections as a simple instantiation of the above statement — the mass my of a heavy meson H
which contains a heavy quark mg, then one can guess order by order mg = mg + A + O(%Q)v where A

is just some O(1) contribution. To see the physical meaning of these pieces, remember that the effective

Lagrangian can be written as £ = EEL%Q pr+ Egg(};}, +> E(C;). The (non-perturbative) A piece originates

i . . . . . - (0)
from Elégg}), and by finding the corresponding Halmintonian H(?), we can write A = %#, where |H)

is the heavy meson eigenstate of the theory. Since at that order H© has no mq-dependence, A is also
independent of m¢ (not only that, but also the spin structure, e.g. B and B*, and the flavor, e.g. B and
D, cannot be seen yet). That subleading mass contribution has a universal value, it only depends on S[*
(S; is the spin of light degrees of freedom mentioned before, and 7 is just a parity indication). £ and
higher-order Lagrangians are used to describe the mass corrections at higher order O(%Q)' Consider the
next lowest order:

uv
G g, (5.20)

_ D2 _
H(l) = _£(1) = QviTQv + CFng
2mg dmg

Taking the matrix elements in the rest frame, with v, = (1,0,0,0), gives 2 parameters which we will call
A1 and Ag:

20 = — <H| QU’I‘D%QUT |H> ) 168@81/\2(7%@) = CF(:“) <H’ ngrauyGw/QvT |H> (5'21)

Notice that A1 is mg-independent and A2 contains information about time reversal properties.
J2-52 52
You should do the manipulation to relate SoS; to J?, Sé and S}. Hint: SgS; = ———+
From their mass dimesions, one could guess that A1, Ao ~ A2QC D (A2 has mq-dependence logarithmically

(9( In (mQ)) only), and these are non-perturbative parameters which contain more dynamical information

than A.

Example: Some mass corrections order by order in the same S} -multiplet:

- A A - A A
mp = my -+ A — 13 2(mp) , mB*:mb—I—A—il—i-M 7 (5.22)
me me Zmb me
- A Ao (me . A Ao (me
mp = me+ A — 13 2(me) 7 mD*:’mc—l-A—il—f—M (5.23)
2me 2me 2me 2me
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Certain combinations can be formed to cancel dependence on these power corrections: mp = 3mptmp

(where P = B, D) is independent of As. Phenomenologically, we see m%. —m% = 0.49 GeV? ~ 4\o(my)

and m%,. —m% ~ 0.55 GeV? ~ 4X\s(m,). Hence experimentally % = 1.12 agrees relatively well with

1/3
the theoretically leading logs RGE i2 (me) _ (as(mc)) = 1.17 with number of light flavors n; = 3.

2(my) as(ms)

We can derive an important phenomenological prediction using this effective field theory. Consider
a simple class of B-decay which are semileptonics. We divide these into exclusive decays, which make
a transition between meson states, (e.g. B — DIy or B — D*Iv) and inclusive decays where we allow
transitions to any charm states (e.g. B — X v with X. = D, D* Dr, Drnm). Exclusive decay has
form-factors for the currents between states. Our heavy quark symmetry reduces many form-factors to
a single one with no %Q corrections, and this can be used to measure V,, — using analytical methods
or lattice QCD. Inclusive decay has an Operator Product Expansion (OPE) constrained by HQET (the
leading order corrections enter only at (’)(mi%) with dependence merely on A\; and A2). Let’s focus on the

dr’

inclusive OPE, starting from the triplet differential inclusive spectrum B — X .l decay rate IEdE A
X

with ¢ = p; + pr = pp — pPx.
For this analysis, we will try to carry out the expansion in Affl% for this process, summing over

all intermediate X, states (allowing connection between partonic calculations and hadronic calculations
through probability conservation). At leasing order, the process is b — clv with O (as(mg)) corrections,
schematically and diagrammatically, the OPE can be described as:

Kk
O(S ("&la) far=y fr-ec,*xroﬂ.f

A IR

. 2
\H\ = c R LY SR \
L c M #s-/ "|>
Loob / |

fo?pJ:-fc,a,Q- +heorem ,
~ L al* <BlITLE> = Go=bé 0= Db | 0/-To6b/
e ﬂ-onkper"{' porawvi:-g

‘paua/ Cores c&‘a'oq

Unsurprisingly, C' = C (mLQ, as(mg), ...) is identified with the b — ¢l decay rate (even after including loop
corrections). This OPE requires that kinematic variables are hard (i.e. ~ mg) or integrated over a region

of phase space ~ mg, e.g. f0m2B dmgf. If one restricts the phase space close to the edges it will introduce
a new scale into the problem, and will mean that our theor{gl cannot still be described as HQET with
mqg > Agep. At next-to-leading order we don’t see any O( gLZD ) correction (this can be derived using
the equation of motion iv - Dh, = 0). At NNLO just A;, Ay show up in the spectrum. Experimentally, the
OPE is phenomenologically very successful (e.g. |Vip| = (41.6 4 0.6) x 1073 fits).

5.4 Renormalons

Using the knowledge gained from the B-decay process, we can explore ambiguities in our perturbative
series known as renormalons.
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In many discussions of renormalization, there is freedom in defining the perturbative series simultane-
ously with Lagrangian parameters (like masses) or matrix elements (like Aj, A3) — in the M'S scheme it’s
the freedom to adjust the cut-off by choosing u to separate perturbative and non-perturbative physics. The
problem is that a poor choice of power separation can have a non-trivial impact (such as matrix elements
being overwhelmed with UV physics or Wilson coefficients being IR sensitive via a hidden power-law)
coming from the asymptotic structure of higher orders of the perturbation series, leading to poor conver-
gence »_ a7 on one hand and irreducible uncertainty in the meaning of parameters on the other (troubles
extracting the non-perturbative parameters as UV physics and IR physics are not divided correctly; for
example, a parameter is doubled when one goes to the next order in perturbation series). Renormalon
techniques help to quantify these problems. In other words, poor choices are plagued by renormalons (“bad
objects people hate”).

Example: Let’s look at b — uer at lowest order (the up quark is treated as massless), think about it
inclusively like B — X,ev in order to have physical sense. The decay rate as one sets pu = my is:

G| Vi ? ars(my) s (mp)?
Fb—)ueD:Fium‘r’(l ki———le + kg—l 2 4 O 3) 5.24
€ = 1 is just a power counting indication to help keep track of the order of as. There are different choices
one can use to define the bottom quark mass m;, and that changes the perturbative series:

2 2
e Pole scheme: T' = GIFA;/;‘Z;' (mgpde))5(1 —0.17¢ — 0.13¢% + ...), correction at 2-loop pretty much the

same size with 1-loop.

R 2 2
e MS scheme: I' = Gfg‘;’;;g' (mp)°(1 4+ 0.30€ + 0.19€¢2 + ...), a little bit better but still not working for a

clear separation for corrections at 1-loop and 2-loop level.

2 2
e 1S scheme: I' = Gﬂ)‘;/;‘g' (mgls))g’(l —0.115¢ — 0.035¢? + ...), at least one can be happier with this

compared to the previous schemes.

To convert results between different schemes (and see how poorly convergent the pole scheme is com-
pared to other schemes), note that:

4 2
m®?? = mb(mb)<1 n 30‘8(””’)6 +13%5e 4 ) = i (mp) (1 + 0.09¢ + 0.06¢2 +...) ,  (5.25)
T
m®P = 914 0.011€ +0.016¢% + ...) (5.26)

The lesson from this example is that the choice of mass scheme has a big impact on the perturbative series
for the decay rate. Why do some choices work while others don’t? This question will be answered soon.

Considering the meaning of those renormalization mass schemes:

° ml()p ole) g physically a poor choice since there’s no pole, thanks to confinement as the notion of

a pole in a quark propagator is only meaningful in the perturbative sense (and is ill-defined non-

perturbatively) — it is very ambiguous with an ambiguity in the mass scale Aml()p(ﬂe) ~ Agcp (to see

this, one has to study about the renormalon). In the HQET setup one has to use the questionable
physical parameters m(®°') with the field redefinition prefactor e~imP?vT 5o the expansion about the
mass-shell. Other renormalization mass schemes can be implemented in HQET as m(Pole) — 4+ §m,

which will require a new operator —6m@,Q, in the Lagrangian.
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e My is also not good, from the point of view of HQET. It can be seen from power counting why
MS isn’t good with HQET, parametrically and numerically. This choice introduces a new operator
—6mp@QyQ, in our Lagrangian, where dm; = mpas(myp). The as(my,) ~ 0.2 doesn’t give enough
suppression to this term and we are essentially introducing a Lagrangian term which is O(m;), which
is very bad from the point of view of our power counting.

. mgls) (defined as 1/2 of the mass of the bb bound state in perturbation theory) is the best choice

out of the given three. Indeed, dm = m(ls)ag ~ Agcp is numerically good as the suppression is
acceptable. It is however not totally alright as it grows parametrically with m; and still ruins the
power counting.

e In general, a more “fancy” choice can lead to dm = Ra with chosen R ~ Agcp, which will then be
good both parametrically and numerically.

Let’s define the renormalon in a more mathematical way. First we will need a quick review. QFT

perturbative series are usually not convergent but rather asymptotic series. An asymptotic series (denoted
by =) is defined by

00 N
fla)= Z fnatt if and only if |f(a) — Z frna™ < ko™ T2

n=—1 n=-—1

for some number k2. In QFT it’s typical that f,, ~ nla"™ as n — oo, then for any fixed o < 1, no matter
how small, the truncation error can grow as £y ~ Nla”, hence the series has zero radius of convergence
in « (the analytical behavior is that the series will decrease until N reaches N, = |a|~%, and then will
start to grow up again). Still, even if the series is asymptotic one can make use of it (let’s come back to
this story later). In perturbative QED and QCD, one doesn’t usually get over the first few terms in the
expansion series, and it works well in QED since the growing behavior happens at a very high loop level.
For QCD however the turnover happens already at 3-loop order (therefore one needs to be extra careful
even at 2-loop level). The best thing one can do is to stop the series at N,. That’s actually not a bad
thing in the sense that the mistake one made by stopping there can be characterized by ry, aN* ~ e~lal™"
if N, > 1 (one will never be able to see the correction needed to get to the correct value in perturbative
series because e 197" doesn’t have a perturbative expansion). The bad behavior at N > N, and the small
gap to zero at N = N, are related to power corrections.

M!”‘ ordar
?o—r";'a_q 9@ . ’ -C‘V‘ Nv > |
SJdmo b ’ N¥
e s KN* O{
* « . 7 NQ}{P (—-—-— { )
] | =7 lal &
(\]* N «p@r‘

A opprox =

How poorly convergent a series is can be classified with a parameter we call a. To go deeper into more
detail, one might want to work in a different functional basis. Here that is accomplished by a Borel
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transformation f(«) <+ F(b):
oo o 1
fla) = /0 dbe "/*F(b) , F(b) = f-15(b) +n§n! fub" (5.27)

Note that inserting the % factor makes the convergence better (improved convergence prefactor). For a
convergent series Y f,a" ! one can get back the same f(«) from the inverse transform. For a divergent
series where F(b) and the inverse transform exist it’s reasonable to use the inverse transform to define
f(a).

Example: Consider the following series > oo ((—1)"a™"!, which does not converge for @ > 1. One way
to calculate it is to use analytic continuation for a@ < 1 since in that case the series converges and the

summation gives ;%5. The other way is to use Borel transformation to get a well-behaved function:

Fiy=Y" (_nb!)n —e b5 fla) = /0 " dbetloeh — QLH (5.28)

n=0
This integration is perfectly well-defined for large a.

However, there are cases where the inverse transform doesn’t exist (the F'(b) integral cannot be done)
then the integrand can give information about the severity of the singularity causing the divergence.

Example: Take f, = a™"(n + k)!, then F(b) = # + ... (keeping the most singular piece) has a

pole-like structure at b = a, and this pole is called b = g-renormalon. If a < 0, the integration contour
is positive and the pole is on the other side so there’s no problem as the inverse transform exists (UV
renormalon). If @ > 0 the pole is on the integration contour then inverse transform doens’t exist anymore
(IR renormalon).

The location of the pole in Borel b-space tells us the severity of the singularity. The most severe pole
is the one closest to the origin in the positive part of the axis (for the above example, it can be seen as
follows: as b becomes small then so does a at pole position, hence f,, goes up).

l_é_ Omiﬂ.‘ju;‘L;{ (s 9.—‘_:::»1 Ly
> e ] e : »; > re s, doe o Pole_: G -Co
l fn«o;'{' Severe <)
Ca

The ambiguity can be characterized by doing the integration above or below the pole (corresponding to
circling the pole) which gives the residue. In other words, a nonzero residue is the indication for an
integration ambiguity.

Consider the pole mass versus the M.S mass. Let’s pick a particular subset of Feynman diagrams, the
sum of bubble diagrams Xpypbles (which is easy to calculate), to demonstrate renormalons in these 2 mass
schemes:

ol
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Indeed, the bubbles sum diagram is unique in any order of perturbation theory that gives gauge invariant
contributions to the flavor/color structure of the theory, and it has the most power of ny (the number of
active fermions running in each bubble). The fundamental ingredient, the bubble (in Landau gauge, QCD)
is:

2,C
A D @~ - ) 2 11
o — 2 (g’u,y_p p >6ab(60as>ln( MQe ) ; C = — R ﬁo:—*ﬂf"‘*C’A
P p? 47 P 3 3 3

The geometric series summation of the bubble chain gives:

3 . ) ' » v 0 n — e’
F o2 - P (B ()

One can do the Borel transformation to variable u (which is just a rescaling of the Borel variable b) with

n+1
<50°‘S) — % (n > 0). Taking into account the vertices at the 2 ends of each bubble chain (extra

47 n!

g% = 4o, = 16—“<ﬁ2a3>) we get:

By \ A

n : 2

2 :j /W_pp ab167r u _ v T T 7 ab 167 2 _&\u
(5G] (0 0) 2 (9 = )é % 2{% o = Epm P Py (5.31)

Sticking this bubble chain back (acts like a modified gluon propagator with a different Feynman rule) to the
bubble sum diagram, we can calculate Xpypbles in terms of the M.S mass, m (canceling the uninteresting

divergences through (zﬁ) After we have gotten m, the pole mass can be found by looking at the

topology of the propagator m with X(p,m) = m¥1(p%, m, as) + (P — m)Xa(p?, M, a):

1-X% 21\ 2
-0 = ( (pole) ) ¢2 = <$> N m(pole) — m(l + 3 + )

(p=m—2p.m)) I

p2:(m(pole))2
(5.32)
Using these guidelines, let’s do the bubble sum diagram in Borel space (G s (ks 0ts) = Ghoppies (k> 1))

P)Yu (P + K+ M)y u(p)

EbubbleS(p m,u) = El(p m,u) = *C /ddk [QQGgables] (K, u) (5.33)

(p+k)? —m?
Using — oy = F(nH) fo dx ( i )nﬂ , the relation between the pole and M S mass can be read-off easily:
az+b(l—x)
C 2ef\u6(1 — u)I'(u)(1 — 2u)
(pole) __ = 5 . F (M 4
m m< () 6Wﬁo(m2) G0 b (5.34)

The §(u) part comes from transforming the factor 1 (m(P°®) = m at lowest order) to Borel space, and the
omitted terms contain both the terms where there is pole structure of the form % rendering it regular at
u = 0 and terms that regular terms in u, which are not needed for this analysis. From the I'-function
structure, the pole that is closest to zero (the strongest pole) is at u = % which this corresponds to the

-n
U= % renormalon (this renormalon has <%> n! growth). We can further simplify this equation to:

-+ .. — Blu) (5.35)

u—3
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_ %
The inverse Borel transformation B(as) = fooo due” "Poes B(u) has an ambiguity, thanks to the renor-
malon sitting at v = % (the ambiguity is realized by analytical continuation above or below the pole),

which averages out to be a half of the residue. Specifically, Am(Pole) ~ %egAQCD:

o > L
L
e

Example: The ambiguity can be calculated as follows and can be found to be ~ Agcp as expected:

2

1. jé Cp g/ _2« Cr e
= —(2im duB(u) = ——e2(ue Poos | = —e2A 5.36
= 3m | B = 50 (e oo (5:36)

1
Am®) ~ ~Res[B
m 5 es[B(u)] 350

’LL:§

Since m(P°l®) has this ambiguity, one should avoid this choice of mass scheme.

Some interesting observations:

e The ambiguity doesn’t depend on the use of m, it’s strictly associated to m(Pole).

e The ambiguity is p-independent in ag-space, as Am(Pole) ~ Agcp. However, the residue of the
pole seems to be p-dependent in Borel space. When one expresses the decay rate I'(b — wer) =
(ml(,p()le))f’(l + ..o + ..a + ) in terms of my, then the u = 1 poles in (mP°!®))° and in the
expansion series (14 ...as +...a2 4 ...) actually cancel each other, as long as they are both expanded
in the same a4(p) order by order (also, the Borel variables have the same meaning). The bubble
chain trick indeed works well for the expansion series.

e These poles are artifacts from splitting up the physics at different energy scales, so in general, they
always cancel for observables.

e To cure the ambiguity, one has to introduce a new energy scale R. In general a scheme change gives:

(pole) _ o o [ as(p)ym
mP®) = m(R) + Am | Am—Rgganklnk(R)< e ) (5.37)

m(R) can be chosen to be free of renormalons, if Am properly subtracts the pole mass renormalons.
In the M'S mass scheme, R = m(u = m); while in the interaction-based 1S mass scheme, R =
as(p1)mS) (inverse Bohr radius). Still, R can be considered a free parameter (floating cut-off) and
the ambiguity is generally R-independent. R sets the scale for absorbing the IR fluctuations (causing
the instability by dressing up the pole mass) together with the pole mass — point particle mass, in a
familiar sense — to yield a well defined mass m(R).

Example: With R, one can define the MSR mass scheme by using the M .S scheme and taking the only
non-zero coefficients to be ang = ano (from MS value) and take u = R, so one has a well-defined mass

with m®ole) = ;(MSR)(R) 4+ R > oo | Gno (QZSTR))TL. This scheme is good for doing physics where one wants

to absorb things up to that floating cut-off (which pretty much decouples from the mass threshold). Note
that, in a more general scheme based on floating R and M S scheme, there might be 2 running scales p and
R, and while p is needed for the log divergences cut-off, R is needed for the power law divergences cut-off.
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Before moving on, let’s review about how one defines Agcp at higher orders in resummation (LL, NLL,
...). In M'S, the S-function from contributions at all orders is:

Doy (1) = ray(u)\ o / " / ) _da,
ag) = = —204 n , =R—>In—= dR = 5.38
Blas) = G <u>n§zojﬁ( ) " g iy By 539

Let t = _Bo%r(R)’ then In % = t';l dtb(t) = G(t1) — G(ty) with the Laurent series b(t) = 1 + b1 + 5+ ..
The higher Laurent coefficients are b; = %, by = o 4§fﬁ2 by = ?_2508’8;‘3’22—'—’83&, and so on. The 1ntegral
0
G(t) can be easily evaluated, and Agcp = Rye G(t1) = RyeG(to),
2 ~ 2
Aocp = pexp | — +hiIn (7> ¥ 5.39
¢ Boas (1) Bocs (k) (539)

The whole expression is p-independent.

Moving on, let’s treat R like a variable which parametrizes a mass scheme. Similar to the renormaliza-
tion group equation (RGE) from the running of u in the MS scheme, it is expected that by flowing with
the floating cut-off R one also has another kind of RGE (known as R-RGE), since varying the scale R in
the MSR scheme is much like varying u in the MS scheme. For simplicity set u = R:

Om/(pole) 0= om(R)

dInR ~ 9InR

+ Ryn(oa(R) " (an(R)) = 22000 Zvn( ™ (o)

By setting u = R, this perturbative series avoids ln( ) that could be large if 4 > R. The R-RGE is

simply 811&11? = —RyE (as(R)) (interesting fact: the power of R in the RHS is actually related to the

position of the renormalon). This R-RGE can be solved as a well-defined integral:

to R 8€_G(t)
m(Rl) = m(RQ) + AQCD/ dty (t)

5.41
) ~ (5.41)

The only potential issue with this integral can come from ¢ = 0, but one never gets there, as it corresponds
to the Landau pole where the coupling blows up. The evolution Ry — R; yields new well-defined m(R;)
which absorbs different amounts of IR fluctuations.

Example: Consider the LL solution with v%(ay) = 7%, v%(t) = —%; and G(t) = t, then:

—t R

m(Ry) = (Ro>+A<Q2,~D;g () + 25 (DO ~TO.0))AGLy  (5.42)

The incomplete I'-function has asymptotic behavior when we expand about ay; = 0 and ¢t = 4+-00. In detail,
n+1 n

F(O,t)Ag))CD = —2RY >, 2”n!<%) , with the 2" = (%) pre-factor corresponding to the u = %

renormalon. The difference between these 2 asymptotic series (for ¢y and ¢1) is actually a convergent series.

Example: Here we do the incomplete I'-function expansion to see the explicit renormalon cancellation:

m(Ry) —m(Ro) = ZBOR Z (500‘3 Rl))"+1n!(1 = g‘i Zn: % In® g;) (5.43)
_ 50043 Rl) ntl & R1
a QBOR nzz:< ) k:zn—:i- kll k Ry (5.44)
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This expression is a convegent series, renormalon-free with summation of In % logs (with power). Hence
one can connect the physics at scales Ry > Ry in a renormalon free fashion, which is not possible in general
with the y-RGE of the M S scheme. Indeed, for phenomenology, it’s often useful to switch scheme back
and forth between MS and MSR.

Let’s look at all higher order generalizations, say, up to N*LL order (k*"-next leading log) using the

. . 5,—G(t) —t(_4\—by
series expansion form ~%(t)2¢ 5 = - ( tt) > 720 sJ

) (the coefficients s are related to higher order

bor; eg so = AR, 51 = Af — (/b\l —1—/1)\2)%% with 7 = ( ). With this form, we end up with:

N*LL (k) i D ~ ) ~ )
m(Ra) =m(Ra)| = Aglp s (=17 ™ (D(=b1 = j,ta) = T(=by — jyto))  (5.45)
=0
k
These imcomplete I'-function subtractions are convergent. To show that |m(R;) — m(Rg)} is well-

behaved, note that the anomalous dimension 7 (ag(R)) of Am(R) is also free of a Am ~ Agep renor-
malon:

’yé% =a , 'yf =ay — 2Ppa1 'yf =ag — 4Ppas — 25101 , ... , fyf = Gpt1 — 2nBoan + ... (5.46)

where we’ve defined a,, = a,g. For simplicity, let’s look at the value for a,, for the bubble sum, then in a
given 7% one has a,11 ~ n!(260)", an ~ (n —1)!(269)" !, ... and these growths cancel in the anomalous
dimension.

Aside from phenomenological studies, the our scale R can also be used for probing renormalons even
in cases when the bubble sum doesn’t work (e.g. no fermion loops) or other types of renormalons (e.g.
ones that cannot be seen through fermions). The mechanism for finding renormalons is to use R-RGE.
Recall that m(R1) —m(Ro) = Agep fttlo dr’yR(t)%e*G(t) and notice that tp and ¢; are negative and far from
t = 0 so things are nicely convergent as R is usually chosen to be larger than Agcp. Consider Ry — 0
as m(Ro) — m®®) t5 = —1In A — 400. The integration will have to pass through the Landau pole,

which introduces a new amblgmty (although near the Landau pole the series becomes non-perturbative,
one can still find a path in the t-complex plane so that things can be treated perturbatively). At LL order:

| ,.YR e—t oo —u 47 ]_ t

Where it can be shown that the Borel mtegral factor F'(u)

~ —+. The Landau pole effectively becomes
u—3

a Borel pole at u = %, therefore it makes it a little clearer that this pole corresponds to non-perturbative
physics in the IR region. One can formally generalize this to all orders. This probe for the renormalon
without using bubbles sum, known as the sum rule for renormalon, consists of formally taking the Borel
transformation to all orders. The residue of the u = % pole can be found to be P/ = Yo ﬁa—i-k)’
and P /o # 0 means that there is a renormalon at u = %
To use renormalon technology in phenomenology, let’s take a look at renormalons in the OPE. Consider
an OPE in the familiar M .S scheme:
O1(p) - Agep

+ o <1,
Q Q

Co(Q, ) _1+Zb < W)” (5.48)

o = Co(Q, 11)Oo(p) + C1(Q, 1) A

where o is a dimensionless observable, Cy and C» are dimensionless M S Wilson coefficients, O is a M S
matrix element with no mass dimension and O; is also a M S matrix element but has mass dimension 1
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Since this is calculated in the M S scheme, b ( ) > bk In* ( ) It’s good from the computational
point of view since there are only logs and no Q power law terms, it naturally satisfies Lorentz and gauge
invariance, and is also simple enough for multiloop calculations. However, the M S scheme has a sensitivity
to renormalons, generically an IR ambiguity in ACy ~ A?% and a UV ambiguity in AOQ; ~ Agcp with

F(k? AQCD)
[
scheme with a high energy k& ~ @ piece and a low energy %-expansmn piece becomes:

a u = 1 renormalon. Consider a toy integral o ~ fooo d?=3 2¢_then the separation in the MS

o0 2 00 9
2 a—3J (k% 0) + ... 26/ d—3 2 22 1 A ~ A~ 01w
o~ AP 4 dPkf(k%, A —+...)~Co(Q,1)0g + C . (5.49
e [T [ R M) (4 ) ~ Col@uiOo+ P (549
Note that the identification with the OPE is Oy = C; = 1. The MS scheme separates short and long
distance physics for logs correctly, but for powers it relies on setting the scale of integration to zero, which
is forced from the very definition of dimensional regularization and the scheme itself. This treatment
leaves residual sensitivity to power divergences from including the wrong regions of momentum space in
the integrals, which results in renormalons. In the Wilsonian picture (different separation), the toy model
will be cut-off by an explicit scale7 as shown here :
w
o (Ay)

f(l€2 0)+ .. 1 (W)

where O(()W) (Af) = C’fW)(Q,Af) = 1. This separation has no renormalon, but since it uses a hard cut-
off, the calculations are very difficult and the symmetries will not be preserved order by order (as was
mentioned earlier in these notes).

In a general R-scheme (working with C; = 1 for simplicity), one needs to start with the M S scheme and
then change the scheme by moving pieces around inside elements of the OPE (rearrangement of physics):

s(1)
4

= Qs 2
O1(u) = O (R, 1) RZd )( :)Oo, Co(Q, 1) = Co(Q, R, )+ QZd J(22) (551
Then o ~ Co(Q, R, 11)Op + w, and by choosing the coefficients d the v = 1 renormalon in the MS

scheme can be removed (in detail, the power-law dependence on R eliminates the sensitivity of C,, to
small momenta). The choice of d is indeed similar to the choice of the hard cut-off, hence actually this
scheme change is perturbatively going toward the Wilsonian picture (in a Lorentz and gauge symmetries
preserving way), starting from MS.

Example 1: The MSR scheme for OPE reuses the coefficients of the M S scheme bn(%) (with renor-
malons inside) at a different scale R as dy, (%) = bn(%). With géo(R, 1) acting as an IR cut-off to ensure
Co(Q, R, i) corresponds to short distance physics, one gets a renormalon-free expression:

Co(@. R =3 (bnl(5) - gbng;)) (%)~ (. ) - gcom,u) (5.52)

Indeed, since the renormalon is independent of R and @), they cancel out in the subtraction b, (” ) Rb (“ )

Setting = R and pretending that Cy has no anomalous dimension, one can easily read-off the running

% = —@’y(as(R)). The flow can be solved to be:
A - -
Co(Q, R1, R1) = Co(Q, Ro, Ro) + QCD ZSJ mbl( (=b1 —J,t0) —I'(=b1 — J,t1)>
= Co(Q, Ro, Ro)U(Q, Ro, Rl) (5.53)
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6 EFT WITH A FINE TUNING

Example 2:. The OPE renormalon techniques can be used in HQET. Consider the ratio between the

2 _ .02
mass-squared difference of a symmetry multiplet r = H perturbatively in the M.S scheme:
D* D

o CF(mbv H) +

~ Agen (5.54)

p(p) (1 1 Zp(M)NA?éQCD
Crtme )+ b ( )+

myme) T ) ~ Mo

The theoretically calculated result » = 1 — 0.113 has contributions at different

—0.078] —0.0755
a3

2
Qs g s
orders of similar sizes and doesn’t seem to converge well. In terms of log order, one can rewrite this as

r = 0.8617

answer at LL order, however, and the next log order contributions are moving away). Indeed, there’s a

renormalon present in the calculation (can be shown to be the u = % renormalon through the bubble sum),

and to cure this one can use the MSR scheme by redefining Cr(mq, R, R). This gives:

— 0.0696‘ - 0.0908‘ , which also doesn’t help (the experimental data is close to the
LL NLL NNLL

. Cr(my, Ro, Ro) n ¥p(Ro, Ro)
CF(mCa R07 RO) /"L%‘(‘RO)

1 1 _
<Eb _ E) , Yp(Ro, Ro) = £, — Rop&y Y -..axs (5.55)
The scale 1 = Ry is chosen a little above Agcp so that X,(Ro, Ro) is still on the order of A?ézc p, therefore

doesn’t mess up with the power counting in the the M S results. Using R-RGE to sum up logs between
Ry — mg gives

mi
?I
e
. Cr(my, By, By)U(my, By, Ro) | Ep(Ro, Ro) (i B i)
Cr(me, Ry, R1)U(me, Ry, Ro) pZ(Ro) \my  me
e e
Aaco

The first term in this expression is given order by order numerically as 1 — 0.88 — 0.862 — 0.860, which
converges pretty decently. The second terms (which are smaller than in the M S scheme) can be seen as a

small uncertainty coming from varying Ry and Ry, in the sense that VL = 0.860+0.065 . 40.0008
P

pert
Note that, since the Ry dependence cancels between the leading power term and the % term, it gives us
a method for estimating the size of the power corrections (pretty much like what p does for perturbative
corrections in the MS scheme).

6 EFT with a Fine Tuning

This section is devoted to investigating an EFT where a naively irrelevant operator must be promoted
to being relevant. We will see an operator, although it can be thought of as irrelevant from dimensional
analysis, can have an anomalous dimension large enough that it actually becomes relevant.

6.1 Two Nucleon Nonrelativistic EFT

The Two Nucleon Nonrelativistic EFT (NNEFT) is a bottom up EFT that describes the SM in the limit of
small momenta p < m so that all exchanged particles, including the pions, can be integrated out. Nonlocal
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6.1 Two Nucleon Nonrelativistic EF'T 6 EFT WITH A FINE TUNING

pion exchange becomes a local process, similar to how the massive weak gauge bosons are integrated out
from QCD to give Hey.

Let’s start from a nonrelativistic elastic scattering in the center-of-mass frame (the particles have the
same mass M, so energy conservation gives |p| = |p’| = P), which can be dealt with by using standard
Quantum Mechanics. Indeed, the scattering can be descrlbed by a phase shift S = €2 =1 + zP LM g (the

familiar partial wave expansmn), where A = M m is the scattering transition amphtude For any
short range potential the effective range expansion is P2+ cot §; = —% + %TOPZ + O(P*), where [ is the
particular partial wave of interest (e.g. | = 0 for s-wave and [ = 1 for p-wave). This expansion is nontrivial

in QM, since one needs to consider a general potential, but we can show it quite easily from EFT.
A —_
P P

- g

Let us prove the effective range expansion in NNEFT, which has the Lagrangian:

2
£:NT(i6t+2v—m+..> ZZcﬁo . (6.1)

S m=0

/

LA

where N is the nucleon field with spin 3 L and isospin 5 and > ¢ > > ... represents a contact interaction

m=0 "
ng)L of 4 nucleon fields (NTN)? with 2m derivatives (here S is the spectroscopic channel 2511 ;). We are
looking at the four nucleon interaction in this theory, which is diagrammatically,

7 <H 25 4l T m

Cy T

It can be seen from the operators listed in the Lagrangian, that for any given in-channel and out-channel, the
contribution ~ P?™. Note that nucleons are fermions, therefore the wavefunction must be anti-symmetric.
This gives us a relationship between the isospin and the angular momentum that tells us (—1)**! is even
for the isotriplet I = 1 and (—1)** is odd for the isosinglet I = 0. Angular momentum conservation forces
J =J, and for s = 0 we get [ = I', while for s = 1 we get |l —I'| = 0,2. Going into more detail we
explicitly write some of the operators in the Lagrangian:

o

Z C(S)O( ) C(S)(NTIP)(S)N) (NT]P)Z(S)?Z 8

m=0

((NTIP’() )(NTP§S>N)+h.c.)+..., (6.2)

with V2 = 2 + V2 2%?, and the matrices in spin-isospin space P50 = %(iOQ)(’L'TQTi), P*S1 =
%(iagai)(im). The Feynman rules can be easily read-off (in the center-of-mass frame), giving the complete
tree-level amplitude as follows:

52



6.1 Two Nucleon Nonrelativistic EF'T 6 EFT WITH A FINE TUNING

(@S Ca . 2
FQt_(n Rules x = =0y >< = —¢ (g i e te
Cam . 2
K = oF X = - Z Cam P Conplote troe

IC.JP-l ﬂn’?""ltuJQ

To study quantum effects one needs to consider loops. For simplicity, consider the following loop with
total energy going in £ = 0. One can see that by keeping only the 0; terms (like in HQET) in the kinetic
pieces the integral is ill-defined and has a pinch singularity:

— (=ico)? [l 55

Indeed, the problem arises because the kinetic energy is a relevant operator in Quantum Mechanics (when-
ever one writes down the Schrodinger equation, one needs to keep it), therefore the right power counting
P2

should give ' ~ 77 at leading order (which means that the d; terms and % terms are about the same

size, 10y ~ %) It is generically true for 2 heavy particles to have this power counting for the kinetic
terms, which is different than what we saw in the case of HQET. Adding the missing pieces and using
dimensional regularization we get:

foex MR E e B
2 = iC2 /ddqqg_MME = —iCg (%A:P>

The above result has the nucleon mass (which is large) appearing in the numerator, which is usually a bad
sign. Let’s count the powers of M while holding the spatial momentum P fixed: V ~ MY (|x| ~ MY),

O ~ A (t~ M), [d'oNT(i0 = F)N ~ M® = N ~ MO and [ d*sConOm ~ M® = Com ~ 7 as
Ogm ~ M°. Hence, there’s no issue with the counting of M, with the 1-loop and tree-level contributions

being about the same size ~ ﬁ From the dimension counting [Cy,] = —2 — 2m, therefore the coefficient
is of the form Coy,, ~ W (P < A, where A is set from all fields one integrates out).

We can also calculate the loop with two generic vertices:

OX Loy e

20 2m q? - ME q> - ME

It is convenient that this theory is entirely made of bubbles of the same diagram type as above (indeed,
one doesn’t need to have anti-particles involved since it is a nonrelativistic theory). Summing all the
contributions at all loop orders, the bubble chain gives a geometrical series:

SR e =ik i 3 Conp) (FEY
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6.1 Two Nucleon Nonrelativistic EF'T 6 EFT WITH A FINE TUNING

which is easily summed as

B L >, Com P?m _4r 1
A= A ZMP<22 ConPm) M~ d ) ip 67

The phase-shift can be found to be § = arccot( — W) = §p where we’ve defined the shorthand
m “2m
mCaom 1

égm = =2 This result is for the s-wave part, which can be Taylor-expanded as P cot § = “a gg pP?+

O(P*). The same can be done for higher partial waves, e.g. for the p-wave [ = 1 (no Co contribution),

3 _ —p? _ 1 , Cyp2 . . . .
P°cotd = Grie. T G + & P<+ ... At this point we have proven the effective range expansion

2
for nonrelativistic QM. Note that this would have been much more difficult without our EFT approach.

The matching can be done easily giving Cy = Fja and Cy = ?‘\}r 4 27"0 , where a and r¢ would be determined

experimentally. Higher coefficients Cyy, can albo be found in a similar fashion. For power counting, if
a,ry ~ % (A ~ my), one can reproduce Co, ~ W Unfortunately the value of the scattering length
a in nature is large (hence Cy becomes huge), and a seems to have a fine-tuning from the dimensional
counting in the EFT point of view (note that for other scales, e.g. rg ~ m%r, they are of the expected size):

1
a'%0) = —23.714 4 0.013(fm) > — , %) = 5.425 + 0.001(fm) (6.8)

My

One needs to change the power counting a little bit, modifying aP < 1 to aP ~ 1 or even aP > 1.
This means Cy must be treated as relevant although from dimensional analysis Cy ~ ﬁ is irrelevant.
Since the problem originated from using dimensional regularization and the M S scheme, let us take a step
back and use another scheme — the off-shell momentum subtraction (OS) scheme defined diagrammatically

>@ — _iZCQm(MR)P2m

f=cpe "

where the scale upr keeps track of the power divergence that both dimensional regularization and the M .S
scheme couldn’t see. The loop result is now changed with a finite correction:

>O< X *CO (ur)? (iP + MR) , C4"¢ = Co(ur) + 6Co(r)

The renormalization group equation for Cy(up) is straightforward,

M 47 TG
1RO Co(pr) = — 11RO, 0Co(kR) = ECO(,UR)Q » Co(0) = gra= s (6.11)
and yields the solution Cy(ugr) = —%Mi T If uyp ~ P> l then the correct power counting must be
Co(pr) ~ LR, which means one has to swap the integrated-out energy scale with the physical scale of

interest % — LR (with this change, Cp now becomes relevant as desired). One can summarize this by

saying that the renormalization scheme can be chosen to make the right power counting easier.

Note that by counting P one can find that 3y, % and Cj are all relevant. Another way to see that
is to look at the renormalization group flow from the g-function, with Gy ~ (1_‘15751%)2 and the a-axis being

mapped to a more compact version called the z-axis via augr = tan (”23”
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6.1 Two Nucleon Nonrelativistic EF'T 6 EFT WITH A FINE TUNING

1

(35.)

X=4)

There are 3 points where the 5-function vanishes in the a-axis for a fixed value of ugr: a = 0 (noninteracting,
since the only relevant terms are the kinetic pieces while all interactions are irrelevant) and a = +oo
(interacting, since there are relevant interactions). Classically a measures the interaction size, therefore
the fixed points are either so big or so small that it’s basically the same on all scales (conformal symmetry
at these points). When one does perturbation theory, it’s best to expand about the fixed points of the
theory, and the problem pops out from naive dimensional analysis coming from perturbing around the
wrong fixed point ¢ = 0. There is an interesting feature where a — ;%R and By — oo blows up, this
corresponds to a deuteron bound state — from the a = 0 side one never sees a deuteron in perturbative
calculations, while from the a = 400 side this is a true pole in the scattering amplitude as a deuteron
must exist in the theory. Also, a = +oo are conformal fixed points with an enhanced SU(4) symmetry

(combined spin-isospin symmetry).

There is another scheme called the power divergence subtraction (PDS) scheme, which doesn’t only
subtract poles at d = 4 like in the M S scheme (~ In A) but also poles in d = 3 (~ A). The calculation is
the following:

. o )4 dlqM iC3M /3 —d a3 /p\4—d
SO —ii(l) [ - (e (4)

At d = 4 the answer is i(%) and at d = 3 there’s a pole ng%%d, which results in a counter-term to

cancel this (the renormalized answer is then basically the same as OS scheme):

X e X }

ey T i Co(u)? (iP + 1)

This scheme (dimensional regularization style) indeed tracks the power divergent corrections, just like OS
does. Now, with the knowledge of Cy(u), one can find the running behavior of higher coefficients.

Example 1: Let’s deal with Co(p):
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C'L CO N C{? (?. 2
O >(X hove P
M s 4
10, Ca(p) = 4—:200(/002(#) , Co(0) =M = Mﬁazro (6.14)

2
This yields the solution Ca(p) = % (u—l T ) 7. The RGE enhances Ca from % to #%A

a

Example 2: In general the RGE tells the enhancement due to fine-tuning from a — oo of all operators
in the theory (since fine-tuning messes up the naive power counting, one needs to fix it everywhere):

k
M
10, Cox (1) = T a E C9iCo—jy » CajCori—jy ~ P* (6.15)
T =

The naive power counting gives Cy,, ~ ﬁ, while the improved one gives Cy,, ~ W + ...

For the few first coeflicients:

Natve P“’< ‘/a_ ?__:Tff?_uei Pa>>|
A
A S = e
A A
o~ s G~ TR relecont stl]
N A
Cq A //\) C—'f /u:i/\" - /JZ/\B
? ﬁr\,ﬂcd
[ Y=l

The scattering amplitude is now changed to:

MA > Com (1) P (6.16)
4r L (4 iP) (2, Com(n)PPm)
~ 2
Co(n) Co() P ((CMPQ) (n+iP) ¢ (M)P4>
- _ - _ — 5+ 2 - 5 +... (6.17)
1+C'0(M)(,u+iP) (14_00(’“)(“_,_1-13)) (...) (...)

1. :p 2 3 2
TP (Lyip) (L4iP) (L+ip)

The answer is pu-independent order by order (indeed, the scale p only helps to do the power counting right,
and in the end of the day, the physical prediction is free of x). In the diagram representation:
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6.2 Symmetries of NNEFT 6 EFT WITH A FINE TUNING

(1"
X + >’Q< ¢ K>1< + ;()( } res

X+ 20K 1 err Serie §
~

6.2 Symmetries of NNEFT
6.2.1 Conformal Invariance for Nonrelativistic Field Theory

The Schrodinger group — an extension of the Galilean group, instead of the Poincare group — contains:

e Translation transformation: 4 generators

e Rotation transformation: 3 generators

e Galilean Boosts transformation: 3 generators, X' =x+ct and t/ =t
e Scale transformation: 1 generator, x’ = e*x and t' = €5t

e Conformal transformation: 1 generator, x’ = and + = % +c

- 1+ct v

The NNEFT has this conformal symmetry at a — oo (Co(u) — —](4/[—7;, a fixed point of the S-function),
as the Lagrangian is invariant under p — e~*u. The Green’s function is also invariant under this symmetry
v 1 : . 2
of the free Schrédinger equation (the operator id; + QV—M)

Example: At leading order, adding up bubbles in a general frame gives:

-

2 :’1{&3@ O( > At0 =27 1
k )

M \V/—4M(E; + Es) + (p1 + p2)?

This expression is both scale and conformal invariant, which leads to the cross section o = %.

6.2.2 SU(4) spin-isospin symmetry — Wigner’s SU(4)

The infinitesimal form for Wigner’s SU(4) transformation is 0N = ic,, 0*7V N, with ¢ for spin and 7 for
isospin. To visualize the symmetry, let’s rewrite the Lagrangian in a slightly different basis:

L = —%C@g (NTN)? — %C&F(NT?N)Z (6.20)
= (O5) 43NN - L) — oSN Ny (6.21)

(1S0) _ 08351), gives rise to SU(4)

The first term has an explicit SU(4) symmetry and when a — oo, Cj
symmetry for the second term. In order to see this, we go to al’ So) a® Sl) — 00!

1 1
4 M
Csw) = —— | —Cd(p) = SCYMPED (6.22)
Mu 4w _ 1 S
K= Bsn )\~ Ts0
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6.3 Deuteron 6 EFT WITH A FINE TUNING

Note that nature is far from the a('50) = ¢(*51) limit, but SU(4) can still be realized when both of
them become large.

6.3 Deuteron

The deuteron d = np is a bound state of a proton and a neutron, has isospin I = 0 and spin s = 1 (35}
state). To look for a bound state in field theory, we approach from the lattice QFT point of view. So, write
down some interpolating fields that overlap with that state by choosing operators with correct quantum
numbers, such as d; = N TPCSUN for the specific isospin and spin equal to deuteron’s. Then we look for
a pole and see whether the deuteron is in the theory or not:

G(E)5; = /d4xe Pz (0| T(d}(m)dj(())) 10y H(B)daij  E=E- 2t (6.23)

where £ is the 2 nucleon center-of-mass energy. In our theory this is simple to calculate using our bubble
chain,

Co
LD -~ O

The sum of the bubble chain is nothing but a simple geometric series, which gives G = ﬁ with X
encoding 2PI¢0 diagrams. At leading order in the PDS renormalization scheme we get:

@ =2 (p) = —%(u - —ME)

Define Ep = —€ > 0 and g = vV—-ME = /MEgR = —iP, therefore G = ﬁ. There is a pole for

B = (%31) ~ 36 MeV > 0, corresponding to a physical deuteron state. A similar calculation can be done
a

2
at the 1Sy channel, but no pole is found. The binding energy of the deuteron is Eg = VWB = 1.4 MeV,
which is about the same order as the experimental value E; = 2.2 MeV.

With the LSZ reduction for the bound state, one can calculate the deuteron electromagnetic form-

factor. The matrix element of the electromagnetic current, (p',j|Ji,, |p,7), can have 3 possible form-
6F]\/[(0)

factors: electric Fg(q?) (from charge conservation Fg(0) = 1), magnetic Fis(q?) (S5~ = H) and

quadrupole FQ((]Q). To put electromagnetism in the theory use the covariant derivative D,N = <8H +
. 10
ZGQEMGAM> , Qem = 0 0

how magnetism couples to a deuteron eLs(u)(NTP;N)I(NTP;@BN) + h.c. (La(p) ~
diagrammatically looks like

K4

>. There is another operator that should be written down, describing

1 .
Mk )» Which

(o .y Q@ m, _37 /
W+ {'-A_A./\

¢
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6.3 Deuteron 6 EFT WITH A FINE TUNING

The LSZ reduction for the matrix elements of interest (on-shell, £, — —By) becomes:

: (6.25)
£, ——By

Gt = / dedtye= 0 (0 T (dl (2, (0)d;(v) ) 10) (6.26)

(03] o o) = Z (G7HEGTHENGH (E,€,7))

where Zp is our bound state Z-factor Zg, G=1(£)G1(E’) give our truncation by two point functions and
ij (€,&',7) gives the 3-point function. In terms of diagrams (defining ¥ as the part irreducible by Cp),
the 2-point function can be represented as:

= ) -+ - *72
(e SEDE oGX e + - s

Also with I'* being irreducible by Cp, the 3-point function can be drawn as:

] 9 NG
@ @CGSD@ €D DL @D © I o) (EuTeh>)

To find the Z-factor note that G = ng fgi) has a residue:
A ] P32
Zp(—By) = —ideG (5)] e (6.29)
£=—B; O¢X
E=—By
All pieces can be put together back in the LSZ reduction matrix element of interest:
. . .FH‘((‘:,S”(])
@i T Ips i) = i—5—— (6.30)
OgX.
E,£'=—By

At lowest order the electromagnetic current J% s for the electric case is:

. 2
@ R J—_

E=—By B 8TYB

2

-ny_ M q
— I‘Z-j = —62—@ arctan <4’>’73>6ij

(0).
ij
note that without $(2) the charge of the deuteron is messed up as Fx(0) # 1). The physics of the deuteron
from this theory fits extremely well with experimental data.

One can go to higher orders in perturbation series (e.g. for the next leading order, one needs 2@ and I

We can also study phenomenology with NNEFT. Other processes of interest are neutron-proton scat-
tering np — dvy (Big Bang Nucleosynthesis, which is calculated up to N*LO), deuteron break-up yd — np,
neutrino-deuteron scattering vd — ppe~ and vd — pnv (these are a charge current and a neutral current
process studied at the Sudbury Neutrino Observatory), and more.
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Another process of great interest is the nucleon-nucleon scattering that produces an axion, NN —
N N+ axion, which comes from the following pieces in the Lagrangian:

Lint = go(V'X?) X_ONT o'N + g1(V'X") X_ONT o' N (6.31)

It’s important to decide kinematically what region of the phase space to look at, and for bounding axion
physics for axions in the sun Euzion ~ Fnucleon and |Kazion| < |Prucieon| (to implement this particular
region use the multipole expansion by choosing the spatial part of the axion field going to 0 to make
(VX)) exchanging energy but not momentum with the rest of the operators at lowest order). Note
that NTo’N and NToir3N are related to the conserved charge of Wigner’s SU(4) symmetry in the EFT
(Quv = [d3xN TO'MT,/N ), therefore since the charges of a field theory are time-independent (no energy
exchange) the axion has vanishing energy, which means no scattering. Indeed, NN(1Sy) — NN(1Sg) X"
must be gone because of angular momentum (X° in p-wave), NN(3Sp) — NN (3Sy)X? vanishes for any a
(Qjo is conserved spin) and NN (1Sp) — NN (255)X° disappears as a — oo (the amplitude for this process

; ~ 3 11 1 1 (1S0) (3S1) o
is A ~ ke(°Sy) (a<150) a<351>> (s #iP) (—ss +iP) —0asa and a become huge). To summarize:
a

at lowest order in the EFT the (i)rocess is suppressed.

A Introduction to the Standard Model

Here we give an overview of the symmetries and quantum numbers in the Standard Model.

A.1 U(1) gauge symmetry (QED) and SU(3) gauge symmetry (QCD)

Consider electromagnetism with a single fermion ¢ (z) with charge @ (Q = —1 for e7). To get the
Lagrangian to be invariant under the gauge transformation 9 (x) — ¢ Q*@)(z) = U(x)y(x) (for an
infinitesimal o, U = 1 +iQa(x) + ...), one needs to introduce a gauge field that transforms as A, (z) —
Au(z) + 19,0 (which can be written in terms of U(z) as QA,(z) = QAu(z) — é(@MU) U~!) and change
the purely spatial derivatives (which mess up the U(1) symmetry) to a gauge covariant version i0, —
iD= (i0, + eQAy,)v, which leads to the transformation becoming nice again iD v — U(x)iD,.
One can form the gauge field strength F,, = 0,4 — 0, A* (F, is gauge invariant, Fj,, — F},) from
Dy, D))y = iQeF,,9. A U(1) gauge invariant QED Lagrangian can be written down:

Lorp = Y(iP—m)p — iF’“’F,“, (A.1)

For SU(3) (color) gauge symmetry, a triplet of fermion fields (3 colors) v (x) transforms as ¢ (z) —
U(x)(z) with U(z) = el @T* (74 = %) where M (A =1,...,8) are the familiar Gell-Mann matrices.
Define the non-Abelian gauge covariant derivative iD, 1y = (i0,, + gT' AAﬁ)z/;, and in terms of A, = AﬁTA,
the Al’j‘ component transforms as A, — U (Au + §8M> U~ (this is indeed similar to QED if one writes

the latter as QA,, — QA, + LU(0,U 1), using 9,(UU ') = 0). We can use the same commutation trick
[DF, D" = igF* 1) to get the gauge field strength F,, = FﬁTA, Fﬁ, = BMA;1 — 3,,Aﬁ + ngBCAEAg
(F,, transforms as F,, — UF,,U"! so Tr (F*F},) is invariant). The gauge fields transform as an octet
in the adjoint representation iD, AZ} = (i9,64¢ + ig fABCAE JAS | where the second term shows that the

gauge fields are charged. The SU(3)-invariant Lagrangian for QCD is:

Locp = Z Ui (i) — m)p; — Z iFlj‘VFWA (A.2)

i=1,2,3 A=1,...8
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Note that this Lagrangian contains only renormalizable interactions: operators with dimensions < 4 (for
example, the dimension-5 operator g¢'ipo*” F,1 is not included). The standard reasoning is that one
needs to impose a cutoff A for the UV divergences, and demands that all the divergences can be absorbed
into parameters of the theory (e.g. g(A), M(A)), then takes A — oo (in dimensional regularization this
means € — 0 where d = 4 — 2¢). The renormalization group will actually allow one to make an even a
stronger statement, for a finite A. Actually, there is still another gauge-invariant dimension-4 operator
QEMVATFﬁF/é (0 is a coupling constant) — although this term can be written as a total derivative, it is
nevertheless topologically meaningful in QCD, but it’s not a term of interest here, so we will ignore it.

A.2 The Standard Model SU(3) x SU(2) x U(1) gauge symmetry

Phenomenology is used to infer the charges (representations) of the fields, and from the gauge symmetry
one can find Lgpr. The Lagrangian, schematically, can be split as £ = Lgquge + L fermi + LHiggs + Lvgy- We
will examine each of these pieces in turn.

The pure gauge kinetic part is:

1 1 1
Lgauge - —ZBNVBM/ _ Zwﬁywuua _ ZF;L‘LFMVA (A.3)
where B, is field strength for the U(1) gauge field, W, (a = 1,2, 3) gives the SU(2), and F/ﬁ, (A=1,...,8)
is SU(3). The SU(2) is similar to SU(3), except that the generators are T% = 0,/2 (where o, are the Pauli
matrices) and the generators satisfy [T'%, T?] = ie®¢T°. All the gauge bosons transform under the adjoint
representations of their corresponding groups, and they form 3 distinct sectors (e.g., no U(1) charge for
gluons).

The fermion part is simply £ fermi = YiIp1p and one has to specify what the field degrees of freedom 1)
and gauge covariant derivatives D there are. Since v should describe 6 flavors of quarks, one can arrange

them in doublets for quarks v , ¢ , t and leptons Ve , Y , Y7 ). These can
d S b e I T

be viewed as 3 families of fermions, in the order written above (for example, the first family includes wu,
d, ve, and e”). The covariant derivative has the general form iD,, = i0, +ig1Y B, + 1g2T W + igTAA;‘
(g, g1 and g9 are coupling constants, Y is the U(1) charge, T is an SU(2) generator in a particular
representation, and T is an SU(3) generator in a particular representation). For the degrees of freedom,
quarks transform as triplets (fundamental representation) under the color SU(3) (all the quarks transform
together, and color is flavor-blind) and leptons are singlets.

SU(2) breaks parity — it acts only on the left-handed fields. The left handed field is obtained as

Y, = Py (P, = # is the projection operator). Charge matter comes in SU(2) doublets: Qr = < Zi )

and Lj = < V€EL ) (the analysis is identical for the other families, so let’s look at i = 1 only). The right-
L

handed fields, given by ¥r = Pryp (Pr = 1+—;5), are singlets: upr, dg, er, and maybe vg. One might also

include vg in a special term in the Lagrangian £, ,, since if the neutrino is massless it can be completely

dropped because v is uncharged (colorless, right-handed, neutral). However, it is known that the neutrino

masses are non-zero (m, # 0).

A mass term for the fermions is may) = mapTy°(Py Py + PrPp)Y = m(¢Yrr +Yrvr) (Pr + Pr = 1,
P = P?, Pr = P%, %% = —45490). Under SU(2), v, — Uty and ¢ — g, the mass term violates
SU(2) gauge symmetry, hence it cannot be included. Instead masses are generated (for fermions, and also
for the gauge bosons) through the Higgs mechanism, which will appear in the Higgs sector, Lrriggs-
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Note that the U(1) factor is not electromagnetism, as it can only have a single charge under the U(1)
(otherwise it would mess up the SU(2) gauge symmetry). Electromagnetism is actually hiding inside
SU(2) x U(1). The difference in the electromagnetic charge between the upper and the lower components
of the doublets is always 1 (e.g. % —(=3) =1,0—(—=1) = 1), so let’s take the electromagnetic charge to be
Q = T3+ Y (Y is the charge corresponding to the U(1) — hypercharge, and T2 is the a = 3 generator of
SU(2) —it’s % for the upper component of the left-handed doublet, —% for the lower component, and 0 for
the right-handed singlets). Since the neutrino is electrically neutral () = 0) while the electron has charge
Q = —1, the U(1) charge of this doublet should be —1/2. Using similar arguments one finds Y (Qr) = ¢,
Y(ug) = 2, Y(dr) = —3%, and Y(eg) = —1 (although these charges seem somewhat arbitrary, they’re
constrained by anomalies — the possible mismatch between classical and quantum symmetries). From this
analysis we can write down the quantum numbers for the matter content of the standard model (including
some content that we will get to soon):

Freld TUs) SuG) u Lorents
Qs = (uf) > = e C,0)
dL;
et 3 1 ) (/>
A:z; - ] —'/’3 (o %)
L () 1 2 (4,0)
e‘_.‘.
et | l - ‘@ (o)
Jea ) L [a ] (o, ‘:;:)
AR g i o (+.4)
W i > ° (5.4
ep ! ! ° (x.4)
H = (h) ) s ‘]JH = ? (Q,O)
hy A,
. i
Sl S'H(z.)
wa broken

Example: With these ingredients one can write the full ¢D,, term for each of the fermions, for example:

. . 1 o A
iD,Qr = 10,Qr + glgBuQL + QQW;(f?QL + QA;??QL ) (A.4)
iDer = i0uer —g1Buer+0+0 , .. (A.5)
A family index ¢ = 1,2, 3 should be included for the sake of completeness (e.g. ui = uy, u% = cyp,
ul =1, ete).

The Higgs field H = ( Zl >, which is a doublet of complex scalars, will break SU(2)z x U(1)y into
2

U(1)g and generate masses for the particles. To find Yg consider the following terms, which are allowed
by gauge symmetry for the Higgs Lagrangian:

Liiggs = (D“H)T(D“H) +p(H'H) = NHH)" + Ly ukawa (A.6)
2\ 2
= (D, H) (D'H) — X (HTH — ;LA) + Ly ukawa (A7)

We can see that the Higgs potential is minimized for a non-zero vev (0| H|0) ~ 4/ % # 0. Recall that

Q=T°4+Y,s0 QH = < ((11//22++Y11j)?f1b > When the Higgs gets a vev, if one doesn’t want to break
- H)h2
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electromagnetism, one picks Yz = 1/2 and gives the vev only to the neutral component (0|h°|0) = -% in

V2

+
H = < };LO > (also, with Y = —1/2 an equivalent result is obtained). The most general Yukawa couplings

consistent with the gauge symmetries are Lyykawa = —géj éﬁzH tLJL — gzlj CEQH TQ]L + gf{ E%H TGQ]L + h.c.
0 1
-1 0
Model singlet (even without the summation over family indices).

(i,j = 1,2,3 are family indices and € = io? = < ) Each term in this Lagrangian is a Standard

Example: Consider, for example, the first term: it is SU(3)-neutral, H'Ly, is an SU(2) singlet, and
the sum of the hypercharges Yz = +1 — 1/2 — 1/2 = 0. The fact that H”eQp, in the last term forms
an SU(2) singlet follows from the fact that 2 is a pseudoreal representation of SU(2), so that 2 = 2.
Let U = €¥“?". Then eUe = —U*, as can be checked using €2 = —1 in the Taylor expansion U =
1+ ia%% + ..., U* = 1 —ia%** + .... Tt follows that UTeU = e. Then under SU(2) transformation
HTeQr — HT'UTeUQ = H"eQy,

Let’s see how the vev of the Higgs gives masses to particles. Start with H = < ]SO > and h0 = %:
D85, (0 ) £ gwals (O) 2R ( eV — W) (A-8)
pit Ty P\ po 9w, 2 U 7 91B, —gng .

(D, H)(D*H) includes the term %WI”W/%, which is a mass term for W; Fermions get their mass
from the Yukawa couplings (e.g. the term g.érH' Ly + h.c. includes g.hoérer, + h.c., and after adding the

hermitian conjugate and substituting the vev of A" one arrives at gef;’ée = %(é Rer + €rer) — a mass term

for the electron).

Note that the construction of Lgys is based on gauge symmetry. One could instead have listed the
bosons and fermions and constructed all d < 4 operators first (e.g. 0,00"¢, PO*A,, PP, Pib, p? AP A,
AFA,, YA, Pipy), then imposing gauge invariance would relate coefficients of these operators and set
some of them to 0.

A.3 Symmetries of the Standard Model

Let’s look into the symmetries of the Standard Model in more detail:

1. Discrete Symmetries

The discrete symmetries are parity (P: (2°,x) — (2%, —x), 2 — zp), time-reversal (T: (2°,x) —

(—2°,x), * — x7) and charge conjugation (C: particles — anti-particles).

Example: A fermion field transforms as Py (z) P~ = 1% (zp), Ctp(x)C = e(1b)T (e is representation-
dependent, e.g. in Peskin-Schréder notation e = —iy24" and in Bjorken-Drell notation e = —ivy?).
The term [ d*az¢)(i]) — m)t is invariant under P, C, and T. Under P one has myyp — miy(xp)
(d*x = d*zp), under C one has Yy*¢p — —ipy#p and A, — —A,. So, we can see that QED is
invariant under these symmetries, and QCD is also invariant, up to the term F*"F ATEW,)\T which
breaks C and CP. Experimentally, § < 107!0, so the violations, if they exist, are small. Weak
interactions violate P, C, and CP. The W boson couples to the current 1);v*Pr3. Under P one
has Y1y*Pripo — 17*Pripa, under C one has 117" Pripy — 1oy"* Prip1, then under CP one gets
YY" Prapy — oy* Prapy and if one adds the complex conjugate terms, the current is invariant under
CP. However, if the coupling constant isn’t real, AMp1y*Prabo + N 1hoy* Prapy isn’t invariant anymore
(there is one such case like this in the Standard Model).
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2. Classify global symmetries

A global symmetry has the form ¢ — eiO‘ATAw (a4 are spacetime-independent). There are symme-
tries that are exact symmetries of Lg)s, and there are also approximate symmetries: broken by small

terms in Lgps. For example, the SU(2) isospin symmetry acting on the doublet Y ) is broken

d
by M4 and by apy = %7, but is still a good symmetry of bound hadrons in QCD. The scale A
describes the strength of the first term in ¢ (iJp) — m, ). Since the size of a hadron is ~ 1 fm, the

momentum is p ~ (1 fm ) ~ 200 MeV ~ A > m, ~ 4 MeV. In addition, there are symmetries that
are spontaneously broken by the vacuum expectation value (hidden symmetries). In these cases, the
Lagrangian Lgys is symmetric, but the ground state is not. Still, such symmetries have implications
for the dynamics (Goldstone bosons and their interactions). Finally, there are symmetries that are
anomalous: classical symmetry is not a symmetry of the quantum theory (breaking could be large
or small).

3. Conserved charge

Let’s look at the symmetries classically. Suppose the Lagrangian is invariant under the transformation

of the fields ¢' — U%e’ (infinitesimally ¢* — (6% + ieT)¢/), define 7t = 0(g£¢i), then 0,mip =
"

0 % = @ where in the last step we used the equation of motion following from demanding

§ [d*aL =0. The next step is to define the current J* = ¥ (iT%)¢;, hence this current is conserved:

oL T o425 oL
¢ 9(9,9)
The conserved charge is simply Q = [ d®xJ% = [ d3x7) (iTV) ¢,

B J" = Byt - iT - 4+ 7 AT - Dyp = T -9, =0L=0  (A.9)

In the Hamiltonian formulation, the momentum conjugate to the field ¢’ is 7/ = ﬂizo and it satisfies
the canonical commutation relations [¢'(x,t), 7/ (y,t)] = i6“6%(x — y), which give:

[Q(), ¢ (v, )] = /d?’x[ﬂz(xvt)acﬁ’( OIET™ . (x. 1)) = T*r(y, 1) . [Q(), 7' (y, )] = T mi(y, 1)

(A.10)
This implies that for any operator O(t) built out of ¢ and 7, one has the infinitesimal transformation
generator popping out from the conserved charge operator-wise [Q(t), O(t)] = —idO. In particular,
for the Hamiltonian H one gets [Q(t), H] = —idH = 0 if the Hamiltonian is invariant under the
symmetry. This result implies that @) is conserved %Q = 0.

4. Baryon Number and Lepton Number

The baryon number, a U(1) global symmetry, corresponds to the transformation v; — e~%; (i
refers to each of the quarks, and in this case Tj; = (—1);;). The Lagrangian that’s invariant under
this symmetry is:

L =pilpy — gedH'Qr + guurH Q1 (A.11)

It can be read-off that TI'Z = Wi’yu and J, =), W’yui/}i. Baryon number is an accidental symmetry
of the Standard Model. It is anomalous, but the effect of the anomaly is very small.

Similar to the baryon number, the lepton number corresponds to the transformation ¢ — e~
where i refers to each of the leptons. In fact, neglecting £, one can diagonalize Lgs in family space
by unitary redefinitions of ez and Lj such that g. in géj éﬁéH TL% is diagonal. The lepton number
inside each family is then conserved separately.
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B

Example: For example, for the first family, the symmetry transformation can be written as 1’ —
e~ eqp? where i includes only the electron and electron neutrino.

. Quark Numbers

The number of a given quark flavor, such as strangeness and charm, is approximately conserved in
the standard model. The symmetry is broken due to non-diagonal g,/ and g3 . For example, weak
interactions have a vertex with s, u, and W, so strangeness is violated. However, strangeness is a
good symmetry of Loop and Lggep. Strangeness is useful also in weak interactions: for example one
can consider the matrix element (e~ Ve| Hyear }K' 0>, where 7 is a bound state of u and d, and
KV is a bound state of s and d, so the strangeness changes by 1. The Wigner-Eckart theorem can be
used to obtain useful information.

. Axial U(1)

Consider the transformation ¢ — e*w'yswi (1 = u,d in the limit m,, mgq < A). The corresponding

_ . —i6°
current is Jy,5) = Zz’:u,d Yy, 759" . Another example is ( Z ) — ( c 0 61275 ) ( Z > with

Ju5) = wypysu — dy*~y°d. These U(1) are anomalous, and the effects of the anomalies are strong.

These are not symmetries in the quantum theory.

Flavor SU(3)
Flavor SU(3) is a generalization of isospin SU(2) to include 3 quarks: u, d, and s.

. Heavy quark symmetries

There exist approximate symmetries involving the heavy quarks ¢ and b, which become exact in the
limit me¢, myp > A. There is U(2) flavor symmetry and SU(2) spin symmetry that are combined into
U(4) symmetry that acts on the vector (cf, ct, b, 6H)7T.

. Chiral symmetry

The QCD Lagrangian has an SU(2)r, x SU(2) g symmetry (in the limit m,,, mq < A), corresponding to
the two independent SU(2) transformations ¢y, = ( ZL > — exp(—io - 0r)Yr and Yp = < ZR ) —
L R

exp(—io - Op)r. The corresponding currents are Ji* = Pryto®r, and Jga = 1/)_R’7MO'G¢R. This
symmetry is spontaneously broken into SU(2)isospin- Similarly, in the limit m,,, mq,ms < A, the
QCD Lagrangian has an SU(3), x SU(3) g symmetry that is spontaneously broken into SU(3) fiavor-

Renormalization Techniques

The goals for studying renormalization, in general:

1.

Improve our understanding of renormalizable QFT (the operator O has mass dimension [0O] < 4 in
4 spacetime dimensions) by showing that it is often the low energy limit of QFT with no restriction
on operator dimensions (non-renormalizable).

. Understand why quantum fluctuations at short distances (large momenta A) only affect the value of

a few parameters g(A), m(A), etc. in renormalizable QFT (or at low energy).

. Explore and exploit the scheme dependence of coupling constants (renormalization schemes).
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4. Derive “renormalization group equations” (RGEs) which allow us to avoid a breakdown of pertur-
bation theory due to large logs, e.g. aIn(q?/m?2) for ¢*> > m? in QED, by using a smart choice of
coupling a(g?). If ¢2 > ¢3 > m? we'll see that the RGE connects a(q?), a(q3), and a(m?).

Points 1 and 2 are usually thought of as Wilsonian RG. Point 4 is Gell-Mann-Low RG.

Consider for example non-renormalizable massless QED:
1 95
‘CQED = _ZF W Fyw + idpy + %D " Fup + (¢¢) (B.1)

The term with g5 is a dimension-5 operator, the term with gg is a dimension-6 operator, and we have
omitted an infinite number of other terms consistent with gauge symmetry. We can see that g5 and gg
are dimensionless, and Ag is a dimension-1 constant, the mass scale of irrelevant operators that defines
what low energy means By dimensional analysis, the electron-positron scattering cross section is given by
olete” —wefe”) ~ 43 -+ ag5 + ..., where the first term comes from squaring the amplitude of a diagram
with two e vertices, and the second from squaring the amplitude of a diagram with one e vertex and one g5
vertex (the cross-term vanishes by chirality). For E < Ay, the first term dominates and the contributions
from gs, gg,... are irrelevant. Therefore the operators with dim > 4 are called irrelevant operators. Point

E
1 says EQED‘E«A() =Loep +0O (A—())

B.1 Wilsonian point of view

In the Wilsonian picture, a QFT should be regarded as an effective field theory valid in a certain range of
energies with a finite physical UV cutoff Ag (imposing p% < A2). For [,A this cutoff might be the scale
of quantum gravity or a heavy particle we haven’t seen.

One should write down all mteractlons consistent with symmetries of the theory. For E < Ay, E

will look like Lgps. For example, our Ay fterm contributes 495 to the electron magnetic moment. The
value calculated from the Standard Model agrees with experlment to 10~ mﬁ, SO % > 8 x 10'%9m, =
4x107(GeV) . Note that, in the Standard Model, Yo" F,,,,4) is not consistent with SU(2) gauge symmetry.

B.2 Loops, Regularization, and Renormalization

Regularization is a cutoff on UV loop momenta (dimreg, cutoff A, Pauli-Villars, etc). Renormalization is
picking up a scheme to give definite meaning to parameters in £. Consider the ¢* theory:

L= L(Outo)? — 5B — 6k = Ligw,mo, o] = Llgym, A + L62(0,0)? — ome” — 6t (B2)

In the last equality, the Lagrangian is expressed in terms of the renormalized field ¢, and defined ¢g =
ZV2¢ 672 = Z — 1, 6m? = m%Z —m?, 60X = A\oZ? — \. The counter terms “d...” remove UV divergences,
but can also remove finite terms, and one needs a way of specifying those, and this is the renormalization
scheme.

B.2.1 On-shell renormalization scheme

In the on-shell scheme one requires that the 1PI 2-point function I1(p?) satisfies II(m?) = 0 and II'(m?) = 0.
The first condition fixes dm, and the second fixes §Z. To fix §A, the 1PI 4-point function is chosen to be

equal to —idat s=t=u= %mz, where s = (p1 +p2)?, t = (p1 — p3)?, u = (p1 — ps)? are the Mandelstam
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variables. For regularizing loop diagrams either dimensional regularization (dimreg) or a cutoff can be
used, and the obtained results are the same for observables o(E, m?, \).

Example: The 1-loop contribution to the 4-particle scattering amplitude (regularized by a cutoff A in
Euclidean space) is given by the sum of the 3 contributing diagrams:

i 2 1 2
A= 32)\7r2/0 d“j(ln <m2—:?(1—$)5) + () + (u) —3> (B.3)

If regularized by dimensional regularization with d = 4 — 2¢ (B is a known number), then:

A ir /1d 1+1 ( A" )+(t)+()+B (B.4)

=— x| —+1In u .
3272 J, € m?2 —x(1—1x)s

Here (t) and (u) denote the same term with s replaced by ¢ or u. Since by our definition of A the 4-

point function at s =t = u = %mQ is exactly given by the tree level result, the contribution from the

loops should be canceled by the counter-term. Substituting s =t = u = %mz into the loop result gives

O = 35\; <3 In (7/7\722) +A- 3) in the case of the cutoff, and 6\ = 33;2 (% +31n (#) + A+ B | in the case of

dimreg (where A is a known number). The sum of the loops and the counter-terms for general momentum
gives Aren = A% [ da:(ln (m72) + (1) + (u) — A) independent of the method of regularization.

— 3272 Jo m2—z(1—z)s

The fact that the argument of the log in In (#) isn’t dimensionless might seem to be a problem.

The reason is that in dimensional regularization the dimension of fields and couplings changes. From the
kinetic term for the scalar field d%z(9,¢0"¢) it can be seen that [¢] = 1 — ¢, and from the ¢* term dzA¢?
it can be seen that [\] = 2¢. It is then convenient to write A = u2¢A\(x) where A(u) is dimensionless. In
the above analysis p plays no role in A"" because it is a part of the regulator, but the expression for §\ is

given by 0\ = Aw) (% +1In (7‘72—22) +... ) Now suppose s, t,u > m?, then A™" ~ A\2In(m?/s). The large log

3272
could potentially spoil the A-expansion, and in this limit it’s natural to consider taking m — 0, but both

)\2
A" and A = A\g + Tous

['(s,x, \,m?) = sP/2I'(x, \,m?/s), and the dimensionless function T on the right-hand side doesn’t have a
good m? — 0 limit (z stands for the ratio t/s and u/s).

(3 In (;\722) + ) blow up. Writing for any observable of dimension D, one gets

B.2.2 Off-shell renormalization scheme (up)

To solve the problem of the on-shell scheme, another scheme might be needed, where one might require the

1PTI 4-point function to be equal —iA(ug) at s =t = u = —/ﬁ% where pp is an arbitrary renormalization
scale (different values of up are different schemes). The tree level contribution is now —iA = —iA(ug), and
the 1-loop calculation gives:
)\2 1 A2
oX = (“R)/ dz( 31 ( )+ (B.5)
3272 J, m2 4+ z(1 — x)ug,

This expression has a good m — 0 limit. The total amplitude in this limit is given by:
iN(ur) [ 13
ren — —~ =2 dx| 1 <7R> B.6
A 3272 /0 . —z(1—x)s + (B-6)
= D(s, 2 Au)sm?, 1) = sP/2T(w, Apg), m2/s, 1% /) (B.7)
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2
These also have a good m — 0 limit. Moreover, for —,u% ~ s, A" and I" have no large logs, just In (’i—’;),
so perturbation theory is fine.
B.2.3 Relating schemes

Different renormalization schemes are related. The bare couplings are scheme-independent, so A\g = A+0\ =
AMpr) + 0A(ugr) with XA and d\ refering to the on-shell scheme. One has:

2 — 2
A(MR)=A+3;2(31H (m ”7(712 )“R)+...> (B.8)

Hrp m

MR’ UR

arbitrary function. Take M/Rau’R of this equation and set py = pp. Then one arrives at the Callan-

Symanzik equation ,ujgﬁ%)\(,u}g) = B()\(,LLR), %)Where the S-function is 8 = 8ZG<)\(,uR), z, l%)‘ v For
z=

our ¢* theory, the S-function can be computed for Wp ~ pur where there are no large logs, and then

we can integrate the Callan-Symanzik equation to relate the coupling at different scales. The answer is

2 ;2 2
Alp) = Mpr) + 3/\32(:21?') In (%) + O(A(,LLR)3), and the S-function is 3 = 3)‘16(:2R) + ...

Form =0, B(v(pr)) = %. Integrating this solution we obtain the result A(ur) = 173# =

X n(ur/m)

If pr > m this series may not converge. Consider A\(uy) = G()\(,uR),z = ), where G is some

k
A+AD 00 ag ()\ In (‘:ff)) (A is the coupling constant in the on-shell renormalization scheme). Note that

AMpgr) ~ X+ O(N\?) for An (“WR) < 1. The lesson is that the most appropriate coupling depends on the
probed scale.

One can extend the off-shell treatment to the other coupling constant. Requiring the 2-point 1PI
diagram II(p?) to satisfy II(—u%) = 0 gives m(ug), and the condition IT'(—u%) = 0 gives Z(ug), where Z

1 / !
is the field renormalization ¢ = 773 (1R)@o- Defining % =G° ()\(MR), Pr ﬂ), taking p'z0,, , setting
Z2(uR) HR’™ MR R

1 1 1
Wy = pR one gets prg-22(ug) = ~° (A(MR), ,%)22(/@.) or pr g Z7 (ug) = 7° ()‘(MR)a ;%) where
v =0,G? ()\(,uR), Z, ;%)} ) is the anomalous dimension. Local products of operators, e.g. Oy = (¢3)(x)
z=
are renormalized as O = Z90Op and this means pgd,, In Z°(ug) = v° (A(MR) n ) In the ¢* theory the

' 1R
first-order (in A) contribution to Z vanishes (i.e. Z = 1+ O()\?)) and v¢ = 0 4+ O(\2?), so let’s look into
QED for more interesting physics.

B.3 Renormalization of QED

The QED Lagrangian in Feynman gauge £ = 1 can be written as:

L=9(D —m) — iF,ﬂ,FW - 215(0 - A)? + et (B.9)

1
The relations between the bare and the renormalized quantities are parameterized as 1y = ij, Al =

1
ZiA¥, mg = m — dm, eg = Zee and & = Za{. Zy comes from a diagram in which the electron emits
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a photon and then absorbs it and Z4 comes from a diagram in which the photon turns into an electron-

1
positron pair, which then annihilate to create a photon. There is a relation ¢peqAgtg = Zwa1 ZopeAp =
Z1eAy, with 4 diagrams being relevant to it, giving modifications to the electron-electron-photon vertex.
In one of them, an additional photon is traveling between the incoming electron and the outgoing electron,
in two others either the incoming or the outgoing electron is decorated with a Zy contribution and in the
last one the photon is decorated with a Z4 contribution. By the Ward identity Z; = Z;, it can be shown

that Z. = 7.

B.3.1 QED: On-shell scheme

In the on-shell scheme one has o ~ ﬁ In this scheme one requires that the 1PI electron electron-photon

vertex is equal to —iey* for ¢ =0 (Where g" is the momentum of the photon) or II(¢> = 0) = 0. The
dedv ) —iatg” In the on-shell scheme this is picked to be
q

photon propagator is given by % (gw, — qq

m <9uv — By )qjq q" (Z4 is absent, and Il is replaced by II).

(¢?) = 2@; /01 dzz(1 - )ln (m2 - q:;(l - w)) +O(eh) (B.10)
Zy= (1 - H0(0)>_1 —1- 1;”; In (:};) +o (B.11)

These results diverge in the massless m = 0 limit.

B.3.2 QED: Off-shell momentum subtraction scheme

In the off-shell momentum subtraction scheme the photon propagator at ¢? = —u%{ is equal to ;—Qig“” +

_1
¢"q”.... This implies that Z 7 (jip) = 1 — Io(—p2) = 2957 (1 — 195 (—4i2,)) and G = (%) 2,

1 2 o1 2, 12
(4) Wr m Za(Wp)\z e(1r) B m* + ppa(l — )
G (e(,uR) pys MR) (ZA (in) ) =1+ ), drz(l —z)ln (m2+M%$(1 —x)) (B.12)

2 2,2

(A)( ﬁ) ( ) / z (1 — ) g 7 Leo B.13

v e\HR); , e(UR AUR .
(1r). ey ) = Zalon) (5.13)

Note that egAg = (eOZA(,uR)%)(AOZA(uRY% = eA should be pp-independent. So:
1 : e(ur)® [1 ) 2?0 2)%

= urd = ——urOuZ3e0 = (4) = / d B B.14
B = prOugpe(pr) 7, ROurZ 40 e(ur)y 2m? ) M (i - a) (B.14)
In the limit u R > m one gets § ~ 137’2 and this is known as the QED S-function. In the limit up < m,
8 =~ 6’67}2 7’; —&  In general, the function passes smoothly through ur = m, and can be directly matched

to e(ur = 0) = e. For m > oo (the non-relativistic limit) we get 5 = 0 and e(ug) = e, the charge

we use in quantum mechanics. Integrating the expression for pur > m leads to a(ugr) = m’
3

which is similar to what is found for the ¢* theory. For a general pgr/m, the expression has the form
a(ur) = % (the function f(ugr/m) can be computed from the § function, and it satisfies f(0) = 0,
3

f(1) #0). For £& < 1, the function a(,uR) is approximately flat with the value «(0) ~ 137, then grows
slowly with ™“2 (e.g. reaching o(10) ~ = for ™28 = 10). At the mass of the W boson (~ 80 GeV)

alpup = my) ~ 1178. People take these changes into account for precision weak physics.
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B.3.3 QED: MS scheme and M S scheme

The minimal subtraction scheme is an efficient method to get 5 and v in dimensional regularization
(d — d — 2¢) where pu is a sliding scale and the counter-terms are simple. From the term in the action
i d?zipo Agthoeg one sees that the dimension of ey in dimensional regularization is [eg] = €, therefore
eo = Zepe(u) (e(p) is dimensionless, and all objects in the equation depend on d = 4 — 2¢). A Laurent
series expansion in € gives:

pCeo(d) =e(u, d (1 + Z ar(e ) =e(u,d)Z,. (B.15)

Define ey, d) to be analytic for all d, ergo Z. only has pole terms. By acting with ud, and defining
10ue(p, d) = Ble(p, d), d) one gets:

(e e MDY gy (143 B 3o WD) (B.10)

where aj = Jeay),e stands for e(ug, d). We also know that [ is analytic in d since e(ug, d) is, and it must
be linear in € and cannot be quadratic or higher order. This means (e, d) = —ee + ((e), and to Oth order:

B(e) = —eay(e) + eay(e) + €*ear(e) = e*Deay(e) — pdue = —ee + e2deay (e) (B.17)

In the limit d — 4 (e — 0), udue(p) = e2deaq(e) or in terms of a(p) = 6(4‘;)2 then pd,a(p) = 402 (u)daar ().

At any order in perturbation theory, the S-function is determined by simple poles in Z.. This makes it
2

clear that one only needs the divergent part of the graphs to compute 8, e.g. Z4 = 1 — 5= + ..,

Ze =1+ 247r26 +...,a1 = % +0(e*) and = Piz(M? , which is the same as the massless S-function obtained

in the pur scheme. In fact the massless (e) is scheme-independent up to the first 2 orders.

The dimensional regularization scales p in M.S scheme and M S scheme are different by a constant
factor u3,q = ,LL?W—SeVE (47)~! (yg ~ 0.5772 in the Euler constant). The M.S scheme is used to simplify the
finite piece (e terms). A typical contribution from a loop looks like:

€ 27
L(e) pigs 1 <1+1 (”MS)+> (B.18)

(4m)2—¢ s¢ 1672 s

At O (}k), 0 = B(e)ay —e%aj1+eB(e, d)ay so €20ear1 = B(e)0.(eay(e)) and one finds a recursion relation
for the higher order terms in Z. — the coefficients of the higher poles are determined by a1 (e).

Example: For k£ =1

3 3 5

9 e e e
Oty = (ro—g + )05y + ) = 5o + B.19
¢ Otz = g2 T )%\ gz T 9671 (B-19)
So ag = 357 is a 2- loop L pole in Z,. The anomalous dimension of the operator O is given by ~©
O
10, In Z9 (1) = —edea?, Wlth the renormalized factor Z9 =1+ > 22, % -
There can be multiple couplings ¢1, g2, ---, gi, ... = g with different dimensions:
al
g = g (. d (1 + Z e ) Ay(d) = Al +ep (B.20)
dal
1Ougi(p, d) = —eprgr — Digi + gu Z Eﬂmgm (B.21)
m m
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Note that g;(u, d) is dimensionless (or dimensionful §j(u, d) = ™ g;(u,d) and [g] = [ghare] d74):

dal G

10, Gi(p, d) = —epigi + Gi Z (B.22)

In dimensional regularization, powers of a cutoff never appear (A, A2, ...). Poles at d = 4 correspond to
log divergences % +1In (ﬁ—z) + ... If a product of couplings Ga, Gb, Je, --- appears in a’(g) then dimensional
analysis implies 0 = A, + Ap + A. + .... In a renormalizable theory A, > 0, so v and § functions only

depend on A,, = 0 (relevant) couplings. In a nonrenormalizable theory with A,, < 0 for all operators
(marginal and irrelevant), the nonrenormalizable interactions do not affect the renormalizable ones with

Ay = 0.

B.4 QCD: renormalization, S-function, asymptotic freedom

In the Faddeev-Popov gauge fixing one has:

Locn = —(F)? + B(D = m)b = 5 (0" 43)° + (0" D) (3.23)
Here the ¢ are ghosts, which are negative degrees of freedom that cancel unphysical degrees of freedom,
e.g. the timelike and the longitudinal polarization states of the gauge bosons. For example, in the process
qq — gg one can calculate the squared amplitude |M|? in two ways. One way is to consider a tree diagram
in which the two gluons are attached to a quark line, and square its absolute value, while explicitly
requiring the polarizations of the gluons to be transverse. Another way is to do the multiplication |M|? by
considering all diagrams with incoming quark and antiquark and outgoing quarks and antiquark, that are
possible to cut into two pieces by cutting through two gluon lines. Without ghosts, there are 5 diagrams
like that, which look as follows. All of them have a quark line for the incoming quark-antiquark pair, and
another quark line for the outgoing quark-antiquark pair. The lines are connected as follows:

TLC I e <

+ A rfor

In order to get the right answer, one also must include diagrams with ghosts, that in this case is the
following diagram:

1 1
Define the renormalization factors Ay = Z2A, g = Z3, co = Z‘ééc, g0 = Zgg, mg = (m + 5m)Z;1
and § = Z3&. Z3 in the expressions is used for both A and &, which is allowed based on Ward identities.
Let’s write the Lagrangian term by term, state the renormalization prefactor of each term, and draw the
contributing diagrams:

71



B.4 QCD: renormalization, S-function, asymptotic freedom B RENORMALIZATION TECHNIQUES

Re ro e\l gation
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Note that the same gg appears in all interactions. This allows one to write the relations:

_3 1 1 -1
Zg:@:Z1Z3 ? :ZPZ?,_IZZfZ3 2Z2_1:Zfzzc_lz3 ’ (B.24)
g

Note that unlike QED, Z{" # Z,. This gives 4 different ways to get Z4 and hence the -function. These
!’ F c

relations can also be written as % = % = ZZ—12 = %, which are called Slavnov-Taylor identities (this is the

QCD analog of the QED Ward identities Z; = Z3). It’s also possible to derive Slavnov-Taylor identities

based on gauge symmetry, which would give relations between the couplings. A manageable derivation

of Slavnov-Taylor identities requires using the BRST symmetry of the gauge-fixed action. The analog in
1 1

the U(1) case is that the renormalized coupling e = %Z; eo = Zs ep does not depend on the species of

fermions.

In QCD things are more complicated because Z; # Z,, and Z3 is gauge dependent. However, you can
show that the first two terms in 3(g) = bog® + b1g® + ... are gauge-independent, and that in M S the full
B(g) is gauge-independent 3 = ud,g(n) = gogai(g) (Zg = 1+, %). One needs to compute Z¥, Z3, and
Z in order to get a;. A simpler method is the background field method.

B.4.1 Background field method

1
The idea of the background field method is to find a gauge where gA* is not renormalized, so Z, = Z3_ 2,
The gauge fixing is needed for obtaining a well-behaved propagator, but one can still keep gauge invariance
on the external lines. Let A* — A* + Q" where A* is a fixed background, and Q* is a quantum field.
The QCD action S[A + Q] (without the gauge fixing terms) is invariant under the gauge transformation
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Ay +Qu — A+ Qu + é@ua —i[A, + Qu,a]. There are 2 gauge symmetries, the first is the gauge
transformation of the quantum field A, — A, and Q, — Q.+ %[D;HQ, o] where iDATR =0+ g(A+Q),
the second is the gauge transformation of the background A4, — A, + é[D;‘, al and Qu = Qu — i[Qu, ]
(can also be written as A — U(A + ;’a) U=!'and Q — UQU'). Here @ behaves like an adjoint matter

field. Let’s do gauge fixing for the transformations of the first type, but leave gauge symmetry of the
second type.

The generating function for Green’s functions for A = 0 is:

. 0G? . 4 1 a\2 aua
207] = /DQ det (575 ) exp <z/d 2(£(@Q) - 2 (G2 + 750 )) (B.25)
The generating function of the connected Green’s functions is W[J] = —iln Z[J] and for the 1PI Green’s
functions I'[Q] = W[J] — [ d*zJ¢Q"* where Q = 2. Consider:
s
Z[J, Al = / dQ exp (z’S[Q + A] +iJ5QM 4+ i(Sgp) + z’(Sghost)) (B.26)

Let the gauge-fixing term be Lgf = —Q%(G“)2 with G* = (D,Q")* = 0,Q"* + gf“bcAZQ“C. This fixes the
gauge in the first type of transformation discussed above, but is invariant under the second (¢ — UcU !
is also invariant under this second type of gauge transformation):

0Q 1 0G 1 A _ A

5—; = ED;‘*Q = ED;‘D“ T Loghost = e(—Dj D) (B.27)
Thus S[Q + A] + Syf + Sghost is invariant. So Z[g, A] = Z[UJU L, UAU! + UéaU_l] (make a change
of variable @ — UQU~! in the path integral). Similarly one can talk about Z[J, A] = e"[/4] and
IQ,A] = W[J,A] - [d*zJiQ" (Q = 4% and T[Q, A] = F(UQU*HUAU*1 + Ué@U”)). We can
then use the gauge-invariant I'[0, A] to compute the S-function. As Q = 0 we have only external A fields
and we are integrating D@ so we have only Q-type gluons on internal lines. It can be shown that the
background field action with () = 0 is the standard effective action in a strange gauge, with the gauge fixing
term Lyp = —%(@LQ““ — 0, A% 4+ g f“bCAZQC”)Q. The divergences must preserve gauge the invariance of

1 1
I'[0, 4], so (F;}l,)2 must be multiplicatively renormalized F}j, = Z3 ((%Al, — 0, AL+ 92475 f“bcAZA§> with

1
ZyZ3 = 1. There are 5 diagrams that contribute to Z3 — they have two external A-gluons:

o0 oo oo oo 0200

Diagrams 2 and 4 are proportional to d:—zk so they have no % pole, thus they don’t contribute. There are
the following Feynman rules: an AQQ vertex with an A-field with outgoing momentum p and indices a,
1, a Q-field with outgoing momentum ¢ and indices b, v, and another Q-field with outgoing momentum r

and indices ¢, A is (along with £ = 1 in the background field Feynman gauge):

gfe (9;0\ (P —r— 261)” + 9 (r — @) + g (q —p+ i“T)A) (B.28)
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There is another vertex that includes an outgoing ghost with momentum p and index a, an incoming ghost
with momentum ¢ and index b, and an A gluon with indices ¢, u, with value gf®¢(p + q) ). So, diagram

1 (gluons in the loop) gives %wawkz — k“kl,)é with ¢4 = 3 for SU(3). Diagram 3 (ghost in the

2
loop) gives 10 times the same result. So Z4 = 1+ 113”‘ 169;6, Zg=1~— 1136*“ 1967{226, and one arrives at the
B-function:

g> /11 4 g3 11 4

BQCD = 928901 = —@<§CA - gnfTF) = —@ﬁo , Bo= ?CA - gnfTF (B.29)

The term proportional to n;Tr comes from n; flavors of fermions contributing through diagram 5, where
the calculation is like in QED except Tr (TATE) = TpsAB.

For QED, ¢4 = 0 and Tr = 1, and assuming a single fermion (ny = 1) one has BSQED = 4

= —3 SO

BoED = % as expected from previous calculation. For QCD with ny < 17, By > 0 which gives a negative

Bocp- The interaction strength behaves as:

_ as (o) _ 2m
L2l gom (£)  foln (525)

Agep

(B.30)

s ()

At large p the interaction is relatively weak: as(mz) = 0.118, as(my) = 0.22, so perturbation theory is
good, but as one goes to low energies, the expression for a; grows more and more, diverging at © = Agcp.
Hence starting from g ~ 1 perturbative calculations cannot be trusted. As py — oo, ag — 0 and the
quarks become free at large energies (asymptotic freedom). The dimensionless parameter o is traded for
the dimensionful parameter Agcp. This is called dimensional transmutation. If the fields become massless
in Lqcp then it’s scale invariant, but this symmetry is still broken at the scale Aqcp (Agep ~ 250 MeV
experimentally). At small  (e.g. long distances as in the lab) quarks are confined into color singlet hadrons:
baryons gqq (since 3x 3x 3 allows a singlet) and mesons ¢q (since 3 x 3 allows a singlet). If we take m, 4 — 0,
then the only dimensionful parameter is Aqcp, €rgo Mmproton ~ Aqcp and (radiuspmt(m)*1 ~ Aqcp. A
strong dependence on p means that the renormalization group calculation is crucial to the interaction
strength, e.g. ay is twice as big for b-physics as for Z-physics.

o5 ()
{ don't Arost
‘ = e R
1 . on
S PRI PR s
6ED
: . P ert i bation
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B.4.2 Heuristic explanation of asymptotic freedom

Consider vacuum fluctuations in QED, with a photon turning into a fermion-antifermion pair which then an-
2
€0

nihilates back into a photon. They give rise to e?(u) as a dielectric medium. Hence e?(k) = ——20——
1+boe(2) In (%)
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%}E) where A is a cut-off scale and eq is the bare charge. In QED by = —1657(;2

in the vacuum are screening the charge and e?(k) is smaller at long distances k~!. An intuitive picture
is that the bare charge ey (say negative) is surrounded by fermion-antifermion pairs, and each pair points
with its positive particle towards the bare charge. In QCD by < 0 so € < 1 and gluon fluctuations are
antiscreening the charge. To understand why, note that ue = 1 in the vacuum, so vacuum screens color
magnetic charge.

> 0 so € > 1 — fluctuations

Let’s look at 2 interesting possible effects of magnetic field: paramagnetism — the magnetic field
B causes intrinsic magnetic moments to line up with B giving 4 > 1 and m = ZT_;B, diamagnetism
— current loop develops a magnetic moment to oppose the applied B field, giving u© < 1. Magnetic

susceptibility is defined as x(k) = “T_l = —bped In (2—22) The energy density in magnetic field is given by

U= —%XB2 = boe% In (%)32, so the steps are: compute the energy density for free bosons or fermions
with an arbitrary spin in a magnetic field, find the term proportional to In(A)B? and then read off by.

The diamagnetic term can be obtained as follows. In a magnetic field, the continuous free particle
spectrum turns into discrete energy levels — Landau levels (one can think of particles as executing a
quantized circular motion). Consider a massless particle of charge e in a magnetic field B = BZ, then the
corresponding vector potential is A = Bxy and the Hamiltonian is given by (p, and p, commute with
the Hamiltonian, while the term involving p, is like a shifted oscillator; the degeneracy per unit area is
9n = %)

H?>=(p—eA)? =p>+p>+(p, —eBx)* , E*=p>+ (2n+1)eB (B.31)

The vacuum energy per unit volume is given by U = > >° [ d;;f (P2 + (2n+ 1)eB]| 1/2 ¢8 As B — 0 one

regains the continuous spectrum. One needs to take the limit carefully to get the B? term. In general:

(N+3)t o0 p(nti)t
/ dzF(z) = Z/ dxF(z) (B.32)
1 1
—3€ n=0"(n—3)t

(n+1)t 1
S / (Bt + (- ) F (1) + 5@ - 0t 2F (nt) + ) (B.33)
(n—3)t

n=0 2
= > (tF(nt) + ﬁF”(mﬁ) - ) (B.34)
n=0
Invert this relation to get:
. - "
]\}gnoo;tﬁ’(nt) = /0 deF(v) = o7 /O deF"(z) + ... (B.35)

Note that t = eB, (n + 3)eB > z, F(z) = (p? + 22)'/2, F"(z) = —(p? + 22)~%/? and make the change

of variable x = 2qi_ so dr = % = dz%, then the energy density becomes (taking the continuous limit
Sol 52 = [ k)
n T 27 T '
d3p (eB)?2 [N d3p 1 e?B?
U= 2 4 )2 / .=UB=0 In A B.36
[+ G [ s+ s vB =0+ g (B.36)

The sign of the vacuum energy for fermions is opposite to that of bosons (one can think of the fermions
as holes in the negative energy states). Then the diamagnetic contribution to by is bglamag =+ 481”2

the upper sign (+) is for bosons and the lower sign for fermions, and it is spin-independent.

where
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To calculate the paramagnetic contribution one includes the interaction of the spin with the magnetic
field H? = (p — eA)? — 2eBS, where the g-factor is taken to be g = 2. This changes the energy levels as

2 _ eBS e252B2
E? = Ef dan — 2¢BS. hence F = Epandan — Frona — 253

Landau

+ ..., so the paramagnetic contribution to

> where the upper sign (—) is for bosons, and the lower sign for fermions.

(452 — 1). In QED, for fermions with sz = il/Q and

1671'2 3
Q2

charge @, one gets (for both helicities together) by = 275 (1 - %) = 121

the energy is bh™ "8 = :F =

The total by (per spin state) isby = F

theory calculation. For vectors (e.g., the gluons in QCD) with S, = £1 and charges Q, by = 1§7r2 2 For
ngCD = 167T2 (11 ) There is a way of treating the @’s

correctly so that the results agree. In a sense asymptotic freedom is a consequence of the large magnetic
moments of spin-1 charged particles making the vacuum paramagnetic. Magnetic moments of fermions
make vacuum diamagnetic because their zero-point fluctuations have negative energy.

comparison, the field theory calculation gave

B.5 Asymptotic behavior and fixed points

Recall that the coupling g changes with the scale p as pd,g(u) , SO f 9k —g =1In ( ) Aspu—0
(IR flow) or p — oo (UV flow), In (/L ) diverges. This can happen either because g goes to a value g*

in which £(¢g*) = 0, or g goes towards co. There are several possibilities for how ((g) can behave as a
function of g. In all cases 5(0) = 0:

i;(a)

-4514:-«'%95* e
Lixel

1. B(g) grows with g (i.e., always positive).

2. B(g) decreases with g (i.e., always negative).

3. B(g) first grows, but then decreases, crosses zero, and continues towards negative values.
(9)

4. B(g) first decreases, but then grows, crosses zero, and continues towards positive values.

In case 1, 5(g) looks like QED and ¢* theory at small coupling. [~ Ag < © and g diverges at a finite

scale p = M given by M = pgexp f 6(9) This leads to unphysical effects However, these theories are
fine as low energy effective theories w1th p < M (and some new operators, new degrees of freedom become
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relevant at p ~ M). For example, in QED, M = e%*"m, which is enormous (weak interactions enter much
earlier).

Case 2 is like QCD. Since 8 < 0 at small g, large energy behavior is under control. The flow goes
toward a trivial fixed point (g = 0) as u — oo. [7 o(0) /3( 00 for g — 0.

Cases 3 and 4 have fixed points at an intermediate energy. In case 3, g(u — o0) = g* is UV stable fixed
point (because in the limit g — co we flow towards ¢g* from either side). Similarly, in case 4 g(u — 0) = g*
is IR stable fixed point. The existence of these fixed points and the slope of 8 at the fixed points are
scheme independent. The anomalous dimensions at the fixed points (y(g*)) are also scheme-independent.

Let’s come back to the statement that (with some qualifications) non-renormalizable theories with [O] >
4 flow to renormalizable theories at low energy. Recall the following example: at tree level jg\—iwa“l‘ E

gave g ~ ﬁ + ag5 + ... in massless QED. In dimensional regularization (M S scheme) there are no powers

of a cut-off in loop computations and the naive dimensional analysis saying one can drop g5 for £ < Ag
carries through. Unfortunately this doesn’t really explain what’s going on. To do so one needs to consider
the Wilsonian RG with a hard cut-off, and show that RG flow is related to removing high energy modes,
and that operators with mass dimension larger than 4 are suppressed at low energy. Take a scalar field
theory with a physical Euclidean cut-off Ag, then write down the action (include a general term ¢?O;[¢]
and we’ll use it to describe low-energy physics, below energy E, and F < Ag):

So(Ao) = /d“w(;(@“cﬁf + 9907 + 90" + g0¢° + g3 % (0" 0)* + gs0® + ) (B.37)

The dependence on Ay comes due to the fact that glo depend on Ag, hence:

ziml= [ Doves(=slooml— [sw) o [ Do [ T[ daim) B3y

[p|<Ao

The current J(p)d(E? — p?) is the current for small momentum. Now introduce another cutoff A; < Ag.
Let ¢o(p) = ¢1(p) + x(p) = ¢1(p)0(A1 — [pl) + x(p)0(A1 < |p| < Ao) and denote Ay = bAg (b < 1), then

the y propagator is proportional to w. Integrate out x (use J(—p)oo(p) = J(—p)é1(p)):

Z[J, Ao] = / Do exp |:—Sl[¢1,A1] + /J¢1:| (B39)
[pl<Ai

S1 can be written as:

Silé1, A /d4 —I—ZgZ (A1, Ao, g0 i[¢1]) (B.40)
It’s easy to imagine using perturbation theory, and working to all orders. Expand:

¢o = (61 +x)" = &1 + 467X + 667x> + 461x” + x* (B.41)
The ¢2x? vertex gives a diagram in which a y loop is attached to an incoming-outgoing ¢; line. This
diagram is proportional to g4 f Ao d:f = %gflo) f(Ao, A1), where f(Ap, A1) is some function. This con-

tributes to the gé ) term in S1. Another vertex, that could come from a géo) term in the original action,

is one at which four external ¢, lines meet at a vertex, and a y loop is attached to the same vertex. This

(1)

would contribute to g, ’. Another is a tree diagram in which three incoming ¢; lines turn into x, which
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then turns into three outgoing ¢; lines (two gio) vertices). This will contribute to gél) (so gél) is generated

through loop corrections even if initially géo) =0).

One may only make a small change in the cutoff (b close to 1) in order to keep the action local, but
it can always be repeated many times, until the energy scale gets down to a cut-off of E. Make the

couplings dimensionless as \;(A) = A~%ig;(A) then the above process gives \;(A’) = G; <)\Z~(A), %) Take
A9y and set A’ = A, then MOy \i(A) = Gi (A(A)) with 8; = 9.G; ()\(A), z)‘ - This is Wilsonian RGE

(compare to the earlier S-function calculation). The space of local interactions can be thought as an oo-
dimensional surface parameterized by the couplings. One would like to show that for A < Ay it flows to
a stable subspace parameterized only by renormalizable couplings (and independent of Ay and the initial
conditions).

Example: Consider a theory with two couplings Ay = g4 and A\g = A?gg, with AOaA Mg = Ba(Ayg, Ng) and
AOpAg = 206 + Bs(A4, Ag). Consider a solution ); of these equations, and take a small perturbation \; =
\; +€;, then the equations for ¢; (up to first order) are Adpeq = 0,\454644—8)\65666 and Adreg = 2664-8)\65666
(B means that the S-function should be evaluated at );). The goal is to show that as the cutoff is lowered,
the perturbed and the unperturbed solutions become close in Ag. It’s possible that the curves in the A\g4-Ag
plane will get close to each other but the close points from the two curves will correspond to different
values of A. To take this into account, define & = €5 — O Ag(OrA1) 'es and let’s hope that & — 0 after
lowering the cutoff. From Adr&s = (2 + OxgBs + Ox,Ba — A In B4)&g, the solution can be read off:

29 A /
() = &o(h) oy 2 e (/ O (0refs + 00,50 <A’>) (B.42)

AG Ba(A) ao

If the couplings are small enough that the integrand and %4((/\/\0)) remain small, then &(A) — 0 for A < Ag.

This can be converted to a trajectory in the As-Ag plane where the value of A*(A) determines \g, independent
of Ag and initial conditions. So the action depends only on the renormalizable couplings. The advantages
of the Wilsonian RG are that there are no subdivergences or overlapping divergences or IR divergences,
and that the exact correspondence with modes is clear. The disadvantages are that we always have non-
renormalizable operators, and that the cutoff destroys symmetries like manifest gauge invariance, chiral
symmetry etc.

Note that it was shown that the Wilsonian RGE can be used to set the nonrenormalizable couplings
to 0 (effectively, at high energy scale), in the sense that in the low energy limit the physics is still well-
approximated as the running value of nonrenormalizable couplings is insensitive to physics at the UV
region.
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