Introduction to Big Data with Apache Spark

Kerkelev

BerkeleyX

This Lecture

Exploratory Data Analysis

Some Important Distributions

Spark mllib Machine Learning Library

Descriptive vs. Inferential Statistics

• Descriptive:

» E.g., Median – describes data but can't be generalized beyond that
 » We will talk about Exploratory Data Analysis in this lecture

• Inferential:

- » E.g., t-test enables inferences about population beyond our data
- » Techniques leveraged for Machine Learning and Prediction

Examples of Business Questions

- Hypothesis Testing
 - » "Is there a difference in value to the company of these customers?"
- Segmentation/Classification ٠
 - » What are the common characteristics of these customers?

Prediction

- » Will this new customer become a profitable customer?
- » If so, how profitable?

adapted from Provost and Fawcett, "Data Science for Business"

Applying Techniques

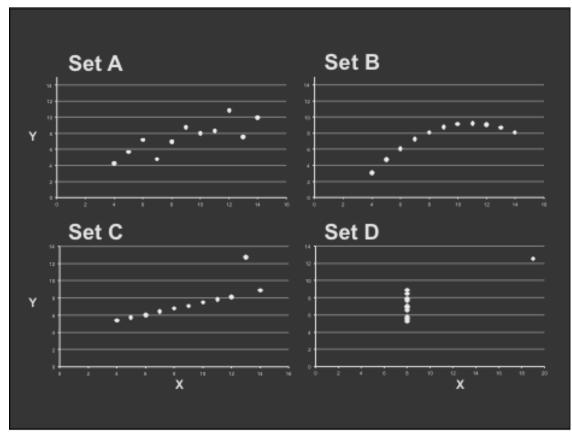

- Most business questions are causal
 - » What would happen if I show this ad?
- Easier to ask correlational questions
 What happened in this past when I showed this ad?
- Supervised Learning: Classification and Regression
- Unsupervised Learning: Clustering and Dimension reduction
- Note: UL often used inside a larger SL problem » E.g., auto-encoders for image recognition neural nets

Learning Techniques

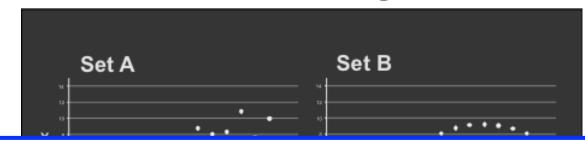
- <u>Supervised Learning</u>:
 - » <u>kNN (k Nearest Neighbors)</u>
 - » Naive Bayes
 - » Logistic Regression
 - » <u>Support Vector Machines</u>
 - » Random Forests
- Unsupervised Learning:
 - » <u>Clustering</u>
 - » Factor Analysis
 - » Latent Dirichlet Allocation

Exploratory Data Analysis (1977)

- Based on insights developed at Bell Labs in 1960's
- Techniques for visualizing and summarizing data
- What can the data tell us? (vs "confirmatory" data analysis)
- Introduced many basic techniques:
 » 5-number summary, box plots, stem and leaf diagrams,...
- 5-Number summary:
 - » Extremes (min and max)
 - » Median & Quartiles
 - » More robust to skewed and long-tailed distributions

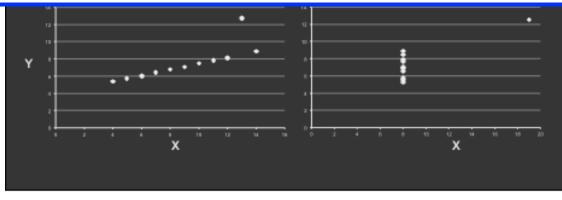

The Trouble with Summary Stats

Set A		Se	Set B		Set C			Set D	
<u> </u>	<u>Y</u>	<u> </u>	<u>Y</u>	<u>X</u>		Y	-	x	Υ
10	8.04	10	9.14		10	7.46		8	6.58
8	6.95	8	8.14		8	6.77		8	5.76
13	7.58	13	8.74		13	12.74		8	7.71
9	8.81	9	8.77		9	7.11		8	8.84
11	8.33	11	9.26		11	7.81		8	8.47
14	9.96	14	8.1		14	8.84		8	7.04
6	7.24	6	6.13		6	6.08		8	5.25
4	4.26	4	3.1		4	5.39		19	12.5
12	10.84	12	9.11		12	8.15		8	5.56
7	4.82	7	7.26		7	6.42		8	7.91
5	5.68	5	4.74		5	5.73		8	6.89


Property in each set	Value			
Mean of x	9			
Sample variance of x	11			
Mean of y	7.50			
Sample variance of y	4.122			
Linear Regression	y = 3 + 0.5x			

Anscombe's Quartet 1973

Looking at The Data



Looking at The Data

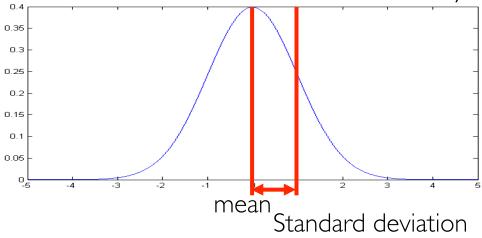
Takeaways:

- Important to look at data graphically before analyzing it
- Basic statistics properties often fail to capture real-world complexities

Data Presentation

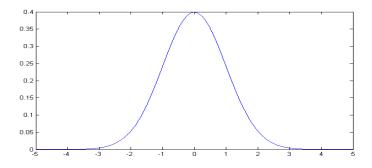
• Data Art – Visualizing Friendships

https://www.facebook.com/note.php?note_id=469716398919

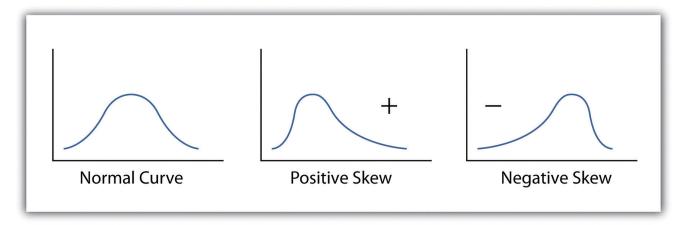

The ''R'' Language

- Evolution of the "S" language developed at Bell labs for EDA
- Idea: allow interactive exploration and visualization of data
- Preferred language for statisticians, used by many data scientists
- Features:
 - » The most comprehensive collection of statistical models and distributions
 - » CRAN: large resource of open source statistical models

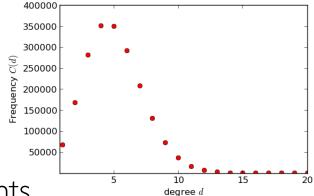
Jeff Hammerbacher 2012 course at UC Berkeley


Normal Distributions, Mean, Variance

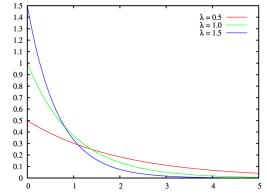
- The mean of a set of values is the average of the values
- Variance is a measure of the width of a distribution
- The standard deviation is the square root of variance
- A normal distribution is characterized by mean and variance


Central Limit Theorem

- The distribution of sum (or mean) of n identically-distributed random variables X_i approaches a normal distribution as $n \rightarrow \infty$
- Common parametric statistical tests (t-test & ANOVA) assume normally-distributed data, but depend on sample mean and variance
- Tests work reasonably well for data that are not normally distributed as long as the samples are not too small

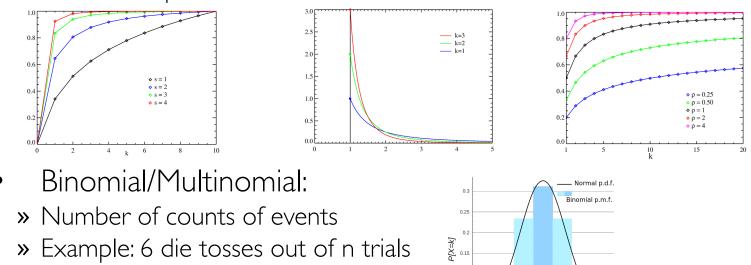

Correcting Distributions

- Many statistical tools (mean, variance, t-test, ANOVA) assume data are normally distributed
- Very often this is not true examine the histogram



Other Important Distributions

- Poisson: distribution of counts that occur at a certain "rate"
 - » Observed frequency of a given term in a corpus
 - » Number of visits to web site in a fixed time interval
 - » Number of web site clicks in an hour



• Exponential: interval between two such events

Other Important Distributions

- Zipf/Pareto/Yule distributions:
 - » Govern frequencies of different terms in a document, or web site visits

Understand your data's distribution before applying any model

Rhine Paradox*

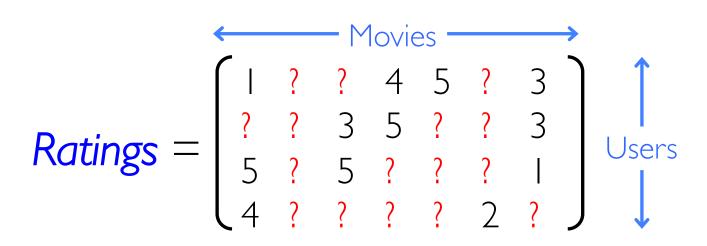
- Joseph Rhine was a parapsychologist in the 1950's
- » Experiment: subjects guess whether 10 hidden cards were red or blue
- He found that about I person in 1,000 had *Extra Sensory Perception*!
- » They could correctly guess the color of all 10 cards

*Example from Jeff Ullman/Anand Rajaraman

Rhine Paradox

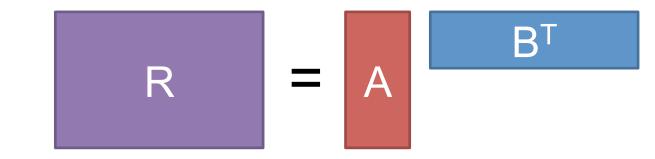
- Called back "psychic" subjects and had them repeat test
- » They all failed
- Concluded that act of telling psychics that they have psychic abilities causes them to lose it...(!)
- *Q*: What's wrong with his conclusion?

Rhine's Error


- What's wrong with his conclusion?
- $2^{10} = 1,024$ combinations of red and blue of length 10
- 0.98 probability at least 1 subject in 1,000 will guess correctly

Spark's Machine Learning Toolkit

- <u>mllib</u>: scalable, distributed machine learning library
 » Scikit-learn like ML toolkit, Interoperates with <u>NumPy</u>
- Classification:
 » SVM, Logistic Regression, Decision Trees, Naive Bayes, ...
- Regression: Linear, Lasso, Ridge, ...
- Miscellaneous:
 - » Alternating Least Squares, K-Means, SVD
 - » Optimization primitives (SGD, L-BGFS)
 - » ...


Lab: Collaborative Filtering

Goal: predict users' movie ratings based on past ratings of other movies

Model and Algorithm

 Model Ratings as product of User (A) and Movie Feature (B) matrices of size U×K and M×K

• Learn K factors for each user

K: rank

• Learn **K** factors for each movie

Model and Algorithm

 Model Ratings as product of User (A) and Movie Feature (B) matrices of size U×K and M×K

R

- Alternating Least Squares (ALS)
 - » Start with random A and B vectors
 - » Optimize user vectors (A) based on movies
 - » Optimize movie vectors (B) based on users
 - » Repeat until converged

Learn More about Spark and ML

Scalable Machine Learning

Learn the underlying principles required to develop scalable machine learning pipelines and gain hands-on experience using Apache Spark.

<u>Scalable ML BerkeleyX MOOC</u>
 » Starts June 29, 2015