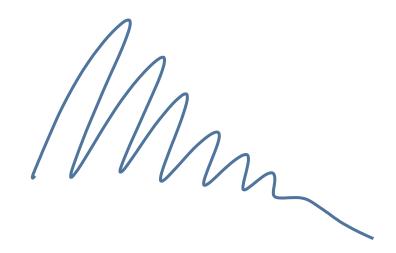
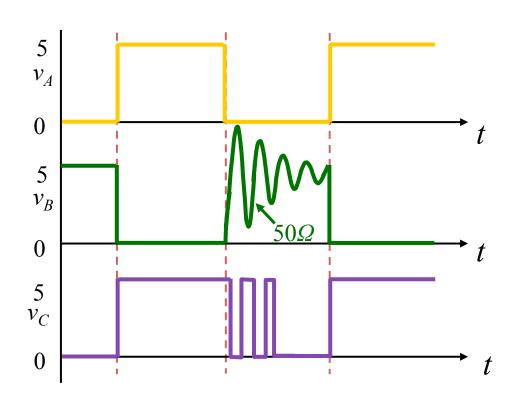
6.002x

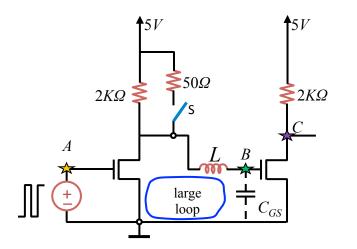
CIRCUITS AND ELECTRONICS

Damped Second-Order Systems



Review





In the last lecture, we started by analyzing the simpler LC circuit to build intuition

In the last lecture... LC circuit

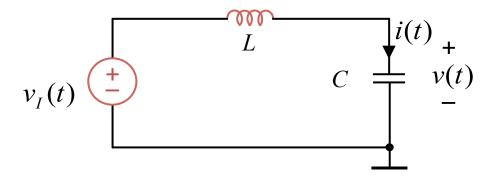
We solved

For input

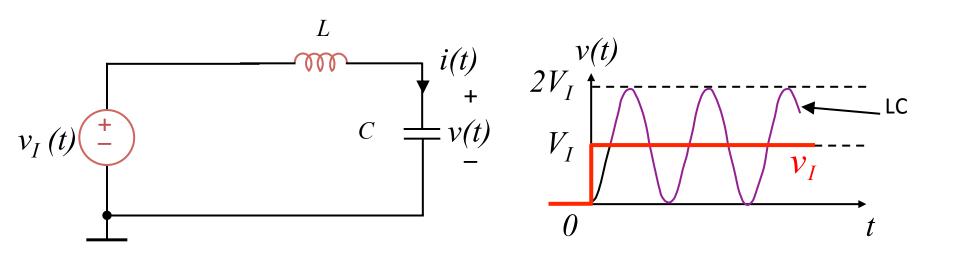
And for initial conditions

In the last lecture... LC circuit

Total solution



Today, we will close the loop on our observations in the demo by analyzing the RLC circuit



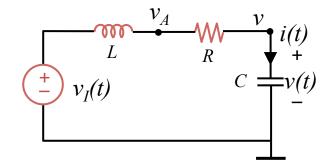
See A&L Section 13.6

Let's analyze the RLC network

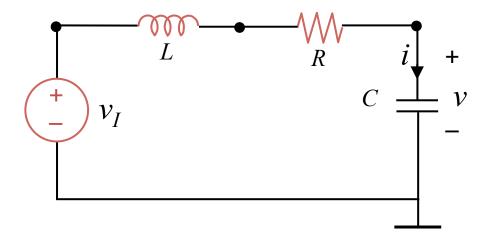
Recall element rules

Set up the differential equation

Need to get rid of v_A



Set up the differential equation differently



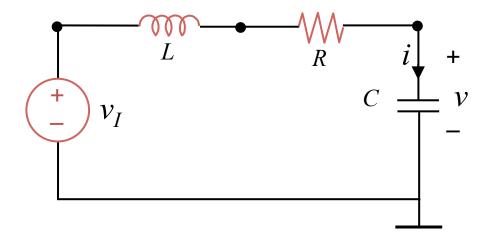
Solve

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = \frac{1}{LC}v_I$$

Let's solve

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = \frac{1}{LC}v_I$$

Set up the differential equation differently



$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = \frac{1}{LC}v_I$$

$$\frac{d^2v_P}{dt^2} + \frac{R}{L}\frac{dv_P}{dt} + \frac{1}{LC}v_P = \frac{1}{LC}V_I$$

(2) Homogeneous solution

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = \frac{1}{LC}v_I$$

Homogeneous solution

Solution to
$$\frac{d^2v_H}{dt^2} + \frac{R}{L}\frac{dv_H}{dt} + \frac{1}{LC}v_H = 0$$

(2A) Assume solution of the form

$$v_{H} = Ae^{ST}$$
 , $A, s = ?$

Homogeneous solution

Solution to
$$\frac{d^2v_H}{dt^2} + \frac{R}{L}\frac{dv_H}{dt} + \frac{1}{LC}v_H = 0$$
$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

Homogeneous solution

Solution to
$$\frac{d^2v_H}{dt^2} + \frac{R}{L}\frac{dv_H}{dt} + \frac{1}{LC}v_H = 0$$

characteristic
$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$
 equation

Roots
$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2}$$

 $s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$

$$\omega_o = \sqrt{\frac{1}{LC}}$$

$$\alpha = \frac{R}{2L}$$

3 Total solution

3 Let's stare at this a while longer... $v(t) = V_I + A_1 e^{\left(-\alpha + \sqrt{\alpha^2 - \omega_o^2}\right)t} + A_2 e^{\left(-\alpha - \sqrt{\alpha^2 - \omega_o^2}\right)t}$

$$v(t) = V_I + A_1 e^{-\alpha t} e^{\left(\sqrt{\alpha^2 - \omega_o^2}\right)t} + A_2 e^{-\alpha t} e^{\left(-\sqrt{\alpha^2 - \omega_o^2}\right)t}$$

$$3$$
 $\alpha > \omega$

 $\alpha > \omega_{o}$ Overdamped

$$v(t) = V_I + A_1 e^{-\alpha t} e^{\left(\sqrt{\alpha^2 - \omega_o^2}\right)t} + A_2 e^{-\alpha t} e^{\left(-\sqrt{\alpha^2 - \omega_o^2}\right)t}$$

$$v(t) = V_I + A_1 e^{-\alpha t} e^{\alpha t} + A_2 e^{-\alpha t} e^{\alpha t}$$
 $\alpha > \omega$ Overdamped
 $\alpha < \omega$ Underdamped
 $\alpha = \omega$ Critically damped

$$3 \alpha < \omega_o$$
 Underdamp

Underdamped
$$v(t) = V_I + A_1 e^{-\alpha t} e^{\left(\sqrt{\alpha^2 - \omega_o^2}\right)t} + A_2 e^{-\alpha t} e^{\left(-\sqrt{\alpha^2 - \omega_o^2}\right)t}$$

$$lpha > \omega_o$$
 Overdamped $lpha < \omega_o$ Underdamped $lpha = \omega_o$ Critically damped

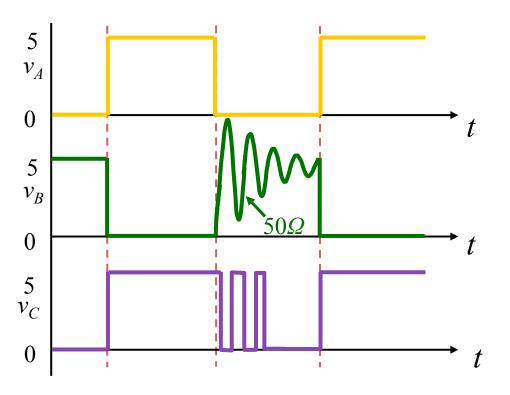
3
$$\alpha < \omega_0$$
 Underdamped contd... $v(t) = V_I + K_1 e^{-\alpha t} \cos \omega_d t + K_2 e^{-\alpha t} \sin \omega_d t$

3
$$\alpha < \omega_o$$
 Underdamped contd... $v(t) = V_I - V_I e^{-\alpha t} \cos \omega_d t - V_I \frac{\alpha}{\omega_d} e^{-\alpha t} \sin \omega_d t$

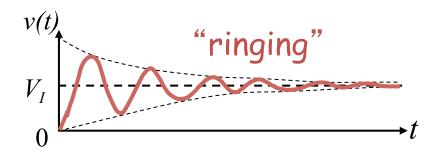
Remember, scaled sum of sines (of the same frequency) are also sines! -- Appendix B.7 $A_1 \cos \theta + A_2 \sin \theta = \sqrt{A_1^2 + A_2^2} \cos \left(\theta - \tan^{-1} \frac{A_2}{A_1}\right)$

$$3 \alpha = \omega_o$$
 Critically damped

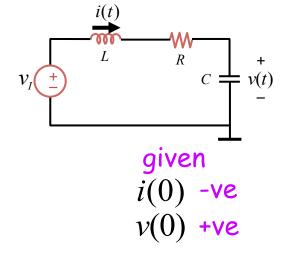
Remember this? We have now closed the loop...



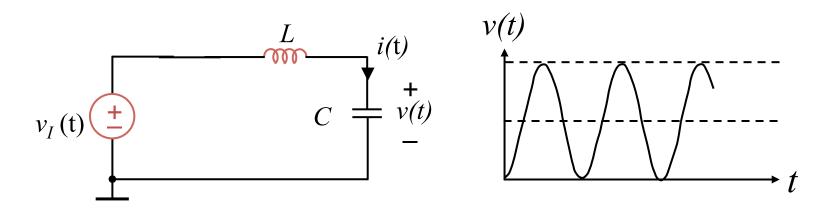
Easy way: Characteristic equation tells the whole story!



Intuitive Analysis



Next, introduce R: RLC Circuits



More in the next sequence! If you are impatient, see A&L Section 13,2

What about other variables?

Parallel RLC - Characteristic equation says it all