
Code::Blocks Manual

Introduction to Computer Programming - Part 1
(CS101.1x)

Prepared by
Sandeep Prasad

Edited by
Firuza Aibara

Guided by
Nagesh Karmali

Department of Computer Science and Engineering
Indian Institute of Technology - Bombay

Mumbai - 400076.

August 5, 2014

Contents

1 Introduction to Code::Blocks 1

2 Code::Block IDE 1

3 Working with Code::Block on Windows 6
3.1 Installation of Code::Block . 6
3.2 Writing a new C/C++ Program . 12

3.2.1 Non-Graphic Project . 12
3.2.2 Graphic Project using graphics.h . 20

3.3 Building the Project . 25
3.4 Opening existing program/project . 26

4 Working with Code::Block on Ubuntu 27
4.1 Installation of Code::Blocks . 27
4.2 Installation of packages for graphics.h header file . 28
4.3 Writing a new c/c++ program . 29
4.4 Building the Project . 32

4.4.1 Non-Graphics Project . 32
4.4.2 Graphics Project using graphics.h . 32

4.5 Opening Existing Program/Project . 37

i

List of Figures

1 Code::Block IDE . 1
2 Menu Bar . 1
3 Main Toolbar . 2
4 Debugger Toolbar . 2
5 Compiler Toolbar . 3
6 Manager . 3
7 Editor, Start/Home Page . 4
8 Shortcut to Create New Project or Open Existing Project 4
9 Shortcut to History of Projects Opened Using Code::Blocks 5
10 Logs . 5
11 File association window . 6
12 Click on “Run” . 6
13 Welcome to the CodeBlocks-EP Setup Wizard screen . 7
14 License Agreement . 7
15 Information window . 8
16 Providing location for CodeBlocks-EP installation . 8
17 Providing folder for CodeBLocks-EP shortcuts . 9
18 Creating desktop shortcut for CodeBlocks-EP . 9
19 Installing CodeBlocks-EP . 10
20 Progress bar to show progress of installation . 10
21 Completing the installation process . 11
22 Code::Block IDE in Windows 7 . 11
23 New form template . 12
24 New console application wizard . 12
25 Selecting language for the project . 13
26 Providing title and folder for the project . 13
27 Selecting compiler for the project . 14
28 Project node with no files . 14
29 Adding file to the project . 15
30 Selecting type of file to be added in the project . 15
31 Select checkbox to skip this window next time . 16
32 Select the language of the file added . 16
33 Details of file to be added . 17
34 Selecting the location and file name to be added . 17
35 Finalize details of file to be added . 18
36 Project node with ‘+’ sign indicating it can be expanded 18
37 Project node with ‘+’ sign indicating it can be expanded 18
38 Project node expanded . 19
39 New form template . 20
40 New console application wizard . 20
41 Selecting language for the project . 21
42 WinBGIm project . 21
43 Providing title and folder for the project . 22
44 Selecting compiler for the project . 22
45 Finalize details of file to be added (for line project) . 23
46 Project node with ‘+’ sign indicating it can be expanded 23
47 Writing program in editor (line project) . 24
48 Output of hello world project . 25
49 Output of line project . 25
50 Selecting Open under file in Menu Bar . 26
51 Select file with .cbp extension to open an existing project 26
52 Code::Block in Ubuntu Software Center . 27
53 Installing Code::Block using command line . 27

ii

54 Starting a new project . 29
55 Selecting the language for project . 29
56 Title for Project . 30
57 Selecting Compiler to Compile the Program . 30
58 Project Node when Expanded . 31
59 Project Node when Expanded for helloworld.c (with code shown in editor) 31
60 Project node when expanded for line.c (with code shown in editor) 31
61 Output for helloworld.c . 32
62 Project build options . 32
63 Linker settings (Add Libraries) . 33
64 Interface for adding libraries . 33
65 Files/libraries to be added for graphic projects . 34
66 Relative or absolute path for files/libraries . 34
67 libraries selected . 35
68 Libraries added to project . 36
69 Output for line.c . 36
70 Select file with .cbp extension to open an existing project 37

iii

1 Introduction to Code::Blocks

“Code::Blocks is a free C++ IDE built to meet the most demanding needs of its users.” [1]. Developed by
‘The Code::Blocks Team’, Code::Block is a free, open-source [2] and cross-platform IDE, which supports
various free compilers. It is built around plugin framework, which allows functionality of Code::Block to
be extended by installing appropriate plugins. Plugins required for compiling and debugging are already
provided by default. This manual is prepared after installing and testing Code::Block on Ubuntu 12.041

and Windows 7.2

2 Code::Block IDE

Code::Block IDE is shown in figure 1 (Ubuntu 12.04). The main parts of Code::Block along with figures
are discussed below

Figure 1: Code::Block IDE

1. Menu bar:
Menu bar is shown in figure 2. Menu bar can be toggled using F10. Few important link in menu
bar are described below (described from left to right):

Figure 2: Menu Bar

(a) File: File menu link contains options to create a new project, open an already existing project,
save file, save project, save workspace and save everything. It also contains options for closing

1Ubuntu 12.04 with intel R©Core TMi3-2120 CPU @ 3.30GHzx4 processor 4 GB RAM and 32-bit architecture and 64
bit architecture.

2Windows 7 with intel R©Core TMi3-2120 CPU @ 3.30GHzx4 processor 4 GB RAM and 32-bit architecture.

1

a single file, closing a project or closing entire workspace. Other options in File are to print,
export and quit the Code::Block

(b) Edit: All the editing options required for editor are provided in Edit.

(c) View: This menu link contains link for various perspectives and toolbars along with manager,
logs, script console, status bar, full screen.

(d) Project: Options related to the project is provided in this link which includes configuring build
options along with options for adding files, removing files and autoversioning of project.

(e) Build: Options for building the project, compiling a single file, running the project, building
and running the project, rebuilding the project and cleaning the project is provided in build.
Options for Building, rebuilding and cleaning the entire workspace is also provided along with
options to select target (debug/release) and analysing error one by one.

(f) Debug: Various Debugging options are provided in this link.

(g) Plugins: Various plugins can be executed using this link. The link to manage the plugins is
also provided here.

(h) Settings: This contains link for various settings, setting related to Environment..., Editor...,
Compiler and debugger..., Global Variables... and Scripting.... Script to be executed during
Code::Block start-up can also be edited here.

(i) Help: It contains information about Code::Block version, tips which can be toggled to be
displayed at start-up and information about various plugins.

2. Main tool bar:
Main tool bar is shown in figure 3. The buttons in Main toolbar are (from left to right):

Figure 3: Main Toolbar

(a) New File: For creating a new project.

(b) Open: For opening an already created project.

(c) Save : To save the file open in active editor (active editor means the editor tab in focus).

(d) Save all files: To save all the files for the current/selected project.

(e) Undo: To undo the executed action.

(f) Redo: To redo the undone action.

(g) Cut: To cut the selected/highlighted part in editor.

(h) Copy: To copy the selected/highlighted part in editor.

(i) Paste: To paste the cut/copy message in editor.

(j) Find: To find required text in the file in active editor.

(k) Replace: To replace required text in the file in active editor by some alternate text.

3. Debugger tool bar:
Debugger tool bar is shown in figure 4. Debugger tool bar is used to debug the current/selected
project. The buttons in debugger toolbar are (from left to right) Debug/Continue, Run to cursor,
Next line,Next instruction, Step into, Step out, Stop debugger, Debugging Windows and Various
info. You will be able to understand the use of this buttons by rigorous practise of debugging
various projects.

Figure 4: Debugger Toolbar

2

4. Compiler tool bar:
Compiler tool bar is shown in figure 5 and is used in building/compiling/running the current/se-
lected project. The buttons in Compiler toolbar are (from left to right):

Figure 5: Compiler Toolbar

(a) Build: For building the current/selected project.

(b) Run: For running the current/selected project.

(c) Build and run: For building and running the current/selected project.

(d) Rebuild: For rebuilding the current/selected project.

(e) Abort: For aborting the build process for the current/selected project.

(f) Build target: For defining the type of build target for current/selected project, either debug
or release.

5. Manager:
Manager is shown in figure 6. It is labelled as Management. This window provides the list of all
the open projects and files for easy access to any required file of any project.

Figure 6: Manager

6. Editor:
Editor is shown in figure 7. Here, all the coding work will take place. It is provided in tabbed
fashion to work with many files at once. When no project is open, the start page or home page is
displayed in editor. The links given in start page is divided into two parts and explained below

3

Figure 7: Editor, Start/Home Page

7. Figure 8 is short-cut on Starting page of IDE for creating a new project and opening an already
created project. It also contains link for Code::Block forum where many useful resources can be
found along with other useful discussions. The link points to url http://forums.codeblocks.org/.
The second and third link points to BerLiOS Developer Site aims at enriching the Open Source
community by providing a centralized place for Open Source Developers to control and manage
Open Source Software Development.

Figure 8: Shortcut to Create New Project or Open Existing Project

8. Figure 9 is short-cut to list of projects and files already opened in the IDE. It is link to few projects
and files from history of IDE.

4

Figure 9: Shortcut to History of Projects Opened Using Code::Blocks

9. Logs:
Log window is shown in figure 6. It is labelled as ‘Logs & others’. This window acts as log for
various actions performed in IDE. All logs related to various activities can be checked at appropriate
windows.

Figure 10: Logs

5

3 Working with Code::Block on Windows

In this section we discuss writing and building of two projects. First project (hello world.cpp) is a
simple program which displays hello world on output. The second project (line.c) uses graphics.h header
file and displays a line. For Windows (Windows 7) we will be using ‘CodeBlocks-EP’. When
CodeBlocks-EP is run for first time a ‘file association window’ is displayed as shown in figure 11. Select
3rd option “Yes, associate Code::Blocks with c/c++ file types” or 4th option “Yes, associate Code::Blocks
with every supported type(including project files from other IDEs)” and click ‘OK’.

Figure 11: File association window

3.1 Installation of Code::Block

Code::Block used for windows is CodeBlocks-EP (stands for Code::Blocks - EDU Portable). WinBGIm
(Borland Graphics Interface) required to run programs with graphics.h header is already integrated in
CodeBlocks-EP. Download Codeblocks-EP from http://codeblocks.codecutter.org/ The installation
steps are as given below.

1. Download Code::Block-EP installer from the link given above and browse to the appropriate di-
rectory where the installer is downloaded. Click the .exe file downloaded and window as shown in
figure 12 will pop up. Click ‘Run’.

Figure 12: Click on “Run”

6

http://codeblocks.codecutter.org/

2. A new window appears as shown in figure 13. Click ‘Next’.

Figure 13: Welcome to the CodeBlocks-EP Setup Wizard screen

3. The third windows that appears is of license agreement as shown in figure 14. Select “I accept the
agreement” and click ‘Next’.

Figure 14: License Agreement

7

4. The next window displays some important information (shown in figure 15) regarding Code::Block-
EP. Kindly go through information and click on “Next”.

Figure 15: Information window

5. Next window asks for location where the CodeBlock-EP will be installed. The default location will
be C:\Program Files\CodeBlocks-EP. Figure 16 shows the location provided for CodeBlocks-
EP installation. Provide appropriate location and click on “Next”.

Figure 16: Providing location for CodeBlocks-EP installation

8

Figure 17 shows the location provided for CodeBlocks-EP shortcuts in Start Menu Bar. Click on
“Next”.

Figure 17: Providing folder for CodeBLocks-EP shortcuts

Select the checkbox ‘Create a desktop icon’ as shown in Figure 18. Click ‘Next’.

Figure 18: Creating desktop shortcut for CodeBlocks-EP

9

6. A new window displays stating that it is ready to install, which is shown in Figure 19. Click ‘Install’
to proceed with installation.

Figure 19: Installing CodeBlocks-EP

Figure 20 shows installation progress with progress bar.

Figure 20: Progress bar to show progress of installation

10

7. When the installation in complete a window is displayed shown in figure 21. If you want to launch
the CodeBlock select “Launch CodeBlocks-EP” and click ‘Finish’.

Figure 21: Completing the installation process

8. CodeBlocks IDE opens as shown in figure 22. Alternatively CodeBlocks-EP can be launched by
double clicking the desktop icon created or clicking on it’s shortcut icon in Start Menu Bar.

Figure 22: Code::Block IDE in Windows 7

11

3.2 Writing a new C/C++ Program

3.2.1 Non-Graphic Project

1. Click ‘File’ → ‘New’ → ‘Project’. A new window opens as shown in figure 23. Click ‘Console
application’ → Click Go.

Figure 23: New form template

2. When Go button is clicked, a new window opens as shown in figure 24. Select checkbox ‘Skip this
page next time’ so that the page is not displayed again. Click ‘Next’.

Figure 24: New console application wizard

12

3. Next window enables user to select the language to be used for project as shown in Figure 25.
Click ‘C++’ → ‘Next’.

Figure 25: Selecting language for the project

4. Next windows enables user to provide title for the project and the folder where user wishes to
create the project in. This is Shown in figure 26. After filling in the details click on Next.

Figure 26: Providing title and folder for the project

13

5. Next window is used to select the compiler as shown in figure 27. By default ‘GNU GCC Compiler’
is selected. Click on Finish.

Figure 27: Selecting compiler for the project

6. The project node opens in manager window as shown in figure 28. The project node is empty and
we have to add files to the project.

Figure 28: Project node with no files

14

7. To add files to the project select project node. Click ‘File’ → ‘New’ → ‘File’ as shown in figure 29.

Figure 29: Adding file to the project

8. New from template opens as shown in figure 30. Click ‘C/C++ source’ → ‘Go’.

Figure 30: Selecting type of file to be added in the project

15

9. A new window is displayed as shown in figure 31. Select the checkbox ‘Skip this page next time’
so that it is not displayed again.

Figure 31: Select checkbox to skip this window next time

10. Click ‘C++’ as shown in figure 32.

Figure 32: Select the language of the file added

16

11. Click on ‘...’ besides the textbox of ‘Filename with full path’. This is shown in Figure 33

Figure 33: Details of file to be added

12. A window opens as shown in figure 34. Enter the file name (.cpp). and click ‘Save’.

Figure 34: Selecting the location and file name to be added

17

13. Select the checkbox Debug and Release. Click ‘Finish’ as shown in figure 35.

Figure 35: Finalize details of file to be added

14. Management window now shows project node which can be expanded. Double click ‘Helloworld’
and then double click ‘Sources’. This is shown in figure 36 and figure 37 respectively.

Figure 36: Project node with ‘+’ sign indicating it can be expanded

Figure 37: Project node with ‘+’ sign indicating it can be expanded

18

15. Double click on ‘helloworld.cpp’ to open the file in editor. This is shown in figure 38

Figure 38: Project node expanded

16. Now, start writing your code in the editor.

19

3.2.2 Graphic Project using graphics.h

1. Click on New file button. The ‘New form template’ window as shown in figure 23 opens. For
graphics projects, select ‘WinBGIm project’. Go button gets highlighted (top right corner). Click
on Go.

Figure 39: New form template

2. When Go button is clicked a new window opens as shown in Figure 40. Select checkbox “Skip this
page next time” so every time new project is created this window should not come. Click on Next.
If this step has been performed earlier, this window will not be displayed.

Figure 40: New console application wizard

3. Next window enables user to select the language to be used for project as shown in figure 41. For

20

the example hello world used in this manual select ‘C’ and click on Next.

Figure 41: Selecting language for the project

4. Next window asks the user to select type of project. The options are ‘Add Console’ and ‘Graphics
only’ as shown in figure 42. Select ‘Graphics only’ and click on Next.

Figure 42: WinBGIm project

21

5. Next windows enables user to provide title for the project and the folder where user wishes to
create the project. This is Shown in figure 43. After filling in the details click on Next.

Figure 43: Providing title and folder for the project

6. Next window is used to select the compiler as shown in figure 44. By default ‘GNU GCC Compiler’
is selected. Click on Finish.

Figure 44: Selecting compiler for the project

22

7. The project node opens in manager window. The project node is empty and we have to add files to
the project. To add files to the project select project node and click on File in menu bar, then click
on ‘File...’ in options in ’New’. New from template opens as shown in figure 30. For our example
select ‘C/C++ source’ and click on Go. A new window pops out which have a checkbox ‘Skip this
page next time’. Select the checkbox so this window should not open every time a new file is added
to the project. Select the preferred language. For our example select ‘C’. A new window opens
which allows user to add the files to the project. Click on ‘...’ beside ‘Filename with full path’.
This is shown in Figure 33. A window as shown in figure 34 opens. Select the folder of the project
and enter file name to be added. Click on ‘Save’ (see steps 6-11 of section 5.2.1.1). Select Debug
and Release. Shown in figure 45. Click on Finish.

Figure 45: Finalize details of file to be added (for line project)

8. Management window now shows project node which can be expanded (figure 46).

Figure 46: Project node with ‘+’ sign indicating it can be expanded

23

9. Click on project node and double click on ‘line.c’ to open the file in editor. When the line.c file
opens in editor, user can start coding. Code is shown in figure 47.

Figure 47: Writing program in editor (line project)

24

3.3 Building the Project

The process to build the graphics and non-graphics project is same, just Click on ‘Build’ and then ‘Run’
(or directly on ‘Build and run’). The output for the program used is shown in figure 48 for hello world
project, figure 49 for line project.

Figure 48: Output of hello world project

Figure 49: Output of line project

25

3.4 Opening existing program/project

Click on Open button 50. Browse to desired directory and open the file with .cbp extension as shown in
figure 51.

Figure 50: Selecting Open under file in Menu Bar

Figure 51: Select file with .cbp extension to open an existing project

26

4 Working with Code::Block on Ubuntu

In this section we discuss writing and building of two projects. First project (hello world.cpp) is a simple
program which displays hello world on output. The second project (line.c) uses graphics.h header file and
displays a line. graphics.h is not supported by gcc, which is the default C/C++ compiler on Ubuntu. We
have to install some packages, include few libgraph libraries during building the project with graphics.h
header file.

4.1 Installation of Code::Blocks

Pre-requisite for installing Code::Block is ‘libwxgtk’ which is available in ubuntu software center. This
package will be already installed in your system3. It is also advised to install ‘build-essential’ package
and update repository list. In case the libwxgtk is not installed, it can be installed from command line
using command given in listing 1 [3]. Code::Block is available in Ubuntu’s repository. It can be installed
using Ubuntu Software Center or it can also be installed using command line as given in listing 2.

1 $ sudo apt−get i n s t a l l l ibwxgtk2 .8−0
2 $ sudo apt−get i n s t a l l bui ld−e s s e n t i a l
3 $ sudo apt−get update

Listing 1: Installing libwxgtk2.8-0 using command line

1 $ sudo apt−get i n s t a l l codeb locks

Listing 2: Installing Code::Blocks using command line

Figure 52: Code::Block in Ubuntu Software Center

Figure 53: Installing Code::Block using command line

3Check for the libwxgtk version available for your Ubuntu, minimum required version for Code::Block to run is 2.0,
version available on Ubuntu 12.04 is 2.8

27

Figure 52 shows Code::Block along with it’s logo in Ubuntu Software Center, while figure 53 shows
installation of Code::Block using command line. In figure 53 four underlined lines are:

line 1: Command to install the Code::Block.

line 2: Packages installed along with Code::Block.

line 3: Packages suggested along with Code::Block installation. libwxgtk2.84 package as mentioned above
is already installed in your system. libwxgtk2.8-dev package is not required.

line 4: Final list of packages that will be installed in your system

When command line prompts for [Y/n] enter ‘y’ and press enter. When Code::Block is run for first time,
It asks for default compiler. Select the appropriate compiler to proceed further. We have used ‘GNU
GCC Compiler’.

4.2 Installation of packages for graphics.h header file

GCC compiler does not support graphics.h, conio.h, windows.h and few other header files that works
on Turbo C or Borland C. graphics.h header files enables programmer to write simple c/c++ graphics
programs. In Ubuntu, gcc is default c/c++ compiler, thus, we have to make some settings, for gcc to
support graphics[4]. We will start with installing some packages from command line as given in listing 3

1 $ sudo apt−get i n s t a l l l i b s d l−image1 . 2 l i b s d l−image1 .2−dev gu i l e −1.8 gu i l e −1.8−dev
l i b s d l 1 . 2 debian l i b a r t −2.0−dev l i b a u d i o f i l e −dev l ibe sd0−dev l i b d i r e c t f b −dev
l i b d i r e c t f b −ext ra l i b f r e e t yp e 6−dev l ibxext−dev x11proto−xext−dev l i b f r e e t y p e 6
l i baa1 l ibaa1−dev l i b s l ang2−dev l ibasound2 l ibasound2−dev

Listing 3: Installing required packages to support graphics.h

After the above mentioned packages are installed, download the libgraph package (download link
given in footnote5) and untar it in home directory. For this untarring tool must be installed on system.
Open the command line and follow the instructions given in listing 4.

1 $ cd l ibgraph −1.0 .2
2 $. / c on f i gu r e
3 $ sudo make
4 $ sudo make i n s t a l l
5 $ sudo cp / usr / l o c a l / l i b / l ibg raph .∗ / usr / l i b

Listing 4: Installing libgraph package using command line

4Details about above mentioned packages can be found at http://packages.ubuntu.com/precise/allpackages.
5http://download.savannah.gnu.org/releases/libgraph/libgraph-1.0.2.tar.gz

28

4.3 Writing a new c/c++ program

1. Click on New file button. The ‘New form template’ window opens as shown in figure 54. Click
‘Console application’ → ‘Go’.

Figure 54: Starting a new project

2. A new window opens as shown in figure 55. Click ‘C++’ → Next.

Figure 55: Selecting the language for project

29

3. The subsequent windows enable the user to provide title for the project and the folder where user
wishes to create the project in. This is shown in figure 56. After filling in the details click ‘Next’.

Figure 56: Title for Project

4. Next window is to select the compiler. By default ‘GNU GCC Compiler’ is selected. Click ‘Finish’.

Figure 57: Selecting Compiler to Compile the Program

30

5. Now, the project node opens in manager window as shown in figure 58. Project node can be
expanded to see the main.c file.

Figure 58: Project Node when Expanded

When main.c file is clicked, it opens in editor as shown in figure 59 for hello world project.

Figure 59: Project Node when Expanded for helloworld.c (with code shown in editor)

6. Code used for graphics program (line) is shown in figure 60.

Figure 60: Project node when expanded for line.c (with code shown in editor)

7. While using Code::Blocks for the first time, some extra windows will be displayed. In this manual
only the important windows are shown.

31

4.4 Building the Project

4.4.1 Non-Graphics Project

After the code is written, project needs to be built. Click ‘Build’ → ’Build and Run’. Output is as
shown in figure 61.

Figure 61: Output for helloworld.c

4.4.2 Graphics Project using graphics.h

The steps to link the libraries and build the project is given below.

1. Right click on project node in Manager box and select build options... A new window ‘Project build
options’ as shown in figure 62 pops up. Option to change the compiler selected for the project is
also available in this window.

Figure 62: Project build options

32

2. In ‘Project build options’ window, click on linker settings tab. This tab is shown in figure 63.

Figure 63: Linker settings (Add Libraries)

3. In linker settings tab click on Add button under Link libraries box. When Add button is clicked a
small window titled Add library opens as shown in figure 64.

Figure 64: Interface for adding libraries

33

4. Click on dotted button to right of box. A new window opens as shown in figure 65.
This window enables user to browse to appropriate folder and to select required library. Browse to
the /usr/lib directory. All the required library files are not visible.
Select all files in dropdown placed at the bottom, to enable visibility of all types of files.
Select all the libgraph .* files, except libgraph.la file. Files to be selected are shown in the figure 65.

Figure 65: Files/libraries to be added for graphic projects

5. Libraries shown in Ubuntu 12.04, 32-bit OS are libgraph.a, libgraph.so, libgraph.so.1, libgraph.so.1.0.2,
libgraph.so.4 and libgraph.so.4.0.0. In Ubuntu 12.04, 64-bit OS libraries libgraph.so.4 and lib-
graph.so.4.0.0 are not available. Select all the libgraph.* files except libgraph.la

6. After selecting all the required libraries click on Open. A new window labelled ‘Question’ will open
asking ‘Keep this as relative path’ as shown in figure 66. Click on No.

Figure 66: Relative or absolute path for files/libraries

7. The libraries will be linked using absolute path as shown in figure 67. Click on ‘Ok’.

34

Figure 67: libraries selected

35

8. We are now re-directed to linker settings tab. The added libraries are shown. In Other linker
options window write ‘-lgraph’ . The final setup is shown in figure 68 with all the required 6
libraries and ‘-lgraph’. Click on ‘Ok’ to get back to editor. Now we are ready to build the project
with graphics.h header file

Figure 68: Libraries added to project

9. Now click the build and run button from compiler bar and output will be displayed as shown in
figure 69.

Figure 69: Output for line.c

36

4.5 Opening Existing Program/Project

Click ‘File’ → ‘Open’. Browse to desired directory and select the file with .cbp extension as shown in
figure 70 and click Open.

Figure 70: Select file with .cbp extension to open an existing project

37

References

[1] The Code::Block Team. Code::block homepage
http://www.codeblocks.org/.

[2] The Code::Block Team. Gpl v3.0 license
http://www.codeblocks.org/license.

[3] Installing code::block on ubuntu
http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks_from_source_on_

Linux.

[4] Eternal thinker: How to use graphics.h in ubuntu?
http://blog.eternal-thinker.com/2010/09/how-to-use-graphicsh-in-ubuntu.html.

[5] Code::block faq’s
http://wiki.codeblocks.org/index.php?title=FAQ.

38

http://www.codeblocks.org/
http://www.codeblocks.org/license
http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks_from_source_on_Linux
http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks_from_source_on_Linux
http://blog.eternal-thinker.com/2010/09/how-to-use-graphicsh-in-ubuntu.html
http://wiki.codeblocks.org/index.php?title=FAQ

	Introduction to Code::Blocks
	Code::Block IDE
	Working with Code::Block on Windows
	Installation of Code::Block
	Writing a new C/C++ Program
	Non-Graphic Project
	Graphic Project using graphics.h

	Building the Project
	Opening existing program/project

	Working with Code::Block on Ubuntu
	Installation of Code::Blocks
	Installation of packages for graphics.h header file
	Writing a new c/c++ program
	Building the Project
	Non-Graphics Project
	Graphics Project using graphics.h

	Opening Existing Program/Project

