

TW3421x - An Introduction to Credit Risk Management

Stress Testing and Scenario Analysis

Dr. Pasquale Cirillo

Week 7 Lesson 2

Introduction

- * A stress test is an procedure meant to determine the ability of a given financial institution to cope with an economic crisis.
- * The idea is to verify if a bank, or another financial institution, is able to deal with credit risk in case of very bad economic conditions.

Questions

- * Typical questions a bank has to answer when performing stress testing are for example:
 - * What happens if interest rates increase by at least x%?
 - * What happens if recovery rates on a given type of loans decrease by y%?
 - * What happens if the correlation among defaults increases?
 - * What happens if systemic risk increases, thus increasing the PD of all counterparties?

- Stress testing has become increasingly important.
- * Under Basel III, stress testing is a regulatory requirement for large international institutions, which must prove to have adequate capital allocation levels to cover potential losses due to extreme yet plausible events.
- Stress testing is based on the so-called scenarios.

Scenarios

- * A scenario is simply a given configuration of parameters and variables, according to the model we are using to assess (credit) risk.
- * A scenario typically includes unusual values for macroeconomic quantities such as interest rates, inflation rates, unemployment rates, volatility, etc.

* Stress testing is performed using computational and statistical tools, such as **Monte Carlo simulations**, **sensitivity analysis** and **extreme value theory**.

Example

 Assume that for estimating the PD of a counterparty (and hence capital requirements under the F-IRB approach) we use Merton's model (Week 5), so that the 1-year probability of default of our counterparty is

$$P(V_1 \le B) = \bar{\Phi} \left(\frac{\log(V_0) - \log(B) + (r - \sigma_V^2/2)}{\sigma_V} \right)$$

Example

* Assume today r=0.02, $V_0=22$, B=16, $\sigma_V=0.2$. Then

$$P(V_1 < 16) = \bar{\Phi}\left(\frac{\log(22) - \log(16) + (0.02 - 0.2^2/2)}{0.2}\right) = 0.0557$$

* A simple scenario is to assume that σ_V increases to 0.5, or 0.8, or even 1.0.

* According to these values of σ_V , the PD changes to

$$PD_{\sigma_V=0.5} = 0.3347$$

 $PD_{\sigma_V=0.8} = 0.4908$
 $PD_{\sigma_V=1} = 0.5642$

- * A bank then decides if it is ready to cope with such extreme cases, by computing the capital requirements under these scenarios.
- * The regulator typically decides which scenarios need to be taken into consideration, when determining capital allocations.

More complex scenarios

- * Naturally we can also think of more complex scenarios, in which more parameters change.
- * This is typically what banks do, using complex computer programs.
- * But the intuition is exactly the same.

How are scenarios produced?

- * Scenarios may be produced on the basis of:
 - * Historical evidence.
 - * Expert judgments.
 - * Decisions of the regulator.

Stressed Measures

- * Another way of performing stress testing is to use the so-called stressed measures of risk.
- * These are the same measures of risk we have seen together, but we use them in more "extreme" situations.
- * A simple example is the Stressed VaR.

Stressed VaR

- * Developed for Market Risk, Stressed VaR (S-VaR) is now increasingly used in Credit Risk as well.
- * The computation of S-VaR follows the rules of VaR (Week 3), but we only consider the worst losses, the worst scenarios.

Stressed VaR

- * Typically we consider the worst 50% losses (the largest ones), and then we compute a VaR at level α .
- * Let's consider a simple example in R.

Thank You