
Chapter 9

Quantum Complexity Theory and
Adiabatic Computation

9.1 Defining Quantum Complexity

We are familiar with complexity theory in classical computer science: how quickly can a computer
(or Turing machine) solve a given problem? To really talk about the power of quantum computers,
we need to have notion of how long it takes a quantum computer to solve problems as well. We
need quantum complexity theory.

To review, a quantum circuit implements a unitary operator in a Hilbert space of n-qubits: C2

n
.

A quantum circuit is given in terms of a collection of gates (e.g. CNOT, Haddamard) from some
universal gate set, each of which implements a unitary operator on a constant number (say 2) of
the n qubits. The total action of all of these gates can be thought of as a single unitary operator
that acts on the n input qubits. Unitarity implies that quantum circuits have the same number of
inputs as outputs.

We will define our complexity classes in terms of circuits. Let us start by defining the class P of
polynomial time computable decision procedures or languages.

Class P - Polynomial Time

A definition of the class P in terms of circuits is the following:

L 2 P i↵ there is a family F = {Cn}n2N of circuits such that:

• |Cn| poly(n), 8n 2 N

• Uniformity The description of the circuit Cn can be computed in time polynomial in n (by a
Turing Machine).

• if |x| = n then Cn(x) = (c 2 L?)

81

82 CHAPTER 9. QUANTUM COMPLEXITY THEORY AND ADIABATIC COMPUTATION

Class BPP - Bounded Error Probabilistic Polynomial Time

In the 70’s it was realized that randomness can sometimes speed up computation. Accordingly the
class of e�ciently solvable computational problems was expanded to probabilistic polynomial time
with small probability of error.

A definition of the class BPP in terms of circuits is the following:

L 2 BPP i↵ there is a family F = {Cn}n2N of circuits such that:

• every circuit Cn has an input x of |x| = n bits and a random input r of |r| = O(poly(n)) bits

• |Cn| poly(n), 8n 2 N

• Uniformity The description of the circuit Cn can be computed in time polynomial in n (by a
Turing Machine).

• moreover:

– if x 2 L and |x| = n then Pr[Cn(x, r) = ”yes”] � 2/3

– if x /2 L and |x| = n then Pr[Cn(x, r) = ”no”] � 2/3

Class BQP - Bounded Error Quantum Polynomial Time

A definition of the class BQP in terms of circuits is the following:

L 2 BQP i↵ there is a family F = {Cn 2 SU(n)}n2N of quantum circuits (unitary operators) such
that:

• every circuit Cn has an input x of |x| = n bits and m = O(poly(n)) additional inputs of value
|0 >

• the output of the computation is considered to be the outcome of the measurement on the
first output of the circuit

• |Cn| poly(n), 8n 2 N

• Uniformity The description of the circuit Cn can be computed in time polynomial in n (by a
Turing Machine).

• moreover:

– if x 2 L and |x| = n then Pr[measure = 1] � 2/3

– if x /2 L and |x| = n then Pr[measure = 0] � 2/3

Reversibility and P ✓ BQP

The construction from the last lecture showing how to convert any classical circuit with n inputs
andm gates into a reversible circuit with O(n+m) inputs and O(n+m) gates shows that P ✓ BQP .
This is because any reversible circuit can be implemented as a quantum circuit which has the same
behavior when the input is a computational basis state.

9.2. BPP ✓ BQP 83

9.2 BPP ✓ BQP

We will show that any circuit in BPP can be simulated in BQP by first generating random qubits
and then simulating the corresponding polynomial circuit.

Review: BPP

BPP stands for bounded error probabilistic polynomial time. As an example, consider the language
PRIMES consisting of prime numbers. There exists a polynomial size circuit C which takes as input
x and some random bits r and outputs 1 for ACCEPT and 0 for REJECT.

We say PRIMES 2 BPP if

x 2 PRIMES) Pr {C(x, r) = 1} � 2/3, x 62 PRIMES) Pr {C(x, r) = 0} � 2/3.

Simulating BPP

The main di↵erence between a P circuit and a BPP circuit is the additional input of r random bits.
We have already shown that any circuit in P can be simulated in BQP. We want to show that it is
possible to generate random qubits from |0i inputs. A simple solution is to apply the Hadamard
gate to each |0i and then measure. The Hadamard gate converts |0i to 1p

2

|0i+ 1p
2

|1i. Measuring

will result is either |0i or |1i with equal probability.

If we generate random bits like this and then run the corresponding quantum circuit to C, we get
the straightforward circuit below.

Measurement can be tricky in the intermediate stages of a quantum circuit. Why not skip the
measurement and get a superposition of states? Well, if a Hadamard gate occurs in the circuit, we

84 CHAPTER 9. QUANTUM COMPLEXITY THEORY AND ADIABATIC COMPUTATION

have a problem. The desired outcome is one of these two possibilities with probability 1/2:

|0i �! H �! 1p
2
|0i+ 1p

2
|1i |1i �! H �! 1p

2
|0i � 1p

2
|1i

No interference occurs here. Unfortunately, interference can lead to the following undesirable
situation in which the randomness disappears:

1p
2
|0i+ 1p

2
|1i) �! H �! |0i

Measurement prevents quantum interference. But, by the principle of deferred measurement, we
can postpone the measurement and get the same result. In fact, we can post the measurement
indefinitely and not perform it at all.

We now need twice as many qubits as before. Half of them are passed through Hadamard gates
and connected by CNOT gates to the other half. This fixes the first half of the qubits to either |0i
or |1i, even though no measurement was made. It is important to note, however, that since the
second half of the qubits are now entangled with the first half, we must be certain not to make any
measurements on them either.

9.3 BQP ✓ PSPACE

Theorem .2 P ✓ BPP ✓ BQP ✓ P#P ✓ PSPACE.

We give a sketch of the proof that BQP ✓ P#P . We assume without loss of generality that all
the transition amplitudes specified in the transition function � are real (exercise). The action of
a quantum circuit may be described by a tree, each node is labelled with a computational basis
state, i.e. a bit string. The root of the tree corresponds to the input |xi and applying a gate to
any node yields a superposition of basis states represented by the children of that node. We label
the edge to each child by the corresponding amplitude. Let us assume that the quantum circuit
accepts or rejects depending upon whether the first qubit, when measured in the computational
basis is 0 or 1. Thus each leaf of the tree is either an accepting or rejecting node depending
on whether the first bit of the string labeling it is 0 or 1. The amplitude of a path p from the
root to a leaf of the tree, �p, is just the product of the branching amplitudes along the path,
and is computable to within 1/2j in time polynomial in j. Several paths may lead to the same
configuration c. Thus the amplitude of c after application of T gates is the following sum over all T

9.3. BQP ✓ PSPACE 85

length paths p: ↵c =
P

p to c �p. The probability that quantum circuit accepts is
P

accepting c |↵c|2.
Let ap = max(�p, 0) and bp = max(��p, 0). Then |↵c|2 can be written as |↵c|2 =

P
p to c(ap �

bp)2 =
P

p to c a
2

p + b2p �
P

p,p0 to c 2apbp. It follows that the acceptance probability of the quantum

circuit can be written as the di↵erence between the two quantities
P

accepting c

P
p to c a

2

p + b2p, andP
accepting c

P
p,p0 to c 2apbp0 . Since each of these quantities is easily seen to be in P#P , it follows

that BQP ✓ P#P .

In view of this theorem, we cannot expect to prove that BQP strictly contains BPP without
resolving the long standing open question in computational complexity theory, namely, whether or
not P = PSPACE.

86 CHAPTER 9. QUANTUM COMPLEXITY THEORY AND ADIABATIC COMPUTATION

9.4 The Adiabatic Model

A somewhat less discussed model of quantum computation is the Adiabatic model, as opposed to
the universal gate model. While it will turn out to be equivalent in power to the circuit model, it
is interesting for two reasons. First, some local search algorithms can be expressed very elegantly
in it. Second, it is a more natural model from a physicists point of view, and therefore potentially
applicable to physical realization of quantum computation.

The adiabatic model di↵ers vastly from the unitary gate model that we have been studying. Instead
of progressing qubits through a series of unitary gates to realize a desired outcome, the adiabatic
model evolves qubits from their input state to their final state by changing the Hamiltonian that
governs them with time.

Recall that the time evolution of a state of a closed quantum system is described by Shrödinger’s
equation:

ı
d

dt
| (t)i = H(t) | (t)i

For each t, H(t) is a Hermitian operator known as the Hamiltonian of the system, and the eigen-
values of the Hamiltonian are the energy of the corresponding eigenstates. For an n-qubit system,
the Hamiltonian H(t) is a 2n ⇥ 2n Hermitian matrix, i.e. H(t) = H(t)†. For a Hamiltonian H,
we call the eigenvector with the smallest eigenvalue the ground state of H. Let us also define the
spectral gap �(H) to be the di↵erence between the second-smallest and smallest eigenvalues, that
is, the di↵erence in energy between the ground state and the first excited state.

An adiabatic computation is specified by two Hamiltonians HB (the base Hamiltonian) and HP

(the problem Hamiltonian). We prepare an initial state | (0)i equal to the ground state of HB. We
design the HP such that the ground state of HP encodes the solution to our computation. Thus, to
perform a computation, we should choose HB so that the ground state is easy to prepare.

The computation is carried out by evolving | (t)i by a Hamiltonian that interpolates between HB

and HP . More precisely, for s 2 [0, 1], let

H(s) = (1� s)HB + sHP

The crux of the adiabatic model is that we change from HB to HP slowly enough, the ground state
of HB will approximately evolve to the ground state of HP : the direct consequence of the Adiabatic
Theorem.

Theorem: Suppose HB and HP have unique ground states, and | (0)i is the ground state of Hinit.
If (t) is evolved according to H(t/T) for

T � O

✓ kHB �HP k2
✏mins2[0,1]�(H(s))3

◆

then (T) is ✏-close (in `
2

) to the ground state of HP .

To put it simply, the Adiabatic Theorem says that if we want to evolve the ground state of HB to
a state that is ✏-close to the ground state of HP , our evolution must take a time T governed by the
above equation. Note that the major limiting factor is the size of the spectral gap throughout the
evolution. If the spectral gap ever becomes very small, the evolution must progress very slowly.

9.5. 3-SAT 87

9.5 3-SAT

To better understand this di↵erent paradigm, we will walk through an algorithm for an adiabatic
computation. As proposed by Farhi et al, there is an elegant solution to the satisfiabilty problem
for the adiabatic model. We will study the example of 3-SAT.

The Problem

The satisfiabilty problem, abreviated SAT, is a classic example of an NP-complete problem, or a
problem whose solutions can be verified in polynomial time, but cannot necessarily be solved in
polynomial time. As it stands, classical computers cannot solve all instances of SAT in polynomial
time.

The satisfiability problem asks: given a set of Boolean statements, is there an arrangemnt of their
variables that will make all statements true. For example the statements A ^ B and A _ B are
satisfiable because they are both true when A is true and B is true. However the statements A^B
and ¬(A_B) are not satisfiable because there is no arrangement of A and B that can take to make
both statments true.

The term k-SAT is used to say that each Boolean clause will use only k variables.

The Base Hamiltonian

Our base Hamiltonian should have a ground state that is easy to manufacture, like the state |0i⌦n

for an n bit system. As our first building block, lets consider

H(i)
B =

1

2
(1� �(i)x)

where �(i)x is the x-oriented Pauli spin matrix acting on the ith qubit. Then if spin up corresponds

to 0 and spin down corresponds to 1, H(i)
B | i = xi = x, x 2 {0, 1) so that the ground state of

H(i)
B is | 0i with energy 0. Now, with our example of 3-SAT, we want to use these initial building

blocks to construct a base Hamiltonian for each logical clause C. If clause C is concerned with bits

iC , jC , kC , then associate to it the Hamiltonian HC
B = H(iC)

B +H(jC)

B +H(kC)

B . The ground state
HC

B is now | 0i⌦3 with energy 0. Finally we construct our base Hamiltonian by accounting for each
clause.

HB =
X

C

HC
B

As desired, the ground state of HB is | 0i⌦n with energy 0, where n is the number of bits needed
to describe all clauses.

The Problem Hamiltonian

Our goal for constructing the problem Hamiltonian is a Hamiltonian HP whose ground state has
energy 0 and is a string of bits that solves the problem if it is SAT, or a state with energy greater
than 0 whose bits are the most optimal solution if it is not SAT. This will be constructed in a
similar way to the base Hamiltonian, by first considering one clause and then summing over all
clauses to construct the final HP .

88 CHAPTER 9. QUANTUM COMPLEXITY THEORY AND ADIABATIC COMPUTATION

Again suppose clause C is concerned with bits iC , jC , kC , and let

hC(iC , jC , kC) =

(
0 if iC , jC , kC satisfy C

1 if not
.

Lets call the state of the ith bit |zii so that the system is described by |z
1

i |z
2

i · · · |zni
Now let

HC
P |z

1

i · · · |zni = hC(iC , jC , kC) |z1i · · · |zni .
Note that if there is a configuration of bits that satisfy C, the ground state of HC

P has energy 0,
and the iC , jC , kC bits are such that they satisfy C. Now we put it all together by writing

HP =
X

C

HC
P (9.1)

as before.

This “weeds out” any states that do not satisfy all clauses by assigning an energy penalty to states
that fail to satisfy any clause. Thus the ground state of HP can only have energy 0 if all clauses are
satisfied. Supposing satisfiability, the ground state of HP is then a superposition of all solutions,
and a measurment will return one solution. Also, if the problem is not satisfiable, the state with the
ground will be the state that comes the closest to satisfying the problem. This beautiful result can
clearly be extend beyond 3-SAT to solve any SAT problem, and demonstrates a case of solving an
NP complete problem with an adiabatic quantum computer. In fact, many discreet optimization
problems can be reduced to satisfiabiltiy problems, making this example very powerful.

While this solution is elegant and exciting I cannot make any claims about the time T to run the
algorithm. In fact, it is unclear if the run time is in related to the number of bits involved or to
the length of the logical clauses any way , which might prove to be an advantage or disadvantage
of this paradigm.

Examples

While describing HP very little information was given about what these operators might look like.
Lets construct the clause XOR on the spin qubits

1

and
2

. Recall that XOR is only satisfied
when

1

6=
2

. Thus, let

HXOR =
1

2
(1 + �1z�

2

z)

If
1

6=
2

, we have �1z�
2

z |
1

2

i = � |
1

2

i so that HXOR |
1

2

i = 0 |
1

2

i. The ground state
of HXOR is a superposition of the form ↵ | 01i+ � | 10i, and has energy 0.

We have prepared an example of an actual 3-SAT problem on 4 bits. Consider the clauses C
1

=
a ^ (b _ c), C

2

= a ! (c ^ d), C
3

= b ^ c ! ¬d. It is quick to check that a solution (in fact the
only solution) is {1011}, but this problem is certainly not trivial to solve. We can construct the
problem Hamiltonian as in (1), and adiabatically evolve to it from our base Hamiltonian.

Lets consider the state =| 1111i. | i is a solution to C
1

and C
2

, so that HC1

P | i = 0 and
HC2

P | i = 0. But because | i is not a solution to C
3

so that HC3

P | i = | i, the energy of | i is 1,
and it is not in the ground state of the problem Hamiltonian.

9.6. EQUIVALENCE TO UNIVERSAL GATE COMPUTING (OPTIONAL) 89

9.6 Equivalence to Universal Gate Computing (optional)

Quantum computing by adiabatic evolution is equivalent to unitary gate computation in power:
anything that a unitary gate quantum computer can do in polynomial time, an adiabatic computer
can as well, and vise-versa. What follows is a somewhat technical proof of the equivalence between
the two models, and is included for the interested reader. The remainder of the course will not
focus on adiabatic algorithms, and this section can be skipped.

While we construct adiabatic algorithms from universal algorithms in a complicated way that might
be impractical, the importance of this construction is to show that what can be done with universal
gates can also be done with adiabatic evolution.

To prove equivalence we will construct unitary gate algorithms that approximate adiabatic evolution
algorithms, and vice versa. While both directions can be shown rigorously, mathematical machinery
is necessary that lies outside the scope of this course. This will give an overview that is conceptually
su�cient and touches on the essential elements of each proof.

Adiabatic ! Unitary Gate

To create a unitary gate algorithm from our adiabatic evolution we will discreetize the evolution,
and progress our qubits along step by step with unitary gates. Consider the ground state j of our
time dependent Hamiltonian H(s) = sHP + (1� s)HB at some time sj with 0 sj 1. We want
to approximate | (sj)i by U | (0)i for some unitary transformation U . Note that the complete
adiabatic progression of any Hamiltonian as described above induces a unitary transformation that
takes (0) to (1). I will state without proof that if we can bind the di↵erence between two
Hamiltonians H and H� by | H � H� |< �, then the unitary transformations U, U�are bound by
| U � U� |<

p
2T �, where T is the time it takes to adiabatically evolve from H to H�.

With this bound in mind, we can break up the progression from H(0) to H(1) into m discrete
steps, and induce m unitary transformations. If | ji is the state of the system after j steps: the
ground state of H(j

mT) = (j
mT)HP + (1 � j

mT)HB, then to progress from | j�1

i to | ji we will

use the unitary transformation Uj = e�ı(T/m)H(jT/m). This simulates subjecting the qubits to the
Hamiltonian H(jT/m) for a time T/m. Stringing it all together, the unitary transform U that
aproximates the whole evolution is constructed by concatinating each Uj :

U = e�ı(T/m)H(1) · · · e�ı(T/m)H(j/m) · · · e�ı(T/m)H(1/m)

With these m unitary transformations, we essentially step our initial ground state (0) along to
 (T). Because of the bound described above, we can calculate how small we need to make our
steps.

Unitary Gate ! Adiabatic

Now we want to show that a problem Hamiltonian can be constructed from some quantum circuit.
It is di�cult to encode the outcome of a unitary gate transformation exactly as the ground state of
our Hamiltonian, but we can encode it as one ground state of the problem Hamiltonian. Consider

90 CHAPTER 9. QUANTUM COMPLEXITY THEORY AND ADIABATIC COMPUTATION

the state

|↵i = 1p
L+ 1

LX

l=0

| li ⌦
���1l0L�l

E

clock

where | li is the state of the circuit after the lth unitary gate, and the qubits | 1l0L�li labeled clock
counts the gate l. If we can make | ↵i the ground state of our Hamiltonian, we can measure until
we find the solution state | Li⌦ | 1Li which is clearly marked by the clock qubits. In this way, we
can learn the state of the circuit after l gates for any 0 l L, and we expect to find the final
state after only

p
L measurements.

To construct this Hamiltonian, we will apply energy penalties to states that are not desired and
weed them out. The problem Hamiltonian Hp will be composed of three parts, Hclock which checks
that the clock bits are correct, Hinput which mandates that the computational qubits are all 0
when l = 0, and Hl which checks that the propagation from | li to | l+1

i was correct. The
Hamiltonians Hclock and Hinput are relatively easy to construct from projection operators, are less
essential to understanding the problem, so I will state without proof that they can be constructed
and that | ↵i is a ground state as desired. Hl, however, is more di�cult to construct. Consider the
operator

Hl = I ⌦ |100i h100|1clock �
h
Ul ⌦ |110i h100|clock + U †

l ⌦ |100i h110|clock
i
2

+ I ⌦ |110i h110|3clock .
Note that every component of Hl is a unitary operator with a 3-qubit operator tacked on to the
end of it. Though it is not clearly expressed in the above formula, it is understood that the 3-qubit
operators act on the l�1, l, l+1 bits of the clock. This is very important, as these 3-qubit operators
progress the clock forward or backward as in 2, or keep it the same as in 1 or 3.

This Hamiltonian can be understood by examening piece 2, whose purpose is to assign energy
penalties to states that do not propagate correctly across the unitary gate Ul. We see that

Ul ⌦ |110i h100| (| li ⌦ |100i) = | l+1

i ⌦ |110i
so that

I ⌦ |110i h110|3clock � Ul ⌦ |110i h100|clock = 0

for states that propagate correctly under Ul. Similarly, I ⌦ |100i h100|1clock � U †
l ⌦ | 100ih110 |clock

checks the reverse direction. We have constructed Hl so that its ground state is | li⌦ | 100i+ |
 l+1

i⌦ | 110i.
Putting this all together we see that

HP = (
1

2

LX

l=0

Hl) +Hinput +Hclock

has the ground state | ↵i as described earlier. The 1

2

is there to correct for the double counting
of each |psili. We also see that in the construction of HP , the number of terms that construct
the Hamiltonian grows as a polynomial of the number of gates. This does not allow us to make
any claims about the length of time the adiabatic evolution will take, but it is an interesting result
none-the-less.

Exercise: Construct the Hamiltonian Hclock that ensures that the clock bits are are correct.

