TW3421x - An Introduction to Credit Risk Management **The VaR and its derivations** Special VaRs and the Expected Shortfall

Dr. Pasquale Cirillo

Week 3 Lesson 2

An exercise to start with

* A 1-year project has a 94% chance of leading to a gain of €5 million, a 3% chance of a gain of €2 million, a 2% chance of leading to a loss of €3 million and a 1% chance of producing a loss of €8 million. What is the VaR for α =0.98? And for α =0.99?

* Let μ be the mean of the loss distribution. The mean-VaR is defined as

$$VaR_{\alpha}^{mean} = VaR_{\alpha} - \mu$$

- * The distinction between VaR and mean-VaR is often negligible in risk management, especially for short time horizons.
- For longer time periods (e.g. 1-year), however, the distinction is much more * important. In credit risk management, **mean-VaR** is used to determine economic capital against losses in loans.

Suppose that the loss distribution is Gaussian with mean μ and standard * deviation σ . Let us fix α in the interval (0,1). Then

$$VaR_{\alpha} = \mu + \sigma \Phi^{-1}(\alpha) \qquad VaR_{\alpha}^{mean}$$

* Where $\Phi^{-1}(\alpha)$ is the α -quantile of a standard normal.

$= \sigma \Phi^{-1}(\alpha)$

- * Suppose now that losses *L* are such that
- $\frac{L-\mu}{\sigma} \sim t(\nu)$ * In other terms, $L \sim t(\nu; \mu, \sigma)$.
- * Notice that σ is not the standard deviation of the distribution, since $var(L) = \frac{\nu \sigma^2}{\nu - 2}, \ \nu > 2$
- * Concerning the VaR, we have

$$VaR_{\alpha} = \mu + \sigma t_{\nu}^{-1}(\alpha)$$

* The historical 1-year loss distribution of a portfolio of loans in € million is well approximated by a N(10,5). What is the 95% VaR? And the 98%?

- The historical 1-year loss distribution of a portfolio of loans in € million is well * approximated by a N(10,5). What is the 95% VaR? And the 98%?
- Using the standard normal tables or a function such as *qnorm* in R, we easily find * that

$$\Phi^{-1}(0.95) = 1.6448 \qquad \Phi^{-1}(0.98) = 2.$$

Hence: *

 $VaR_{0.95}(L) = 10 + 5 \times 1.6448 = 18.2243$

 $VaR_{0.98}(L) = 10 + 5 \times 2.0537 = 20.2687$

0537

qnorm(0.95) [1] 1.644854 qnorm(0.95,10,5) [1] 18.22427

- The historical 1-year loss distribution of a portfolio of loans in € million is well * approximated by a N(10,5). What is the 95% VaR? And the 98%?
- Using the standard normal tables or a function such as *qnorm* in R, we easily find * that

$$\Phi^{-1}(0.95) = 1.6448 \qquad \Phi^{-1}(0.98) = 2.$$

Hence: *

 $VaR_{0.95}(L) = 10 + 5 \times 1.6448 = 18.2243$

 $VaR_{0.98}(L) = 10 + 5 \times 2.0537 = 20.2687$

0537

qnorm(0.95) [1] 1.644854 qnorm(0.95, 10, 5)18.22427

* Expected shortfall, aka conditional value at risk, answers to the question

"If things go bad, what is the expected loss?"

* It is a measure of risk with many interesting properties.

The Expected Shortfall

* From a statistical point of view, the expected shortfall is a sort of mean excess function, i.e. the average value of all the values exceeding a special threshold, the VaR!

$$ES_{\alpha} = E[L|L \ge VaR_{\alpha}]$$

* Why is it important?

The Expected Shortfall

* From a statistical point of view, the expected shortfall is a sort of mean excess function, i.e. the average value of all the values exceeding a special threshold, the VaR!

$$ES_{\alpha} = E[L|L \ge VaR_{\alpha}]$$

Why is it important? *

- A portfolio of loans may lead to the losses in the table.
- * What is the expected shortfall for α =0.95? And α =0.99?

Loss (\$ 10 ⁶)	Probability
1	40%
2	35%
5	8%
10	12%
12	2%
20	2.5%
25	0.5%

* In the first case we have:

$$ES_{0.95} = \frac{12 * 0.02 + 20 * 0.025 + 25 * 0.025}{0.05}$$

ss (\$ 10 ⁶)	Probability
1	40%
2	35%
5	8%
10	12%
12	2%
20	2.5%
25	0.5%

* In the first case we have:

$$ES_{0.95} = \frac{12 * 0.02 + 20 * 0.025 + 25 * 0.025}{0.05}$$

Trick: move in this direction - 20 * 0.025 + 25 * 0.005 = 17.3

ss ($$10^6$)	Probability	
1	40%	
2	35%	
5	8%	
10	12%	
12	2%	
20	2.5%	5%
25	0.5%	

* In the first case we have:

$$ES_{0.95} = \frac{12 * 0.02 + 20 * 0.025 + 25 * 0.025}{0.05}$$

ss (\$ 10 ⁶)	Probability	
1	40%	
2	35%	
5	8%	
10	12%	
12	2%	
20	2.5%	
25	0.5%	1%

- * Even for the expected shortfall, it may be useful to compute some special cases depending on well-known distributions.
- * For example, in the case of a normal with mean μ and standard deviation σ , we have

$$ES_{\alpha} = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1 - \alpha}$$

Thank You