TW3421x - An Introduction to Credit Risk Management **The VaR and its derivations** Introducing the Value-at-Risk

Dr. Pasquale Cirillo

Week 3 Lesson 1

* In very simple terms, the VaR is a measure of risk that tries to answer the following question:

"How bad can things get?"

"With probability α we will not lose more than V euros in time T"

"With probability α we will not lose more than V euros in time T" *V* is the VaR

"With probability (α) we will not lose more than V euros in time T" Confidence level

"With probability α we will not lose more than V euros in time T'

Time horizon

- * VaR can be computed using two different distributions:
 - the *distribution of gains* (g), where a loss is a negative gain.
 - the *distribution of losses* (1), where a gain is a negative loss.

- * VaR can be computed using two different distributions:
 - the *distribution of gains* (g), where a loss is a negative gain.
 - the *distribution of losses* (1), where a gain is a negative loss.

The formal definition

Using some more formality, the VaR is nothing but a quantile of the loss * distribution, and in particular the α -quantile for which

 $VaR_{\alpha}(L) = \inf\{l \in \mathbb{R} : P(L > l) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : F_L(l) \ge \alpha\}$

In words: *the VaR is the "loss value for* which the probability of observing a larger loss, given the available information, is equal to $1-\alpha''$.

The formal definition

Using some more formality, the VaR is nothing but a quantile of the loss * distribution, and in particular the α -quantile for which

$$VaR_{\alpha}(L) = \inf\{l \in \mathbb{R} : (P(L \ge l)) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : (P(L \ge l)) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : l \in \mathbb{R} : l$$

In words: *the VaR is the "loss value for* which the probability of observing a larger loss, given the available information, is equal to $1-\alpha''$.

$l \in \mathbb{R} : F_L(l) \ge \alpha \}$

The formal definition

Using some more formality, the VaR is nothing but a quantile of the loss * distribution, and in particular the α -quantile for which

$$VaR_{\alpha}(L) = \inf\{l \in \mathbb{R} : P(L \ge l) \le 1 - \alpha\} = \inf\{l \in \mathbb{R} : P(L \ge l) \le 1 - \alpha\}$$

In words: *the VaR is the "loss value for* which the probability of observing a larger loss, given the available information, is equal to $1-\alpha''$.

$l \in \mathbb{R} : F_L(l) \ge \alpha \}$

In the field of Credit Risk, the VaR is often referred to as C-VaR, as we will see later in this Loss course.

- * The (credit) Value-at-Risk essentially depends on 2 elements:
 - the loss distribution;
 - the α value.

- * The loss distribution is always expressed over a time horizon *T* and it can be empirical or theoretical.
- In the first case, it is the so-called historical distribution, i.e. the distribution that * emerges from the observation of reality.
- In the second case it can be whatever distribution (normal, lognormal, Pareto, etc.) * and it is essentially used for modeling purposes.

- * In theory, the α value may be freely chosen by the risk manager.
- * In reality, it is often determined by the law or other prescriptions (e.g. Basel II-III).
- * Common values are 0.95, 0.99, 0.995 and 0.999.
- * For Credit Risk, we are usually interested in

$VaR_{0.000}^{1-year}$

- * In theory, the α value may be freely chosen by the risk manager.
- * In reality, it is often determined by the law or other prescriptions (e.g. Basel II-III).
- * Common values are 0.95, 0.99, 0.995 and 0.999.
- * For Credit Risk, we are usually interested in

Exercise

Suppose that, for a 1-year
project, all the outcomes
between a gain of €80 million
and a loss of €20 million are
considered equally likely.
What is the 1-year VaR for
α=0.90?

Thank You