TW3421x - An Introduction to Credit Risk Management Default Probabilities CreditMetrics

Dr. Pasquale Cirillo

Week 6 Lesson 1

CreditMetrics[™]

JPMORGAN CHASE & CO.

- * Introduced in 1997 by J.P. Morgan & Co.
- * It is a structural model of default, which also takes into account the risk of credit deterioration.
- As Moody's KMV, it can be seen as a Merton-like model. •

The JP Morgan Chase logo is the property of the JP Morgan Chase Group. Its use here is only for didactic purposes.

The intuition

 In CreditMetrics thresholds are not given by liabilities, but defined
 through credit ratings.

- * We consider a firm that has been assigned to some credit rating class (say B) at the beginning of period [0,T].
- This means that we also have information * about the transition probabilities of our company from its rating class to another.

Initial Rating	Rating at the end of the period T (%)									
	AAA	AA	Α	BBB	BB	В	CCC	DF		
AAA	90.81	8.33	0.68	0.06	0.12	0.00	0.00	0.00		
AA	0.70	90.65	7.79	0.64	0.06	0.14	0.02	0.00		
А	0.09	2.27	91.05	5.52	0.74	0.26	0.01	0.06		
BBB	0.02	0.33	5.85	86.9	5.30	1.1	0.32	0.18		
BB	0.03	0.14	0.67	7.73	80.53	8.84	1.00	1.06		
В	0.00	0.11	0.24	0.43	6.48	83.46	4.07	5.20		
CCC	0	0.00	0.22	1.30	2.38	11.24	64.86	19.79		

Example

- * With $\bar{p}(j), 0 \leq j \leq n$, we indicate the probability that our company will be in rating class i at time T.
- * We order the j's, so that j=0 means "default" and j=n means that our company is in the best rating class, e.g. AAA.
- * With $\bar{p}(0)$, we thus indicate the probability of default of the company.

- * Using the same notation of Merton's model, we indicate the value of the assets of our company in T as V_T .
- * As we have seen with Merton, V_T can be linked to a Normal distribution function.

* We can then define a collection of thresholds

$$-\infty = \tilde{d}_0 < \tilde{d}_1 < \tilde{d}_2 < \dots < \tilde{d}_n < \tilde{d}_{n+1} = \infty$$

such that

$$P\left(\tilde{d}_j < V_T \le \tilde{d}_{j+1}\right) = \bar{p}(j), \ \forall j \in \{0, \dots\}$$

* In this way we translate the transition probabilities into a series of thresholds for the asset value process.

- * The threshold d_1 is clearly the default threshold.
- * Larger thresholds represent the asset value levels that define the boundaries of the higher rating classes.
- * In this setting, a firm belongs to rating class i at time T if and only if

$$\tilde{d}_j < V_T \le \tilde{d}_{j+1}$$

* In CreditMetrics, to exploit the properties of the standard Normal distribution, the asset value V_T is transformed into

$$X_T := \frac{\log(V_T) - \log(V_0) - (r - \sigma_V^2 / \sigma_V \sqrt{T})}{\sigma_V \sqrt{T}}$$

* And the same for the thresholds:

$$d_j^* := \frac{\log(\tilde{d}_j) - \log(V_0) - (r - \sigma_V^2/2)}{\sigma_V \sqrt{T}}$$

(2)T

2)T

* As a consequence of this new parametrization, we have that a firm belongs to rating class j at time T if and only if

$$d_j^* < X_T \le d_{j+1}^*$$

- * Consider a B-rated company over a 1-year period.
- * And consider the following fictitious Moody's transition matrix

Initial Rating	Rating at the end of the 1 year (%)									
	Aaa	Aa	Α	Baa	Ba	В	Caa	Ca-C	DF	
Aaa	90.42	8.92	0.62	0.01	0.03	0.00	0.00	0.00	0.00	
Aa	1.02	90.12	8.38	0.38	0.05	0.02	0.01	0.00	0.02	
А	0.06	2.82	90.88	5.52	0.51	0.11	0.03	0.01	0.06	
Baa	0.05	0.19	4.79	89.41	4.35	0.82	0.18	0.02	0.19	
Ва	0.01	0.06	0.41	6.22	83.43	7.97	0.59	0.09	1.22	
В	0.01	0.04	0.14	0.38	5.32	82.19	6.45	0.74	4.73	
Caa	0.00	0.02	0.02	0.16	0.53	9.41	68.43	4.67	16.76	
Ca-C	0.00	0.00	0.00	0.00	0.39	2.85	10.66	43.54	42.56	

- * Let X_B be the **rescaled asset value**, according to CreditMetrics, of our B-rated company at the end of the year.
- * As anticipated, it can be shown that X_B is distributed as a Normal(0,1).

- * The probability that our B-rated company will become Aaa by the end of the year is 0.01% or 0.0001.
- * The probability to move to the Aa class is 0.0004.
- * The probability to default is 0.0473, and so on.
- Using the **quantile function** of a Normal(0,1), we can compute the threshold * values we need for the CreditMetrics model.

* Let's start from the lowest rating class, that is default. The probability of default is 0.0473. This corresponds to a quantile equal to

$$\Phi^{-1}(0.0473) = -1.6716$$

- * If X_B is smaller than/equal to -1.6716, we have that our B-rated company has defaulted.
- * -1.6716 is nothing more than d_1^* in the notation we have used before.

* Let's start from the lowest rating class, that is default. The probability of default is 0.0473. This corresponds to a quantile equal to

> qnorm(0.0473)[1] -1.671616

$$\Phi^{-1}(0.0473) = -1.6716$$

- * If X_B is smaller than/equal to -1.6716, we have that our B-rated company has defaulted.
- * -1.6716 is nothing more than d_1^* in the notation we have used before.

- * If X_B is larger than -1.6716, but smaller than/equal to -1.6009, our company is in the Ca-C class.
- * -1.6009 is computed as $\Phi^{-1}(0.0473 + 0.0074)$
- * Then we have the Caa class for $-1.6009 < X_B \leq -1.1790$
- * And so on, until we have the Aaa class for $X_B > 3.7190 = \Phi^{-1}(0.9999)$

[1] -1.178995

> qnorm(0.0473+0.0074+0.0645)

Question for you

* What is the rating class, at the end of the year, of our B-rated company, if

 $X_B = 1.31?$

- * The complete CreditMetrics model also takes into account **dependence among** defaults.
- This is done using probabilistic tools called Copulas.
- * In particular, in CreditMetrics a Gaussian copula is generally used.

- * In R there is a nice package called CreditMetrics.
- * You can find the link in the extra materials of this week.

Thank You