
The inheritance
hierarchy

l  We add an edge between each
class and its direct superclasses
l  This gives a directed acyclic graph

called the inheritance hierarchy
l  We know how to define a class

that inherits from one class
(single inheritance), but how can a
class inherit from more than one
(multiple inheritance)?
l  Multiple inheritance is complicated

but it can be a powerful tool
l  We give a simple example; for

much more see the book
l  Object-oriented Software Construction

by Bertrand Meyer, Prentice-Hall, 1997

Example of multiple
inheritance
l  Geometric figures

class Figure
 meth draw ... end
 ...
end
class Line from Figure
 meth draw ... end
 ...
End

l  A compound figure is both a
figure and a linked list

l  Multiple inheritance works in
this case because the two
superclasses are independent

l  Linked lists
class LinkedList
 meth forall(M)
 ... % invoke M on all elements
 end
 ...
end

l  Compound figures
class CompoundFigure from
 Figure LinkedList
 meth draw
 {self forall(draw)}
 end
 ...
end

Java interfaces and
multiple inheritance
l  Java only allows single inheritance for classes

l  Multiple inheritance is forbidden, but to keep some of
its expressiveness, Java introduces the concept of
interface

l  An interface is similar to an abstract class with
no method implementations
l  The interface gives the method names and their

argument types, without the implementation
l  Java allows multiple inheritance for interfaces

Example of a
Java interface
interface Lookup {
 Object find(String name);
}

class SimpleLookup implements Lookup {
 private String[] Names;
 private Object[] Values;
 public Object find(String name) {
 for (int i=0; i<Names.length; i++) {
 if (Names[i].equals(name))
 return Values[i];
 }
 return null;
 }
}

The diamond
problem

l  The diamond problem is a classic
problem with multiple inheritance

l  When class W has state
(attributes), who will initialise W?
X or Y or both?
l  There is no simple solution
l  This is one reason why multiple

inheritance is not allowed in Java
l  Interfaces give a partial solution to

this problem

W	

Y	

X	

Z	

A solution
with interfaces

l  Interfaces are given in red
l  There is no more diamond

inheritance: class Z only
inherits from class Y

l  For an interface, inheritance is
just a constraint on the method
headers (names and arguments)
in the classes
l  Multiple inheritance means more

constraints on the method headers
l  An interface contains no code; no

code means no diamond problem

W	

Y	

X	

Z	

Java syntax for the
diamond example

interface W { }
interface X extends W { }
class Y implements W { }
class Z extends Y
 implements X { }

W	

Y	

X	

Z	

Another solution for
the same example

l  In this solution, Z is the
only class in the hierarchy

l  It has the following syntax:

interface W { }
interface X extends W { }
interface Y extends W { }
class Z implements X, Y { }

l  Are there any other solutions
for this example?

W	

Y	

X	

Z	

