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Preface

This textbook for advanced undergraduate and beginning graduate students provides a
systematic introduction into the fields of Neuron Modeling, Neuronal Dynamics, Neural
Coding and Neural Networks. It can be used as a text for introductory courses to Com-
putational and Theoretical Neuroscience or as main text for a more focused course on
Neural Dynamics and Neural Modeling at the graduate level. The book is also useful
resource for Researchers and Students who want to learn how different models of neurons
and descriptions of neural activity are related to each other.

All mathematical concepts are introduced the pedestrian way: step by step. All chap-
ters are richly illustrated by figures and worked-out examples. Each chapter closes with
a short Summary and a series of mathematical Exercises. An the authors’ WEB page
Python source code is provided for numerical simulations that illustrate the main ideas
and models of the chapter.

The book is organized into four parts with a total of 20 Chapters. Part I provides a
general introduction into the foundations of Computational Neuroscience and its mathe-
matical tools. It covers classic material such as the Hodgkin-Huxley model, ion channels
and dendrites, or phase plane analysis of two-dimensional systems of differential equations.
A special focus is put on the firing threshold for the generation of action potentials, in the
Hodgkin-Huxley models, as well as in reduced two-dimensional neuron models such as the
Morris-Lecar model.

Part II focuses on Simplified Models for the dynamics of a single neuron. It covers non-
linear integrate-and-fire models with and without adaptation, in particular the quadratic
and exponential integrate-and-fire model, as well as the Izhikevich-model and Adaptive
Exponential Integrate-and-Fire model. The question of noise in the neural dynamics is
posed and two classic descriptions of noise are presented. First, stochasticity arising from
random spike arrival. This approach leads to a noise term in the differential equation of
the voltage, and can be formulated as a Langevin equation. Second, intrinsic stochasticity
of neurons leading to an ’escape’ across the firing threshold even when then neuron is in
the subthreshold regime. This approach leads to the framework of a Generalized Linear
Model which is systematically introduced and discussed in applications of neuronal coding
and decoding. The relation between the neuron models of Part II and biological data is
highlighted and systematic parameter optimization algorithms are presented.

Part III takes the simplified models derived in part II and builds networks out of these.
The collective properties of the network dynamics are described in terms of equations
for the population activity also called population firing rate. The conditions und which
population activity can be described by standard rate model are identified.

Part IV makes the link from dynamics to cognition. The population activity equations
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are used for an analysis of famous paradigms of Computational and Cognitive Neuro-
science, such as the neural activity during decision making or memory retrieval. In Part
IV we also sketch the theory of learning in relation to synaptic plasticity. The book closes
with a fascinating application of the principles of neuronal dynamics to help patients
suffering from Parkinsons desease.

A small fraction of the text of the present book is based on ’Spiking Neuron Models’
(Cambridge Univ. Press) which was first published in 2002 and reprinted several times
since then. In the mean time, the field has changed and we felt that a simple update of
’Spiking Neuron Models’ for a second edition would not be enough to give credits to the
developments that have occurred.

Scientifically, the scope of ’Spiking Neuron Models’ was limited in several respects:
First, it mainly focused on linear integrate-and-fire models, and mentioned their nonlinear
counterparts only in passing. In the present book, nonlinear integrate-and-fire models are
treated in a full chapter. Second, adaptation was neglected in the treatment 10 years ago
- mainly because population equations for adaptive neurons were not yet available. In
the present book, adaptive integrate-and-fire models are covered at length in a separate
chapter and the population activity equations for adaptive neurons are derived. Third,
while the Spike Response Model with escape noise has always contained all the features
of a Generalized Linear Model (GLM), by the year 2002 the theory of GLMs had not
yet found its way into the field of neuroscience and was therefore simply absent from the
old book. Given the phenomenal rise of GLMs in neuroscience, the theory of GLM for
fitting neuronal data features at a prominent location in the present book. Finally, during
teaching we always felt the need to show famous applications of the principles of neuronal
dynamics, such as retrieval of contents from associative memories or decision dynamics
and the neuroscience of free will. The present book covers these topics.

On a more general level, we felt that it would be useful to have a book that is, from
the beginning, designed as a textbook rather than a monograph. Therefore, the present
book makes the link to experimental data more visible, has more explanatory text, and,
last not least, provides a series of exercises that have already been tested in the classroom
over several years.

We hope that this book will be useful for students and researchers alike

Wulfram Gerstner, Werner Kistler, Richard Naud, Liam Paninski
Fall 2013
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Advice to the Reader:
Each chapter starts with a specific question and gives first intuitive answers in the first

section. As the chapter proceeds the material gets more advanced, and the presentation
becomes more technical. For a first reading of the book, it is possible to read only the first
section, or first two sections, of each Chapter and just glance at the subsequent sections.

More specific advice depends on the background. For example, readers who are new to
the field of computational neuroscience are advised to spend enough time with the classic
material of Part I, before they move on to part II and IV. The expert reader may skip
part I completely and start directly with part II.

In part III, the main ideas are exposed in Chapters 12 and 15 which present the
foundations for the rate models in part IV. The more technical chapters and sections of
part III can be skipped at a first reading, but are necessary for a thorough understanding
of the current developments in the field of computational neuroscience.

Part IV contains applications of neuronal dynamics to questions of cognition and can
be read in any arbitrary order.
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Chapter 1

Introduction: Neurons and
Mathematics

The primary aim of this chapter is to introduce several elementary notions of neuroscience,
in particular the concepts of action potentials, postsynaptic potentials, firing thresholds,
refractoriness, and adaptation. Based on these notions a preliminary model of neuronal
dynamics is built and this simple model (the leaky integrate-and-fire model) will be used
as a starting point and reference for the generalized integrate-and-fire models, which are
the main topic of the book, to be discussed in Parts II and III. Since the mathematics used
for the simple model is essentially that of a one-dimensional linear differential equation, we
take this first chapter as an opportunity to introduce some of the mathematical notation
that will be used throughout the rest of the book.

Due to the limitations of space we cannot – and do not want to – give a comprehensive
introduction into such a complex field as neurobiology. The presentation of the biological
background in this chapter is therefore highly selective and focuses on those aspects needed
to appreciate the biological background of the theoretical work presented in this book. For
an in-depth discussion of neurobiology we refer the reader to the literature mentioned at
the end of this chapter.

After the review of neuronal properties in Section 1.1 and 1.2 we will turn, in Section
1.3, to our first mathematical neuron model. The last two sections are devoted to a
discussion of the strengths and limitations of simplified models.

1.1 Elements of Neuronal Systems

Over the past hundred years, biological research has accumulated an enormous amount
of detailed knowledge about the structure and function of the brain. The elementary
processing units in the central nervous system are neurons, which are connected to each
other in an intricate pattern. A tiny portion of such a network of neurons is sketched in
Fig. 1.1, which shows a drawing by Ramón y Cajal, one of the pioneers of neuroscience
around 1900. We can distinguish several neurons with triangular or circular cell bodies
and long wire-like extensions. This picture can only give a glimpse of the network of
neurons in the cortex. In reality, cortical neurons and their connections are packed into a
dense network with more than 104 cell bodies and several kilometers of ‘wires’ per cubic

3



4 CHAPTER 1. INTRODUCTION

Fig. 1.1: This reproduction of a drawing of Ramón y Cajal shows a few neurons in
the mammalian cortex that he observed under the microscope. Only a small portion
of the neurons contained in the sample of cortical tissue have been made visible by the
staining procedure; the density of neurons is in reality much higher. Cell b is a typical
example of a pyramidal cell with a triangularly shaped cell body. Dendrites, which leave
the cell laterally and upwards, can be recognized by their rough surface. The axons are
recognizable as thin, smooth lines which extend downwards with a few branches to the
left and right. From Ramòn y Cajal (1909).

millimeter. Across areas of the brain the wiring pattern may look different. In all areas,
however, neurons of different sizes and shapes form the basic elements.

Still, the cortex does not consist exclusively of neurons. Beside the various types of
neuron, there is a large number of ‘supporter’ cells, so-called glia cells, that are required for
energy supply and structural stabilization of brain tissue. Since glia cells are not directly
involved in information processing, we will not discuss them any further. We will also
neglect a few rare subtypes of neuron, such as non-spiking neurons in the mammalian
retina. Throughout this book we concentrate on spiking neurons only.

1.1.1 The Ideal Spiking Neuron

A typical neuron can be divided into three functionally distinct parts, called dendrites,
soma, and axon; see Fig. 1.2. Roughly speaking, the dendrites play the role of the ‘input
device’ that collects signals from other neurons and transmits them to the soma. The soma
is the ‘central processing unit’ that performs an important non-linear processing step: If
the total input arriving at the soma exceeds a certain threshold, then an output signal is
generated. The output signal is taken over by the ‘output device’, the axon, which delivers
the signal to other neurons.

The junction between two neurons is called a synapse. Let us suppose that a neuron
sends a signal across a synapse. It is common to refer to the sending neuron as the
presynaptic cell and to the receiving neuron as the postsynaptic cell. A single neuron
in vertebrate cortex often connects to more than 104 postsynaptic neurons. Many of its
axonal branches end in the direct neighborhood of the neuron, but the axon can also
stretch over several centimeters so as to reach neurons in other areas of the brain.
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Fig. 1.2: A. Single neuron in a drawing by Ramón y Cajal. Dendrite, soma, and axon
can be clearly distinguished. The inset shows an example of a neuronal action potential
(schematic). The action potential is a short voltage pulse of 1-2 ms duration and an
amplitude of about 100 mV. B. Signal transmission from a presynaptic neuron j to a
postsynaptic neuron i. The synapse is marked by the dashed circle. The axons at the
lower right end lead to other neurons. (Schematic figure.)

1.1.2 Spike Trains

The neuronal signals consist of short electrical pulses and can be observed by placing a
fine electrode either on the soma or close to the soma or axon of a neuron; see Fig. 1.2.
The pulses, so-called action potentials or spikes, have an amplitude of about 100 mV
and typically a duration of 1-2 ms. The form of the pulse does not change as the action
potential propagates along the axon. A chain of action potentials emitted by a single
neuron is called a spike train – a sequence of stereotyped events which occur at regular
or irregular intervals; see Fig. 1.3. Since isolated spikes of a given neuron look alike, the
form of the action potential does not carry any information. Rather, it is the number and
the timing of spikes which matter. The action potential is the elementary unit of signal
transmission.

Action potentials in a spike train are usually well separated. Even with very strong
input, it is impossible to excite a second spike during or immediately after a first one. The
minimal distance between two spikes defines the absolute refractory period of the neuron.
The absolute refractory period is followed by a phase of relative refractoriness where it is
difficult, but not impossible to excite an action potential.

1.1.3 Synapses

The site where the axon of a presynaptic neuron makes contact with the dendrite (or
soma) of a postsynaptic cell is the synapse. The most common type of synapse in the
vertebrate brain is a chemical synapse. At a chemical synapse, the axon terminal comes
very close to the postsynaptic neuron, leaving only a tiny gap between pre- and postsy-
naptic cell membrane. This is called the synaptic cleft. When an action potential arrives
at a synapse, it triggers a complex chain of bio-chemical processing steps that lead to
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Fig. 1.3: Action potentials are stereotypical events. Membrane potential recordings
aligned on the time of maximum voltage show little variability of the action potential
shape. Data is a courtesy of Maria Toledo-Rodriguez and Henry Markram (Toledo-
Rodriguez et al., 2004).

a release of neurotransmitter from the presynaptic terminal into the synaptic cleft. As
soon as transmitter molecules have reached the postsynaptic side, they will be detected
by specialized receptors in the postsynaptic cell membrane and lead (either directly or via
a biochemical signaling chain) to an opening of specific channels causing ions from the
extracellular fluid to flow into the cell. The ion influx, in turn, changes the membrane
potential at the postsynaptic site so that, in the end, the chemical signal is translated into
an electrical response. The voltage response of the postsynaptic neuron to a presynaptic
spike is called the postsynaptic potential.

Apart from chemical synapses neurons can also be coupled by electrical synapses,
sometimes called gap junctions. Specialized membrane proteins make a direct electrical
connection between the two neurons. Not much is known about the functional aspects of
gap junctions, but they are thought to be involved in the synchronization of neurons.

1.1.4 Neurons are part of a big system

Neurons are embedded in a network of billions of other neurons and glial cell that make
up the brain tissue. The brain is organized in different regions and areas. The cortex
can be thought of as a thin but extended sheet of neurons, folded over other brain struc-
tures. Some cortical areas are mainly involved in processing sensory input, other areas are
involved in working memory or motor control.

Neurons in sensory cortices can be experimentally characterized by the stimuli to which
they exhibit a strong response. For example, neurons in the primary visual cortex respond
to dots of lights only within a small region of the visual space. The limited zone where a
neuron is sensitive to stimuli is called the neuron’s receptive field (Fig. 1.4).

The receptive field of so-called simple cells in visual cortex is not homogeneous, but has
typically two of three elongated subfields. When a light dot falls into one of the positive
subfields, the neuron increases its activity, i.e., it emits more spikes than in the absence
of a stimulus. Whenever a light dot falls into a negative subfield, it decreases the activity
compared to its spontaneous activity in the presence of a gray screen. A spot of light is in
fact not the best stimulus. The neuron responds maximally to a moving light bar with an
orientation aligned with the elongation of the positive subfield (Hubel and Wiesel, 1968).
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Fig. 1.4: Receptive fields in visual cortex. An electrode probes the activity of a neuron
while light dots are presented on a gray screen. The neuron responds whenever the stimulus
falls into its receptive field, schematically indicated as an oval.

A large body of the neuroscience literature consists in determining the receptive fields
of neurons in sensory cortices. While neurons in visual cortex respond to appropriate
visual stimuli, neurons in auditory cortex or somatosensory cortex respond to auditory or
tactile stimuli. The concept of receptive field becomes less well defined if one moves away
from sensory cortex. For example, in inferotemporal cortex, neurons respond to objects
independently of their size and location; in working memory tasks, frontal cortex neurons
are active during periods where no stimulus is present at all. In Parts II, III, and IV of this
book we touch on aspects of receptive fields and memory of neuronal networks embedded
in a big system. For the moment, we return to a simple, idealized neuron.

1.2 Elements of Neuronal Dynamics

The effect of a spike on the postsynaptic neuron can be recorded with an intracellular
electrode which measures the potential difference u(t) between the interior of the cell and
its surroundings. This potential difference is called the membrane potential. Without
any input, the neuron is at rest corresponding to a constant membrane potential urest.
After the arrival of a spike, the potential changes and finally decays back to the resting
potential, cf. Fig. 1.5A. If the change is positive, the synapse is said to be excitatory. If
the change is negative, the synapse is inhibitory.

At rest, the cell membrane has already a strongly negative polarization of about –
65 mV. An input at an excitatory synapse reduces the negative polarization of the mem-
brane and is therefore called depolarizing. An input that increases the negative polariza-
tion of the membrane even further is called hyperpolarizing.

1.2.1 Postsynaptic Potentials

Let us formalize the above observation. We study the time course ui(t) of the membrane
potential of neuron i. Before the input spike has arrived, we have ui(t) = urest. At t = 0
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the presynaptic neuron j fires its spike. For t > 0, we see at the electrode a response of
neuron i

ui(t)− urest =: εij(t) . (1.1)

The right-hand side of Eq. (1.1) defines the postsynaptic potential (PSP). If the voltage
difference ui(t)−urest is positive (negative) we have an excitatory (inhibitory) postsynaptic
potential or short EPSP (IPSP). In Fig. 1.5A we have sketched the EPSP caused by the
arrival of a spike from neuron j at an excitatory synapse of neuron i.

1.2.2 Firing Threshold and Action Potential

Consider two presynaptic neurons j = 1, 2, which both send spikes to the postsynaptic

neuron i. Neuron j = 1 fires spikes at t
(1)
1 , t

(2)
1 , . . . , similarly neuron j = 2 fires at

t
(1)
2 , t

(2)
2 , . . . . Each spike evokes a postsynaptic potential εi1 or εi2, respectively. As long

as there are only few input spikes, the total change of the potential is approximately the
sum of the individual PSPs,

ui(t) =
∑
j

∑
f

εij(t− t(f)j ) + urest , (1.2)

i.e., the membrane potential responds linearly to input spikes; see Fig. 1.5B.

On the other hand, linearity breaks down if too many input spikes arrive during a
short interval. As soon as the membrane potential reaches a critical value ϑ, its trajectory
shows a behavior that is quite different from a simple summation of PSPs: The membrane
potential exhibits a pulse-like excursion with an amplitude of about 100 mV. This short
voltage pulse will propagate along the axon of neuron i to the synapses with other neurons.
After the pulse the membrane potential does not directly return to the resting potential,
but passes, for many neuron types, through a phase of hyperpolarization below the resting
value. This hyperpolarization is called ‘spike-afterpotential’.

Single EPSPs have amplitudes in the range of one millivolt. The critical value for spike
initiation is about 20 to 30 mV above the resting potential. In most neurons, four spikes –
as shown schematically in Fig. 1.5C – are thus not sufficient to trigger an action potential.
Instead, about 20-50 presynaptic spikes have to arrive within a short time window to
trigger a postsynaptic action potential.

1.3 Integrate-And-Fire Models

We have seen in the previous section that, to a first and rough approximation, neuronal
dynamics can be conceived as a summation process (sometimes also called ‘integration’
process) combined with a mechanism that triggers action potentials above some criti-
cal voltage. Indeed in experiments firing times are often defined as the moment when
the membrane potential reaches some threshold value from below. In order to build a
phenomenological model of neuronal dynamics, we describe the critical voltage for spike
initiation by a formal threshold ϑ. If the voltage ui(t) (that contains the summed effect
of all inputs) reaches ϑ from below, we say that neuron i fires a spike. The moment of

threshold crossing defines the firing time t
(f)
i .
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Fig. 1.5: A postsynaptic neuron i receives input from two presynaptic neurons j = 1, 2.
A. Each presynaptic spike evokes an excitatory postsynaptic potential (EPSP) that can
be measured with an electrode as a potential difference ui(t) − urest. The time course of

the EPSP caused by the spike of neuron j = 1 is εi1(t − t(f)1 ). B. An input spike from a
second presynaptic neuron j = 2 that arrives shortly after the spike from neuron j = 1,
causes a second postsynaptic potential that adds to the first one. C. If ui(t) reaches the
threshold ϑ, an action potential is triggered. As a consequence, the membrane potential
starts a large positive pulse-like excursion (arrow). On the voltage scale of the graph, the
peak of the pulse is out of bounds. After the pulse the voltage returns to a value below
the resting potential urest.
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The model makes use of the fact that neuronal action potentials of a given neuron
always have roughly the same form. If the shape of an action potential is always the same,
then the shape cannot be used to transmit information: rather information is contained
in the presence or absence of a spike. Therefore action potentials are reduced to ‘events’
that happen at a precise moment in time.

Neuron models where action potentials are described as events are called ’Integrate-
and-Fire’ models. No attempt is made to describe the shape of an action potential.
Integrate-and-fire models have two separate components that are both necessary to define
their dynamics: first, an equation that describes the evolution of the membrane potential
ui(t); and second, a mechanism to generate spikes.

In the following we introduce the simplest model in the class of integrate-and-fire
models using the following two ingredients: (i) a linear differential equation to describe
the evolution of the membrane potential; (ii) a threshold for spike firing. This model is
called the ‘Leaky Integrate-and-Fire’ Model. Generalized integrate-and-fire models that
will be discussed in Part II of the book can be seen as variations of this basic model.

1.3.1 Integration of Inputs

The variable ui describes the momentary value of the membrane potential of neuron i. In
the absence of any input, the potential is at its resting value urest. If an experimentalist
injects a current I(t) into the neuron, or if the neuron receives synaptic input from other
neurons, the potential ui will be deflected from its resting value.

In order to arrive at an equation that links the momentary voltage ui(t)− urest to the
input current I(t), we use elementary laws from the theory of electricity. A neuron is
surrounded by a cell membrane, which is a rather good insulator. If a short current pulse
I(t) is injected into the neuron, the additional electrical charge q =

∫
I(t′)dt′ has to go

somewhere: it will charge the cell membrane (Fig. 1.6A). The cell membrane therefore
acts like a capacitor of capacity C. Because the insulator is not perfect, the charge will,
over time, slowly leak through the cell membrane. The cell membrane can therefore be
characterized by a finite leak resistance R.

The basic electrical circuit representing a leaky integrate-and-fire model consists of a
capacitor C in parallel with a resistor R driven by a current I(t); see Fig. 1.6. If the driving
current I(t) vanishes, the voltage across the capacitor is given by the battery voltage urest.
For a biological explanation of the battery we refer the reader to the next chapter. Here
we have simply inserted the battery ‘by hand’ into the circuit so as to account for the
resting potential of the cell (Fig. 1.6A).

In order to analyze the circuit, we use the law of current conservation and split the
driving current into two components,

I(t) = IR + IC (1.3)

The first component is the resistive current IR which passes through the linear resistor
R. It can be calculated from Ohm’s law as IR = uR/R where uR = u − urest is the
voltage across the resistor. The second component IC charges the capacitor C. From the
definition of the capacity as C = q/u (where q is the charge and u the voltage), we find a
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Fig. 1.6: Electrical properties
of neurons: the passive mem-
brane. A. A neuron, which is
enclosed by the cell membrane
(big circle), receives a (posi-
tive) input current I(t) which
increases the electrical charge
inside the cell. The cell mem-
brane acts like a capacitor in
parallel with a resistor which
is in line with a battery of
potential urest (zoomed inset).
B. The cell membrane reacts
to a step current (top) with a
smooth voltage trace (bottom).

capacitive current IC = dq/dt = C du/dt. Thus

I(t) =
u(t)− urest

R
+ C

du

dt
. (1.4)

We multiply Eq. (1.4) by R and introduce the time constant τm = RC of the ‘leaky
integrator’. This yields the standard form

τm
du

dt
= −[u(t)− urest] +RI(t) . (1.5)

We refer to u as the membrane potential and to τm as the membrane time constant of the
neuron.

From the mathematical point of view, Eq. (1.5) is a linear differential equation. From
the point of view of an electrical engineer, it is the equation of a leaky integrator or RC-
circuit where resistor R and capacitor C are arranged in parallel. From the point of view
of the neuroscientist, Eq. (1.5) is called the equation of a passive membrane.

What is the solution of Eq. (1.5)? We suppose that, for whatever reason, at time t = 0
the membrane potential takes a value urest + ∆u. For t > 0 the input vanishes I(t) = 0.
Intuitively we expect that, if we wait long enough, the membrane potential relaxes to its
resting value urest. Indeed, the solution of the differential equation with initial condition
u(t0) = urest + ∆u is

u(t)− urest = ∆u exp

(
− t− t0

τm

)
for t > t0 . (1.6)

Thus, in the absence of input, the membrane potential decays exponentially to its resting
value. The membrane time constant τm = RC is the characteristic time of the decay.
For a typical neuron it is in the range of 10ms, and hence rather long compared to the
duration of a spike which is on the order of 1ms.

The validity of the solution (1.6) can be checked by taking the derivative on both sides
of the equation. Since it is the solution in the absence of input, it is sometimes called the
‘free’ solution.
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pulse.

1.3.2 Pulse Input

Before we continue with the definition of the integrate-and-fire model and its variants, let
us study the dynamics of the passive membrane defined by Eq. (1.5) in a simple example.
Suppose that the passive membrane is stimulated by a constant input current I(t) = I0
which starts at t = 0 and ends at time t = ∆. For the sake of simplicity we assume that
the membrane potential at time t = 0 is at its resting value u(0) = urest.

As a first step, let us calculate the time course of the membrane potential. The
trajectory of the membrane potential can be found by integrating (1.5) with the initial
condition u(0) = urest. The solution for 0 < t < ∆ is

u(t) = urest +RI0

[
1− exp

(
− t

τm

)]
. (1.7)

If the input current never stopped, the membrane potential (1.7) would approach for
t → ∞ the asymptotic value u(∞) = urest + RI0. We can understand this result by
looking at the electrical diagram of the RC-circuit in Fig. 1.6. Once a steady state is
reached, the charge on the capacitor no longer changes. All input current must then flow
through the resistor. The steady-state voltage at the resistor is therefore RI0 so that the
total membrane voltage is urest +RI0.

Example: Short pulses and the Dirac δ function
For short pulses the steady state value is never reached. At the end of the pulse, the value of the

membrane potential is given according to Eq. (1.7) by u(∆) = urest +RI0

[
1− exp

(
− ∆
τm

)]
.

For pulse durations ∆ � τm (where � means much smaller than) we can expand the expo-
nential term into a Taylor series: exp(x) = 1 + x + x2/2... . To first order in x = − ∆

τm
we

find

u(∆) = urest +RI0
∆

τm
for ∆� τm. (1.8)

Thus, the voltage deflection depends linearly on the amplitude and the duration of the pulse
(Fig. 1.7, thick line).

We now make the duration ∆ of the pulse shorter and shorter while increasing the
amplitude of the current pulse to a value I0 = q/∆, so that the integral

∫
I(t)dt = q re-

mains constant. In other words, the total charge q delivered by the current pulse is always
the same. Interestingly, the voltage deflection at the end of the pulse calculated from Eq.
(1.8) remains unaltered, however short we make the pulse. Indeed, from Eq. (1.8) we find
u(∆)− urest = q R/τm = q/C where we have used τm = RC. Thus we can consider the limit
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of an infinitely short pulse

I(t) = q δ(t) = lim
∆→0

q

∆
for 0 < t < ∆ and 0 otherwise. (1.9)

δ(t) is called the Dirac δ-function. It is defined by δ(x) = 0 for x 6= 0 and
∫∞
−∞ δ(x)dx = 1.

Obviously, the Dirac δ-function is a mathematical abstraction since it is practically im-
possible to inject a current with an infinitely short and infinitely strong current pulse into
a neuron. Whenever we encounter a δ-function, we should remember that, as a stand-alone
object, it looks strange, but becomes meaningful as soon as we integrate over it. Indeed the
input current defined in Eq. (1.9) needs to be inserted into the differential equation (1.5)
and integrated. The mathematical abstraction of the Dirac δ function suddenly makes a lot
of sense, because the voltage change induced by a short current pulse is always the same,
whenever the duration of the pulse ∆ is much shorter than the time constant τm. Thus, the
exact duration of the pulse is irrelevant, as long as it is short enough.

With the help of the δ-function, we no longer have to worry about the time course of
the membrane potential during the application of the current pulse: the membrane potential
simply jumps at time t = 0 by an amount q/C. Thus, it is as if we added instantaneously a
charge q onto the capacitor of the RC circuit.

What happens for times t > ∆? The membrane potential evolves from its new initial
value urest + q/C in the absence of any further input. Thus we can use the ‘free’ solution from
Eq. (1.6) with t0 = ∆ and ∆u = q/C.

We can summarize the considerations of this subsection by the following statement. The
solution of the linear differential equation with pulse input

τm
du

dt
= −[u(t)− urest] +Rq δ(t) . (1.10)

is u(t) = urest for t ≤ 0 and given by

u(t)− urest = q
R

τm
exp

(
− t

τm

)
for t > 0 (1.11)

The right-hand side of the equation is called the impulse-response function or Green’s function
of the linear differential equation.

1.3.3 The Threshold for Spike Firing

Throughout this book, the term ‘firing time’ refers to the moment when a given neuron
emits an action potential t(f). The firing time t(f) in the leaky integrate-and-fire model is
defined by a threshold criterion

t(f) : u(t(f)) = ϑ . (1.12)

The form of the spike is not described explicitly. Rather, the firing time is noted and
immediately after t(f) the potential is reset to a new value ur < ϑ,

lim
δ→0;δ>0

u(t(f) + δ) = ur . (1.13)

For t > t(f) the dynamics is again given by (1.5) until the next threshold crossing occurs.
The combination of leaky integration (1.5) and reset (1.13) defines the leaky integrate-
and-fire model (Stein, 1967b). The voltage trajectory of a leaky integrate-and-fire model
driven by a constant current I0 is shown in Fig. 1.9.
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Fig. 1.8: In formal models of spiking neurons the shape of an action potential (dashed line)
is usually replaced by a δ pulse (vertical line). The negative overshoot (spike-afterpotential)
after the pulse is replaced by a ‘reset’ of the membrane potential to the value ur. The pulse

is triggered by the threshold crossing at t
(1)
i .

For the firing times of neuron i we write t
(f)
i where f = 1, 2, . . . is the label of the

spike. Formally, we may denote the spike train of a neuron i as the sequence of firing
times

Si(t) =
∑
f

δ(t− t(f)i ) (1.14)

where δ(x) is the Dirac δ function introduced before, with δ(x) = 0 for x 6= 0 and∫∞
−∞ δ(x)dx = 1. Spikes are thus reduced to points in time (Fig. 1.8). We remind the

reader that the δ-function is a mathematical object that needs to be inserted into an
integral in order to give meaningful results.

1.3.4 Time-dependent Input (*)1

We study a leaky integrate-and-fire model which is driven by an arbitrary time-dependent
input current I(t); cf. Fig. 1.9B. The firing threshold has a value ϑ and after firing the
potential is reset to a value ur < ϑ.

In the absence of a threshold, the linear differential equation (1.5) has a solution

u(t) = urest +
R

τm

∫ ∞
0

exp

(
− s

τm

)
I(t− s) ds . (1.15)

where I(t) is an arbitrary input current and τm = RC is the membrane time constant.
We assume here that the input current is defined for a long time back into the past:
t→ −∞ so that we do not have to worry about the initial condition. A sinusoidal current
I(t) = I0 sin(ω t) or a step current pulse, I(t) = I0Θ(t) where Θ denotes the Heaviside
step function with Θ(t) = 0 for t ≤ 0 and Θ(t) = 1 for t > 0, are two examples of a

1Sections marked by an asterisk are mathematically more advanced and can be omitted during a first
reading of the book.
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Fig. 1.9: Integrate-and-fire model. A. Time course of the membrane potential of an
integrate-and-fire neuron driven by constant input current I0 = 1.5. The voltage ∆u(t) =
u− urest is normalized by the value of the threshold ϑ. Units of input current are chosen
so that I0 = 1 corresponds to a trajectory that reaches the threshold for t→∞. After a
spike, the potential is reset to ur = urest. B. Voltage response to a time-dependent input
current.

time-dependent current, but the solution, Eq. (1.15), is also valid for every other time-
dependent input current.

So far our leaky integrator does not have a threshold. What happens to the solution Eq.
(1.15), if we add a threshold ϑ? Each time the membrane potential hits the threshold,
the variable u is reset from ϑ to ur. In the electrical circuit diagram, the reset of the
potential corresponds to removing a charge qr = C (ϑ− ur) from the capacitor (Fig. 1.6)
or, equivalently, adding a negative charge −qr onto the capacitor. Therefore, the reset
corresponds to a short current pulse Ir = −qr δ(t− t(f)) at the moment of the firing t(f).
Indeed, it is not unusual to say that a neuron ‘discharges’ instead of ‘fires’. Since the reset
happens each time the neuron fires, the reset current is

Ir = −qr
∑
f

δ(t− t(f)) = −C (ϑ− ur)S(t) , (1.16)

where S(t) denotes the spike train, defined in Eq. (1.14).

The short current pulse corresponding to the ‘discharging’ is treated mathematically
just like any other time-dependent input current. The total current I(t)+Ir(t), consisting
of the stimulating current and the reset current, is inserted into the solution (1.15) to give
the final result

u(t) = urest +
∑
f

(ur − ϑ) exp

(
− t− t

(f)

τm

)
+

R

τm

∫ ∞
0

exp

(
− s

τm

)
I(t− s) ds , (1.17)

where the firing times t(f) are defined by the threshold condition

t(f) = {t|u(t) = ϑ} . (1.18)
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Note that with our definition of the Dirac δ-function in Eq. (1.9), the discharging reset
follows immediately after the threshold crossing, so that the natural sequence of events –
first firing, then reset – is respected.

Eq. (1.17) looks rather complicated. It has, however, a simple explanation. In Sect.
1.3.2 we have seen that a short input pulse at time t′ causes at time t a response of the

membrane proportional to exp
(
− t−t′

τm

)
, sometimes called the impulse response function

or Green’s function; cf. Eq. (1.11). The second term on the right-hand side of Eq. (1.17)
is the effect of the discharging current pulses at the moment of the reset.

In order to interpret the last term on the right-hand side, we think of a stimulating
current I(t) as consisting of a rapid sequence of discrete and short current pulses. In
discrete time, there would be a different current pulse in each time step. Because of the
linearity of the differential equation, the effect of all these short current pulses can be
added. When we return from discrete time to continuous time, the sum of the impulse
response functions turns into the integral on the right-hand side of Eq. (1.17).

1.3.5 Linear Differential Equation vs. Linear Filter: Two Equivalent
Pictures (*)

The leaky integrate-and-fire model is defined by the differential equation (1.5), i.e.,

τm
du

dt
= −[u(t)− urest] +RI(t) , (1.19)

combined with the reset condition

lim
δ→0;δ>0

u(t(f) + δ) = ur , (1.20)

where t(f) are the firing times

t(f) = {t|u(t) = ϑ} . (1.21)

As we have seen in the previous subsection, the linear equation can be integrated and
yields the solution (1.17). It is convenient to rewrite the solution in the form

u(t) =

∫ ∞
0

η(s)S(t− s)ds+

∫ ∞
0

κ(s)I(t− s) ds . (1.22)

where we have introduced filters η(s) = (ur − ϑ) exp
(
− s
τm

)
and κ(s) = 1

C exp
(
− s
τm

)
.

Interestingly, Eq. (1.22) is much more general than the leaky integrate-and-fire model,
because the filters do not need to be exponentials but could have any arbitrary shape.
The filter η describes the reset of the membrane potential and, more generally, accounts
for neuronal refractoriness. The filter κ summarizes the linear electrical properties of the
membrane. Eq. (1.22) in combination with the threshold condition (1.21) is the basis of
the Spike Response Model and Generalized Linear Models, which will be discussed in Part
II.
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1.3.6 Periodic drive and Fourier transform (*)

Formally, the complex Fourier transform of a real-valued function f(t) with argument t
on the real line is

f̂(ω) =

∫ ∞
−∞

f(t) e−iωtdt = |f̂(ω)| eiφf (ω) (1.23)

where |f̂(ω)| and φf (ω) are called amplitude and phase of the Fourier transform at fre-
quency ω. The mathematical condition for a well-defined Fourier transform is that the
function f be Lebesgue integrable with integral

∫∞
−∞ |f(t)|dt < ∞. If f is a function of

time, then f̂(ω) is a function of frequency. An inverse Fourier transform leads back from
frequency-space to the original space, i.e., time.

For a linear system, the above definition gives rise to several convenient rules for
Fourier-transformed equations. For example, let us consider the system

u(t) =

∫ ∞
−∞

κ(s) I(t− s) ds , (1.24)

where I(t) is a real-valued input (e.g., a current), u(t) the real-valued system output (e.g.,
a voltage) and κ a linear response filter, or kernel, with κ(s) = 0 for s < 0 because
of causality. The convolution on the right-hand side of Eq. (1.24) turns after Fourier
transformation into a simple multiplication, as shown by the following steps of calculation:

û(ω) =

∫ ∞
−∞

[∫ ∞
−∞

κ(s) I(t− s) ds

]
e−iωtdt

=

∫ ∞
−∞

∫ ∞
−∞

κ(s)e−iωs I(t− s) e−iω(t−s)dsdt

= κ̂(ω) Î(ω) (1.25)

where we introduced in the last step the variable t′ = t− s and used the definition (1.23)
of the Fourier transform.

Similarly, the derivative du/dt of a function u(t) can be Fourier-transformed using the
product rule of integration. The Fourier transform of the derivative of u(t) is iωû(ω).

While introduced here as a purely mathematical operation, it is often convenient to
visualize the Fourier transform in the context of a physical system driven by a periodic
input. Consider the linear system of Eq. (1.24) with an input

I(t) = I0 e
iωt . (1.26)

A short comment on the notation. If the input is a current, it should be real-valued, as
opposed to a complex number. We therefore take I0 as a real and positive number and
focus on the real part of the complex equation (1.26) as our physical input. When we
perform a calculation with complex numbers, we therefore implicitly assume that, at the
very end, we only take the real part of solution. However, the calculation with complex
numbers turns out to be convenient for the steps in between.

Inserting the periodic drive, Eq. (1.26), into Eq. (1.24) yields

u(t) =

∫ ∞
−∞

κ(s) I0e
iω(t−s) ds =

[∫ ∞
−∞

κ(s) e−iωs ds

]
I0e

iωt . (1.27)
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Hence, if the input is periodic at frequency ω the output is so, too. The term in square
brackets is the Fourier transform of the linear filter. We write u(t) = u0 e

iφκ(ω) eiωt. The
ratio between the amplitude of the output and that of the input is

u0
I0

= |κ̂(ω)| . (1.28)

The phase φκ(ω) of the Fourier-transformed linear filter κ corresponds to phase shift
between input and output or, to say it differently, a delay ∆ = φκ/ω = φκ T/2π where
T is the period of the oscillation. Fourier transforms will play a role in the discussion of
signal processing properties of connected networks of neurons in Part III of the book.

Example: Periodic drive of a passive membrane
We consider the differential equation of the passive membrane defined in Eq. (1.5) and choose
voltage units such that urest = 0, i.e.,

τm
du

dt
= −u(t) +RI(t) . (1.29)

The solution, given by Eq. (1.15), corresponds to the convolution of the input I(t) with
a causal linear filter κ(s) = (1/C) e(−s/τm) for s > 0. In order to determine the response
amplitude u0 to a periodic drive I(t) = I0 e

iωt we need to calculate the Fourier transform of
κ:

|κ̂(ω)| =

∣∣∣∣ 1

C

∫ ∞
0

e
−t
τm e−iωt dt

∣∣∣∣ =
1

C

∣∣∣∣ τm
1 + iωτm

∣∣∣∣ . (1.30)

For ωτm � 1 the right-hand side is proportional to ω−1. Therefore the amplitude of the
response to a periodic input decreases at high frequencies.

1.4 Limitations of the Leaky Integrate-and-Fire Model

The leaky integrate-and-fire model presented in Section 1.3 is highly simplified and neglects
many aspects of neuronal dynamics. In particular, input, which may arise from presynaptic
neurons or from current injection, is integrated linearly, independently of the state of the
postsynaptic neuron:

τm
du

dt
= −[u(t)− urest] +RI(t) (1.31)

where I(t) is the input current. Furthermore, after each output spike the membrane
potential is reset,

if u(t) = ϑ then lim
δ→0;δ>0

u(t+ δ) = ur (1.32)

so that no memory of previous spikes is kept. Let us list the major limitations of the
simplified model discussed so far. All of these limitations will be addressed in the extension
of the leaky integrate-and-fire model presented in Part II of the book.

1.4.1 Adaptation, Bursting, and Inhibitory Rebound

To study neuronal dynamics experimentally, neurons can be isolated and stimulated by
current injection through an intracellular electrode. In a standard experimental protocol
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Fig. 1.10: Response to a current step. In A - C, the current is switched on at t = t0 to a
value I2 > 0. Fast-spiking neurons (A) have short interspike intervals without adaptation
while regular-spiking neurons (C) exhibit adaptation, visible as an increase in the duration
of interspike intervals. An example of a stuttering neuron is shown in B. Many neurons
emit an inhibitory rebound spike (D) after an inhibitory current I1 < 0 is switched off.
Data is a courtesy of Henry Markram and Maria Toledo-Rodriguez (Markram et al., 2004;
Toledo-Rodriguez et al., 2004).

we could, for example, impose a stimulating current that is switched at time t0 from a
value I1 to a new value I2. Let us suppose that I1 = 0 so that the neuron is quiescent
for t < t0. If the current I2 is sufficiently large, it will evoke spikes for t > t0. Most
neurons will respond to the current step with a spike train where intervals between spikes
increase successively until a steady state of periodic firing is reached; cf. Fig. 1.10C.
Neurons that show this type of adaptation are called regularly-firing neurons (Connors
and Gutnick, 1990). Adaptation is a slow process that builds up over several spikes. Since
the standard leaky integrate-and-fire model resets the voltage after each spike to the same
value and restarts the integration process, no memory is kept beyond the most recent
spike. Therefore, the leaky integrate-and-fire neuron cannot capture adaptation. Detailed
neuron models, which will be discussed in Chapter 2, explicitly describe the slow processes
that lead to adaptation. To mimic these processes in integrate-and-fire neurons, we need
to add up the contributions to refractoriness of several spikes back in the past. As we will
see in Chapter 6, this can be done in the ‘filter’ framework of Eq. (1.22) by using a filter η
for refractoriness with a time constant much slower than that of the membrane potential.
Or by combining the differential equation of the leaky integrate-and-fire model with a
second differential equation describing the evolution of a slow variable; cf. Chapter 6.

A second class of neurons are fast-spiking neurons. These neurons show no adaptation
(cf. Fig. 1.10A) and can therefore be well approximated by non-adapting integrate-and-fire
models. Many inhibitory neurons are fast-spiking neurons. Apart from regular-spiking and
fast-spiking neurons, there are also bursting and stuttering neurons which form a separate
group (Connors and Gutnick, 1990). These neurons respond to constant stimulation by a
sequence of spikes that is periodically (bursting) or aperiodically (stuttering) interrupted
by rather long intervals; cf. Fig. 1.10B. Again, a neuron model that has no memory
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beyond the most recent spike cannot describe bursting, but the framework in Eq. (1.22)
with arbitrary ‘filters’ is general enough to account for bursting as well.

Another frequently observed behavior is post-inhibitory rebound. Consider a step
current with I1 < 0 and I2 = 0, i.e., an inhibitory input that is switched off at time t0; cf.
Fig. 1.10D. Many neurons respond to such a change with one or more ‘rebound spikes’:
Even the release of inhibition can trigger action potentials. We will return to inhibitory
rebound in Chapter 3.

1.4.2 Shunting Inhibition and Reversal Potential

In the previous paragraph we focused on an isolated neuron stimulated by an applied
current. In reality, neurons are embedded into a large network and receive input from

many other neurons. Suppose a spike from a presynaptic neuron j is sent at time t
(f)
j

towards the synapse of a postsynaptic neuron i. When we introduced in Fig. 1.5 the
postsynaptic potential that is generated after the arrival of the spike at the synapse, its
shape and amplitude did not depend on the state of the postsynaptic neuron i. This is of
course a simplification and reality is somewhat more complicated. In Chapter 3 we will
discuss detailed neuron models that describe synaptic input as a change of the membrane
conductance. Here we simply summarize the major phenomena.

In Fig. 1.11 we have sketched schematically an experiment where the neuron is driven
by a constant current I0. We assume that I0 is too weak to evoke firing so that, after some
relaxation time, the membrane potential settles at a constant value u0. At t = t(f) one of
the presynaptic neurons emits a spike so that shortly afterwards the action potential arrives
at the synapse and provides additional stimulation of the postsynaptic neuron. More
precisely, the spike generates a current pulse at the postsynaptic neuron (postsynaptic
current, PSC) with amplitude

PSC ∝ [u0 − Esyn] (1.33)

where u0 is the membrane potential and Esyn is the ‘reversal potential’ of the synapse.
Since the amplitude of the current input depends on u0, the response of the postsynaptic
potential does so as well. Reversal potentials are systematically introduced in Chapter 2;
models of synaptic input are discussed in Chapter 3.1.

Example: Shunting inhibition
The dependence of the postsynaptic response upon the momentary state of the neuron is
most pronounced for inhibitory synapses. The reversal potential of inhibitory synapses Esyn

is below, but usually close to the resting potential. Input spikes thus have hardly any effect
on the membrane potential if the neuron is at rest; cf. Fig. 1.11A. However, if the membrane
is depolarized, the very same input spikes evoke a larger inhibitory postsynaptic potential.
If the membrane is already hyperpolarized, the input spike can even produce a depolarizing
effect. There is an intermediate value u0 = Esyn – the reversal potential – where the response
to inhibitory input ‘reverses’ from hyperpolarizing to depolarizing.

Though inhibitory input usually has only a small impact on the membrane potential, the
local conductivity of the cell membrane can be significantly increased. Inhibitory synapses are
often located on the soma or on the shaft of the dendritic tree. Due to their strategic position,
a few inhibitory input spikes can ‘shunt’ the whole input that is gathered by the dendritic
tree from hundreds of excitatory synapses. This phenomenon is called ‘shunting inhibition’.

The reversal potential for excitatory synapses is usually significantly above the resting
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Fig. 1.11: The shape of postsynaptic potentials depends on the momentary level of de-
polarization. A. A presynaptic spike that arrives at time t(f) at an inhibitory synapse has
hardly any effect on the membrane potential when the neuron is at rest, but a large effect if
the membrane potential u is above the resting potential. If the membrane is hyperpolarized
below the reversal potential of the inhibitory synapse, the response to the presynaptic input
changes sign. B. A spike at an excitatory synapse evokes a postsynaptic potential with an
amplitude that depends only slightly on the momentary voltage u. For large depolarizations
the amplitude saturates and becomes smaller. (Schematic figure.)

potential. If the membrane is depolarized u0 � urest the amplitude of an excitatory postsy-
naptic potential is reduced, but the effect is not as pronounced as for inhibition. For very
high levels of depolarization a saturation of the EPSPs can be observed; cf. 1.11B.

1.4.3 Conductance Changes after a Spike

The shape of the postsynaptic potentials does not only depend on the level of depolariza-
tion but, more generally, on the internal state of the neuron, e.g., on the timing relative
to previous action potentials.

Suppose that an action potential has occurred at time t
(f)
i and that a presynaptic

spike arrives at a time t
(f)
j > t

(f)
i at the synapse j. The form of the postsynaptic potential

depends now on the time t
(f)
j − t

(f)
i ; cf. Fig. 1.12. If the presynaptic spike arrives during

or shortly after a postsynaptic action potential, it has little effect because some of the ion
channels that were involved in firing the action potential are still open. If the input spike
arrives much later, it generates a postsynaptic potential of the usual size. We will return
to this effect in Chapter 2.

1.4.4 Spatial Structure

The form of postsynaptic potentials also depends on the location of the synapse on the
dendritic tree. Synapses that are located far away from the soma are expected to evoke
a smaller postsynaptic response at the soma than a synapse that is located directly on
the soma; cf. Chapter 3. If several inputs occur on the same dendritic branch within a
few milliseconds, the first input will cause local changes of the membrane potential that
influence the amplitude of the response to the input spikes that arrive slightly later. This
may lead to saturation or, in the case of so-called ‘active’ currents, to an enhancement
of the response. Such nonlinear interactions between different presynaptic spikes are ne-
glected in the leaky integrate-and-fire model. Whereas a purely linear dendrite can be
incorporated in the ‘filter’ description of the model, as we will see in Chapter 6, nonlinear
interactions cannot. Small regions on the dendrite where a strong nonlinear boosting of
synpatic currents occurs are sometimes called dendritic ’hot spots’. The boosting can lead
to dendritic spikes which, in contrast to normal somatic action potentials last for tens of
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Fig. 1.12: The shape of postsynaptic potentials (dashed lines) depends on the time t−t(f)i

that has passed since the last output spike of neuron i. The postsynaptic spike has been

triggered at time t
(f)
i . A presynaptic spike that arrives at time t

(f)
j shortly after the spike

of the postsynaptic neuron has a smaller effect than a spike that arrives much later. Data
is a courtesy of Thomas Berger (Berger et al., 2009).

milliseconds (Larkum and Nevian, 2008).

1.5 What Can We Expect from Integrate-And-Fire Models?

The leaky integrate-and-fire model is an extremely simplified neuron model. As we have
seen in the previous section, it neglects many features that neuroscientists have observed
when they study neurons in the living brain or in slices of brain tissue. Therefore the
question arises: what should we expect from such a model? Clearly we cannot expect it
to explain the complete biochemistry and biophysics of neurons. Nor do we expect it to
account for highly nonlinear interactions that are caused by active currents in some ‘hot
spots’ on the dendritic tree. However, the integrate-and-fire model is surprisingly accurate
when it comes to generating spikes, i.e., precisely timed events in time. Thus, it could
potentially be a valid model of spike generation in neurons, or more precisely, in the soma.

It is reasonable to require from a model of spike generation that it should be able
to predict the moments in time when a real neuron spikes. Let us look at the following
schematic set-up (Fig. 1.13). An experimentalist injects a time-dependent input-current
I(t) into the soma of a cortical neuron using a first electrode. With an independent second
electrode he or she measures the voltage at the soma of the neuron. Not surprisingly, the
voltage trajectory contains from time to time sharp electrical pulses. These are the action
potentials or spikes.

A befriended mathematical neuroscientist now takes the time course I(t) of the input
current that was used by the experimentalist together with the time course of the mem-
brane potential of the neuron and adjusts the parameters of a leaky integrate-and-fire
model so that the model generates, for the very same input current, spikes at roughly the
same moments in time as the real neuron. This needs some parameter tuning, but seems
feasible. The relevant and much more difficult question, however, is whether the neuron
model can now be used to predict the firing times of the real neuron for a novel time-
dependent input current that was not used during parameter optimization (Fig. 1.13).
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Fig. 1.13: The challenge of spike time prediction. A current I(t) is experimentally injected
into the soma of a real neuron in vitro through an electrode. The response of the neuron
is recorded and half of the response is made available for model optimization while part
of the response remains hidden. The challenge is then to use the input I(t) to predict the
spike times of the hidden response with a mathematical neuron model.

As discussed above, neurons not only show refractoriness after each spike but also ex-
hibit adaptation which builds up over hundreds of milliseconds. A simple leaky integrate-
and-fire model does not perform well at predicting the spike times of a real neuron. How-
ever, if adaptation (and refractoriness) is added to the neuron model, the prediction works
surprisingly well. A straightforward way to add adaptation is to make the firing threshold
of the neuron model dynamic: after each spike the threshold ϑ is increased by an amount
θ, while during a quiescent period the threshold approaches its stationary value ϑ0. We
can use the Dirac δ-function to express this idea

τadapt
d

dt
ϑ(t) = −[ϑ(t)− ϑ0] + θ

∑
f

δ(t− t(f)) (1.34)

where τadapt is the time constant of adaptation (a few hundred milliseconds) and t(f) =
t(1), t(2), t(3)... are the firing times of the neuron.

The predictions of an integrate-and-fire model with adaptive threshold agree nicely
with the voltage trajectory of a real neuron, as can be seen from Fig. 1.14. The problem
of how to construct practical, yet powerful, generalizations of the simple leaky integrate-
and-fire model is the main topic of Part II of the book. Another question arising from this
is how to quantify the performance of such neuron models (see Chapters 11).

Once we have identified good candidate neuron models, we will ask in Part III, whether
we can construct big populations of neurons with these models, and whether we can use
them to understand the dynamic and computational principles as well as potential neural
codes used by populations of neurons. Indeed, as we will see, it is possible to make the
transition from plausible single-neuron models to large and structured populations. This
does not mean that we understand the full brain, but understanding the principles of large
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Fig. 1.14: Comparing a generalized integrate-and-fire model with experimental traces. A
voltage trace (thick black trace) recorded in a real neuron driven by a fluctuating current is
superposed on the voltage trace generated by a generalized integrate and fire model (thin
line) driven by the same current. The subthreshold voltage fluctuations are accurately
predicted (inset) and the spike timings are well predicted on average, apart from a few
additional or missed spikes (arrows).

populations of neurons from well-tested simplified neuron models is a first and important
step in this direction.

1.6 Summary

The neuronal signal consists of short voltage pulses called action potentials or spikes. These
pulses travel along the axon and are distributed to several postsynaptic neurons where
they evoke postsynaptic potentials. If a postsynaptic neuron receives a sufficient number
of spikes from several presynaptic neurons within a short time window, its membrane
potential may reach a critical value and an action potential is triggered. We say that
the neuron has ‘fired’ a spike. This spike is the neuronal output signal which is, in turn,
transmitted to other neurons.

A particularly simple model of a spiking neuron is the leaky integrate-and-fire model.
First, a linear differential equation describes how input currents are integrated and trans-
formed into a membrane voltage u(t). Here the input can be the input current injected
by an experimentalist into an isolated neuron or synaptic input currents caused by spikes
arriving from other neurons in a large and highly connected network. Second, the model
neuron generates an output spike if the membrane voltage reaches the threshold ϑ. Fi-
nally, after spike firing, the integration of the linear differential equation resumes from a
reset value ur.

The simple leaky integrate-and-fire model does not account for long-lasting refractori-
ness or adaptation. However, if the voltage dynamics of the leaky integrate-and-fire model
is enhanced by mechanisms of adaptation, then it can be a powerful tool to accurately
predict spike times of cortical neurons. Such generalized integrate-and-fire models are the
main topic of Part II of this book.
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Literature

An elementary, non-technical introduction to neurons and synapses can be found in the
book by Thompson (1993). At an intermediate level is the introductory textbook of
Purves et al. (Purves et al., 2008) while the “Principles of Neural Science” by Kandel
et al. (2000b) can be considered as a standard textbook on neuroscience covering a wealth
of experimental results.

The use of mathematics to explain neuronal activity has a long tradition in theoretical
neuroscience, over one hundred years. Phenomenological spiking neuron models similar to
the leaky integrate-and-fire model have been proposed by Lapique in 1907 who wanted to
predict the first spike after stimulus onset (so that his model did not yet have the reset of
the membrane potential after firing), and have been developed further in different variants
by others (Lapicque, 1907; Hill, 1936; McCulloch and Pitts, 1943; Stein, 1965; Geisler and
Goldberg, 1966; Weiss, 1966; Stein, 1967b). For the ‘filter’ description of integrate-and-fire
models see for example Gerstner et al. (1996) and Pillow et al. (1998). The elegance and
simplicity of integrate-and-fire models makes them a widely used tool to describe principles
of neural information processing in neural networks of a broad range of sizes.

A different line of mathematical neuron models are biophysical models, first developed
by Hodgkin and Huxley (Hodgkin and Huxley, 1952); these biophysical models are the
topic of the next chapter.

Exercises

1. Synaptic current pulse. Synaptic inputs can be approximated by an exponential current

I(t) = q 1
τs

exp[− t−t(f)τs
] for t > t(f) where t(f) is the moment when the spike arrives at the

synapse.

(a) Use Eq. (1.5) to calculate the response of a passive membrane with time constant τm to
an input spike arriving at time t(f).

(b) In the solution resulting from (a), take the limit τs → τm and show that in this limit the

response is proportional to ∝ [t − t(f)] exp[− t−t(f)τs
]. A function of this form is sometimes

called an α-function.

(c) In the solution resulting from (a), take the limit τs → 0. Can you relate your result to
the discussion of the Dirac-δ function?

2. Time-dependent solution. Show that Eq. (1.15) is a solution of the differential equation
Eq. (1.5) for time-dependent input I(t). To do so, start by changing the variable in the
integral from s to t′ = t− s. Then take the derivative of Eq. (1.15) and compare the terms
to those on both sides of the differential equation.

3. Chain of linear equations. Suppose that arrival of a spike at time t(f) releases neuro-

transmitter into the synaptic cleft. The amount of available neurotransmitter at time t is

τx
dx
dt = −x+δ(t−t(f)) . The neurotransmitter binds to the postsynaptic membrane and opens

channels that enable a synaptic current τs
dI
dt = −I + I0 x(t) . Finally, the current charges

the postsynaptic membrane according to τm
du
dt = −u+RI(t). Write the voltage response to

a single current pulse as an integral.
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Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Computation, 14:2531–2560.
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Sjöström, P., Turrigiano, G., and Nelson, S. (2001). Rate, timing, and cooperativity jointly determine
cortical synaptic plasticity. Neuron, 32:1149–1164.

Smith, A. and Brown, E. (2003). Estimating a state-space model from point process observations. Neural
Computation, 15:965–991.

Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D., and Tolhurst, D. J. (2003). The receptive-field
organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. Journal
of Neuroscience, 23(11):4746–4759.

Softky, W. R. (1995). Simple codes versus efficient codes. Current Opinion in Neurobiology, 5:239–247.

Sompolinksy, H., Crisanti, A., and Sommers, H. (1988). Chaos in random neural networks. Physical Review
Letters, 61:259–262.



BIBLIOGRAPHY 537

Sompolinsky, H. and Kanter, I. (1986). Temporal association in asymmetric neural networks.
Phys. Rev. Lett., 57:2861–2864.

Song, S., Miller, K., and Abbott, L. (2000). Competitive Hebbian learning through spike-time-dependent
synaptic plasticity. Nature Neuroscience, 3:919–926.

Soon, C., Brass, M., Heinze, H., and Haynes, J. (2008). Unconscious determinants of free decisions in the
human brain. Nat. Neurosci., 11:543–545.

Spiridon, M., Chow, C., and Gerstner, W. (1998). Frequency spectrum of coupled stochastic neurons
with refractoriness. In Niklasson, L., Bodén, M., and Ziemke, T., editors, ICANN’98, pages 337–342.
Springer.

Spiridon, M. and Gerstner, W. (2001). Effect of lateral connections on the accuracy of the population code
for a network of spiking neurons. Network: Computation in Neural Systems, 12:409–421257–272.

Srinivasan, L. and Brown, E. N. (2007). A state-space framework for movement control to dynamic goals
through brain-driven interfaces. Biomedical Engineering, IEEE Transactions on, 54(3):526–535.

Stein, R. B. (1965). A theoretical analysis of neuronal variability. Biophys. J., 5:173–194.

Stein, R. B. (1967a). The information capacity of nerve cells using a frequency code. Biophys. J., 7:797–826.

Stein, R. B. (1967b). Some models of neuronal variability. Biophys. J., 7:37–68.

Steinmetz, P. N. ., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K., and Niebur, E. (2000). Attention
modultaes synchronized neuronal firing in primate somatosensory cortex. Nature, 404:187–190.

Stevens, C. F. and Zador, A. M. (1998). Novel integrate-and-fire like model of repetitive firing in cortical
neurons. In Proc. of the 5th Joint Symposium on Neural Computation, page Report. can be downloaded
from http://cnl.salk.edu/ zador/PDF/increpfire.pdf.

Strogatz, S. H. (1994). Nonlinear dynamical systems and chaos. Addison Weslsy, Reading MA.

Stroop, J. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychology, 18:643–662.
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A-current, 46
action potential, 5, 36

channel dynamics, 35
Hodgkin-Huxley model, 35

activity, see population activity
adaptation, 18, 48, 127, 328

biophysical origin, 140, 141
spike-triggered, 127, 140–142
subthreshold, 127, 140, 143

adaptive integrate-and-fire, 127
parameter space, 138
piecewise linear, 136

AdEx, see adaptive integrate-and-fire
afterpotential, 8, 146
all-to-all coupling, 285
AMPA receptor, 58
Arrhenius & Current model, 221
Arrhenius formula, 221
assembly

neuronal, 421
asynchronous firing, 293

stability, 350
asynchronous irregular, 319
attractor network, 430
autocorrelation function, 168
autocorrelation-renewal, 174
axon, 4, 68

myelinated, 69
unmyelinated, 68

balanced excitation and inhibition, 197, 287, 298,
301

Bayesian decoding, 262
Bayesian parameter estimation, 233
Bayesian regularization, 236
BCM rule, 472
bifurcation, 91

Hopf, 96
saddle-node, 92

biophysical neuron model, 40
blobs of activity, 457
Brunel network, 298, 319
bumb attractors, 456
bursting, see firing pattern

cable equation, 61
calcium current

low-threshold, 50
calcium spike, 50
calcium-dependent potassium current, 46
close-loop stimulus design, 246
cluster states, 353
coding, 177

correlation code, 182
firing rate, 178
phase code, 181, 498
rate code, 161, 183, 184
timing-based, 179

coefficient of variation, 167
compartmental model, 70
competition, 405

decision making, 406
of populations, 406
of synapses, 472
through common inhibition, 403
through shared inhibition, 405
winner-take-all, 409

competitive network, 408
conductance input, 330
conductance-based neuron model, 30
connectivity

Mexican hat, 446, 450, 454
sparse random, 297

conservation equation, 342
continuity equation, 309
continuum model, 444

of population activity, 446
contrast enhancement, 451
correlation

code, 182
matrix, 483
reverse, 182

cortex, 6, 268, 276, 278, 447
barrel, 279

coupling
full, 285
random, 285, 286

covariance matrix, 484
covariance rule, 471
current

pulse, 78
rheobase, 91, 114
step, 80

cut-off frequency, 194
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Dale’s law, 438
decision making, 399

drift-diffusion model, 413
energy picture, 411
perceptual, 401

decoding, 262
for neuroprosthetics, 267
in vision, 266

Deep Brain Stimulation (DBS), 508
dendrite, 4, 21, 60, 143, 150

compartmental model, 70, 71
dendritic spike, 21, 71
density equation

for membrane potential, 312
for refractory variable, 361
relation with integral equations, 359

depression of synapses, 59
diffusion model, 201, 314
diffusive noise, 382
drift-diffusion model, 413

echo state network, 493
encoding models, 252
escape model, 209

for population, 360
escape noise, 209, 380
escape rate, 209, 210
event-based moment expansion, 366
excitable system, 97
exponential integrate-and-fire, 115

fit to data, 117

f-I-plot, 36
facilitation of synapses, 59
field equation, 446

blob/bump solution, 457
for hyper column, 453
homogeneous solution, 447
input driven regime, 447

field model, 444
finite-size effects, 369
firing intensity, 210
firing pattern, 127, 128, 131

adapting, 132
bursting, 134, 142, 144, 149
classification, 131
facilitating, 132
tonic, 132
transient spike, 139

Firing rate, 161
firing rate, 161, 166, 183
firing regime

asynchronous irregular, 319
synchronous regular, 319

first passage time, 204
first principal component, 483, 484
FitzHugh-Nagumo model, 83, 97

nullclines, 89
Fitzhugh-Nagumo model, 69
fixed point, 88

ghost, 92
of activity, 347

flow field, 87
flux, 309

probability current, 311
drift, 310
jump, 310
refractory, 361

Fokker-Planck equation, 202, 314
linearized, 324

Fourier transform, 17
frequency-current relation, 36
full coupling, 285

gain
frequency dependent, 356, 383, 385

gain function
and population activity, 295
of Hodgkin-Huxley model, 36
of integrate-and-fire model

with noise, 317
type I, 91
type I/II, 36
type II, 91

Gamma distribution, 188
gating variable, 31
Generalized Linear Model (GLM), 232
generative model, 215
ghost of fixed point, 92
GLM - Generalized Linear Model, 232
Green’s function, 64

h-current, 49
hazard, 170
Hebb’s postulate, 466
Hodgkin-Huxley model, 29

channel opening, 35
gain function, 36
reduction, 140, 141
reduction to two dimensions, 81
refractoriness, 37

Hopf bifurcation, 96
subcritical, 97
supercritical, 97

Hopfield model, 424
energy picture, 432

hyper column, 452

illusion, 445, 451
impulse response, 146
inhibition

dominating, 322
effective, 406
shunting, 20
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inhibition-stabilized network, 455
inhibitory plasticity, 495
inhibitory rebound, 18, 80
integral equation, 340

adaptive neurons, 389
finite size, 369
for adaptive neurons, 364
linearized, 353
numerical methods, 345
quasi-renewal, 344
relation with density equations, 359
several populations, 346, 387
stationary state, 347
Wilson-Cowan, 343, 385

integral-equation approach, 337
integrate-and-fire model, 10

as a reduction of Hodgkin-Huxley, 121
exponential IF, 115, 117
nonlinear IF, 113
quadratic IF, 122, 123
refractory exponential IF, 118, 119
multi-compartment, 150

relation to SRM, 152
noisy, 191
nonlinear, 112
quadratic, 120
relation to SRM, 148
two-compartment, 152

interspike interval, 166
interval distribution, 170, 338

for periodic input, 218
input-dependent, 177

ion channel, 29, 39
IA, 46
IM , 44
Ih, 49
IK[Ca], 46
INaP, 48
INaS, 49

Kramers-Moyal expansion, 202

Langevin equation, 191, 203
Leaky Integrate-and-Fire Model, 10
learning window, 468
Liapunov function, 412, 432
Libet experiment, 414
likelihood of spike train, 213
limit cycle, 91
linear regression, 230
Linear-Nonlinear Poisson, 388
Linear-Nonlinear Poisson Model (LNP), 257
liquid computing, 493
LNP model, see Linear-Nonlinear Poisson
locking, 499

theorem, 500
log-likelihood of a spike train, 215

long-term depression, 465
long-term potentiation, 465, 466

heterosynaptic, 478
homosynaptic, 478

low-connectivity network, 297
LTD, see long-term depression
LTP, see long-term potentiation

M-current, 44
MAP, see maximum a posteriori
Markov Process, 202
matrix

random, 494
maximum a posteriori, 263
membrane potential, 7

density, 201, 204, 308
stationary distribution, 315

memory, 419
associative, 419
Hopfield model, 424
retrieval, 427
working memory, 423

Mexican hat, 446
Mexican hat connectivity, 450, 454
Morris-Lecar model, 83, 93
motor cortex, 488
MT neuron, 401

Nernst potential, 28
network, see population
neural mass models, 281
neuron, 3

bursting, 18
postsynaptic, 4
presynaptic, 4

neurotransmitter, 5
NMDA receptor, 58
noise, 157

colored, 332
channel, 160
colored, 193
escape, 209
Gaussian white, 190
Johnson, 159
slow, 377
synaptic, 160
thermal, 159
white, 190

noise model
diffusive noise, 190
escape noise, 209
noisy integration, 190
noisy threshold, 209
random connectivity, 297
stochastic spike arrival, 194

noise spectrum, 168
nullclines, 87
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Oja’s rule, 472
orientation selectivity, model of, 451
Ornstein-Uhlenbeck process, 191, 203
oscillation, 319, 350, 508

as an instability, 350
cluster states, 353
experimental, 498
subthreshold, 38
synchronous locked, 499

overlap, 427

pairing experiment, 468
parameter estimation

Bayesian, 233
decoding, 263
maximum a posteriori (MAP), 263

Parkinson disease, 508
pattern recognition, 427

with spiking neurons, 435
peri-stimulus-time histogram, 164
persistent sodium current, 48
phase code, 181, 498
phase plane, 133, 139

of decision making, 408
phase plane analysis, 87
phase portrait, 87
phase response curve, 504
plasticity

hard bound, 471
of inhibition, 495
soft bound, 471
synaptic short-term, 59

plasticity synaptic, 465
point process, 169
Poisson neuron, 175
Poisson process

absolute refractoriness, 167, 176
autocorrelation, 175
homogeneous, 163
inhomogeneous, 165, 224

population, 166, 278
coupled, 288
fully connected, 285
homogeneous, 281
inhibition dominated, 300
multiple, 317

population activity, 166, 312, 338
asynchronous firing, 293
blobs/bumps of , 457
definition, 166, 281
field equation, 446
linearized, 324
linearized equation, 353, 356
stationary state, 322
timescale, 375

population dynamics, 281
population vector, 179

postsynaptic potential, 7
excitatory, 20
inhibtory, 20

power spectrum, 168
prediction, 251

of membrane potential, 252
of spikes, 254, 256

priming, 419
principal component analysis, 483
principal components, 484
probability current, 311
PSTH, see peri-stimulus time-histogram
pyramidal cell, 71

quasi steady state, 82
quasi-renewal theory, 344, 364

random connectivity, 285, 286, 297
random walk, 197
random weight matrix, 494
rate, 161

code, 161
mean firing rate, 161
models, 385
population activity, 166
spike density, 164

rebound spike, 38
rebound, inhibitory, 18, 50, 80
receptive field, 6, 257, 276

of MT neurons, 401
reconstruction kernel, 182
refractoriness, 147
refractory density, 360
refractory period, 5

absolute, 5
Hodgkin-Huxley model, 37

regression
linear, 230

regularization, 236
relaxation oscillation, 102
renewal

hypothesis, 172
process, 169

renewal theory
for adaptive neurons, 344
time dependent, 216, 218, 338

reservoir computing, 493
resting potential, 7
reversal potential, 20, 28
reverse correlation, 182, 259
rheobase current, 91
ring model, 446, 453
ruins of fixed point, 92

saddle point, 88
scaling behavior, 283
self-averaging, 429
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separation of time scales, 82, 102
shunting inhibition, 20
signal-to-noise ratio, 169, 222
similarity measure, 245
singular perturbation, 102
slow sodium current, 49
soft threshold, 209
soma, 4
spectral radius, 494
spike

dendritic, 21
spike afterpotential, see afterpotential
spike response model, 144

adaptation, 149
bursting, 149
definition, 144
interpretation, 146
relation to integrate-and-fire, 148

spike train, 5
distance, 242
irregular, 157
metrics, 242
reliability, 245
variability, 245
vector, 242

spike train decoding
linear, 265
nonlinear, 263

spike-triggered average, 236, 259
spiking neuron model

SRM0, 10
spontaneous activity, 157, 158, 300
STA, see spike-triggered average
stability, 88
stable manifold, 99
stationary state, 347
STDP, 468

protocol, 469
Stein’s model, 195
stimulation

sub-/superthreshold, 199
stimulus reconstruction

linear, 265
nonlinear, 263

stochastic
differential equation, 191
intensity, 210
process, 190
resonance, 222

STP, see short-term plasticity
Stroop effect, 420
subthreshold oscillation, 138
survivor function, 170
synapse, 4, 5, 55

AMPA, 58
depression, 59

excitatory, 58
facilitation, 59
GABAA, 57
GABAB, 57
inhibitory, 57
NMDA, 58
postsynaptic neuron, 4, 5
postsynaptic potential, 7
presynaptic neuron, 4, 5
short-term plasticity, 59

synaptic
transmission failures, 160

synaptic depression, 59
synaptic plasticity, 465

anti-Hebbian, 468, 470
locality, 470
non-Hebbian, 470
spike-timing dependent, 468

synchonous regular, 353
synchronization, 508
synchronous regular, 319
synchrony, 182

threshold, 8, 113
dynamics, 145, 146
of Hodgkin-Huxley model, 36, 77
of type I models, 99
of type II models, 101
soft, 209

time-rescaling theorem, 241
transfer function

with escape noise, 356
transient spike, 38
type I/II model

bifurcations, 91, 92
canonical type I, 100
Hopf bifurcation, 96
onset of oscillations, 91, 97
stable manifold, 99
threshold, 97

visual illusion, 445, 451
Vogels-Abbott network, 301
volition, 414

weight matrix, 494
Wiener-Khinchin Theorem, 168
will, see volition
Wilson-Cowan model, 387

field equation, 446
winner-take-all, 409
working memory, 423, 457


