$e d X$

Credit Default Swaps

 and CDS SpreadsDr. Pasquale Cirillo

Week 7
Lesson 1

Credit Default Swaps

* A Credit Default Swap (CDS) is an instrument providing insurance against the risk of a default by a given company.
*The company subject to default is known as reference entity.
* The default is called credit event.
* The buyer of a CDS obtains the right to sell the bonds issued by the reference entity for their face value, when there is a credit event, that is a default.
* The seller of a CDS is obliged to buy the bonds for their face value when the credit event occurs.
* The total face value of all the bonds, which are part of the CDS, is known as the notional principal.
* The buyer of a CDS usually makes periodic payments to the seller, until the end of the life of the CDS, or until a credit event happens.

* The buyer of a CDS usually makes periodic payments to the seller, until the end of the life of the CDS, or until a credit event happens.

* Suppose that on June 20 2014, two parties agree to enter into a 5-year CDS with respect to a specific reference entity.
* The notional principal is $€ 100$ million.
* The buyer agrees to pay 90 basis points per year, in quarterly arrears, for protection against default by the reference entity.

Example: No Default

* In case of no default, that is no credit event, the buyer receives no payoff, while s/he pays the seller about $€ 225$ k on September 20, December 20, March 20 and June 20 in 2014, 2015, 2016, 2017, 2018, 2019.

Example: No Default

```
90 bps of 100'000'000 is 900'000.
Then 900'000/4=225'000.
```

* In case of no default, that is no credit event, the buyer receives no payoff, while s/he pays the seller about $\epsilon 225 \mathrm{k}$ on September 20, December 20, March 20 and June 20 in 2014, 2015, 2016, 2017, 2018, 2019.

Example: Default

* Imagine now that we do have a credit event, i.e. a default.
* Let's say it happens in month 5 of year 3, that is around November 202017.
* In that case, the buyer stops paying the seller and claims the notional principal.
* The seller is obliged to pay the notional principal (or any other arrangement) to the buyer, by buying all the bonds involved in the CDS.
* Since the buyer's payments are in arrears, and the default event happens in November, a final accrual payment is required.
* In particular, the buyer must pay his/her insurance for October and November 2017, until the credit event. That is

$$
900^{\prime} 000 / 12 \times 2=150^{\prime} 000
$$

* The CDS spread is nothing more than the total amount paid every year by the buyer as a percent of the nominal principal.
* In the previous example the spread is 90 bps , that is 0.9%.
* The CDS spread is the "price" (the extra rate) required by the seller of the CDS to bear the risk of default of the reference entity.
* CDS Spreads (but in general all credit spreads) can be used to quickly estimate the probability of default of a counterparty.
* This estimation is not extremely precise, and it is subject to rather strong assumptions from a probabilistic point of view, but it is surely quick and may be helpful to have a first idea about the creditworthiness of a counterparty.
* Suppose that a 5-year CDS spread (CS) for a given company (the reference entity) is 240 bps per year, i.e. 2.4% per year.
* Assume that the recovery rate (R) in case of default is 40%.
* The average (yearly) PD, over the 5-year period, conditional on no earlier default is estimated as

$$
\frac{0.024}{1-0.4}=0.04=4 \%
$$

* In general, we can compute the average PD of the reference entity, conditional on no previous default, as

$$
P D=\frac{C S}{1-R}
$$

* Suppose that, for the same reference entity, the 3-year CDS spread is 50 bps , while the 5 -year CDS spread is 60 bps .
* The recovery rate is 60%.
* The average PD over 3 years is $0.005 /(1-0.6)=0.0125$
*The average PD over 5 years is $0.006 /(1-0.6)=0.015$
*What is the average PD between year 3 and year 5?
* The answer is

$$
\frac{5 \times 0.015-3 \times 0.0125}{2}=0.01875=1.875 \%
$$

* The general formula for inferring the intermediate average PD between an y-year CDS and a x-year CDS, with $y>x$, is

$$
\frac{y \times P D_{y}-x \times P D_{x}}{y-x}
$$

where $P D_{x}$ is the average PD for the x-year CDS.

Thank You

