Introduction to Big Data
with Apache Spark
This Lecture

Exploratory Data Analysis

Some Important Distributions

Spark **mllib** Machine Learning Library
Descriptive vs. Inferential Statistics

• **Descriptive:**
 » E.g., Median – describes data but can't be generalized beyond that
 » We will talk about Exploratory Data Analysis in this lecture

• **Inferential:**
 » E.g., t-test – enables inferences about population beyond our data
 » Techniques leveraged for Machine Learning and Prediction
Examples of Business Questions

• **Simple (descriptive) Stats**
 » “Who are the most profitable customers?”

• **Hypothesis Testing**
 » “Is there a difference in value to the company of these customers?”

• **Segmentation/Classification**
 » What are the common characteristics of these customers?

• **Prediction**
 » Will this new customer become a profitable customer?
 » If so, how profitable?

adapted from [Provost and Fawcett, “Data Science for Business”](#)
Applying Techniques

• Most business questions are causal
 » What would happen if I show this ad?

• Easier to ask correlational questions
 » What happened in this past when I showed this ad?

• Supervised Learning: Classification and Regression

• Unsupervised Learning: Clustering and Dimension reduction

• Note: UL often used inside a larger SL problem
 » E.g., auto-encoders for image recognition neural nets
Learning Techniques

• **Supervised Learning:**
 » kNN (k Nearest Neighbors)
 » Naive Bayes
 » Logistic Regression
 » Support Vector Machines
 » Random Forests

• **Unsupervised Learning:**
 » Clustering
 » Factor Analysis
 » Latent Dirichlet Allocation
Exploratory Data Analysis (1977)

• Based on insights developed at Bell Labs in 1960’s
• Techniques for visualizing and summarizing data
• What can the data tell us? (vs “confirmatory” data analysis)
• Introduced many basic techniques:
 » 5-number summary, box plots, stem and leaf diagrams,…

• 5-Number summary:
 » Extremes (min and max)
 » Median & Quartiles
 » More robust to skewed and long-tailed distributions
The Trouble with Summary Stats

<table>
<thead>
<tr>
<th>Set A</th>
<th>Set B</th>
<th>Set C</th>
<th>Set D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>10</td>
<td>8.04</td>
<td>10</td>
<td>9.14</td>
</tr>
<tr>
<td>8</td>
<td>6.95</td>
<td>8</td>
<td>8.14</td>
</tr>
<tr>
<td>13</td>
<td>7.58</td>
<td>13</td>
<td>8.74</td>
</tr>
<tr>
<td>9</td>
<td>8.81</td>
<td>9</td>
<td>8.77</td>
</tr>
<tr>
<td>11</td>
<td>8.33</td>
<td>11</td>
<td>9.26</td>
</tr>
<tr>
<td>14</td>
<td>9.96</td>
<td>14</td>
<td>8.1</td>
</tr>
<tr>
<td>6</td>
<td>7.24</td>
<td>6</td>
<td>6.13</td>
</tr>
<tr>
<td>4</td>
<td>4.26</td>
<td>4</td>
<td>3.1</td>
</tr>
<tr>
<td>12</td>
<td>10.84</td>
<td>12</td>
<td>9.11</td>
</tr>
<tr>
<td>7</td>
<td>4.82</td>
<td>7</td>
<td>7.26</td>
</tr>
<tr>
<td>5</td>
<td>5.68</td>
<td>5</td>
<td>4.74</td>
</tr>
</tbody>
</table>

Property in each set	Value
Mean of x | 9
Sample variance of x | 11
Mean of y | 7.50
Sample variance of y | 4.122
Linear Regression | $y = 3 + 0.5x$

Anscombe's Quartet 1973
Looking at The Data
Looking at The Data

Takeaways:
• Important to look at data graphically before analyzing it
• Basic statistics properties often fail to capture real-world complexities
Data Presentation

- Data Art – Visualizing Friendships

The “R” Language

• Evolution of the “S” language developed at Bell labs for EDA
• Idea: allow interactive exploration and visualization of data
• Preferred language for statisticians, used by many data scientists
• Features:
 » The most comprehensive collection of statistical models and distributions
 » CRAN: large resource of open source statistical models

Jeff Hammerbacher 2012 course at UC Berkeley
Normal Distributions, Mean, Variance

• The **mean** of a set of values is the average of the values
• **Variance** is a measure of the width of a distribution
• The **standard deviation** is the square root of variance
• A **normal distribution** is characterized by mean and variance
Central Limit Theorem

- The distribution of sum (or mean) of n identically-distributed random variables X_i approaches a normal distribution as $n \rightarrow \infty$

- Common parametric statistical tests (t-test & ANOVA) assume normally-distributed data, but depend on sample mean and variance

- Tests work reasonably well for data that are not normally distributed as long as the samples are not too small
Correcting Distributions

- Many statistical tools (mean, variance, t-test, ANOVA) assume data are normally distributed
- Very often this is not true – examine the histogram
Other Important Distributions

• Poisson: distribution of counts that occur at a certain “rate”
 » Observed frequency of a given term in a corpus
 » Number of visits to web site in a fixed time interval
 » Number of web site clicks in an hour

• Exponential: interval between two such events
Other Important Distributions

• Zipf/Pareto/Yule distributions:
 » Govern frequencies of different terms in a document, or web site visits

• Binomial/Multinomial:
 » Number of counts of events
 » Example: 6 die tosses out of n trials

• Understand your data's distribution before applying any model
Rhine Paradox*

• Joseph Rhine was a parapsychologist in the 1950’s
 » Experiment: subjects guess whether 10 hidden cards were red or blue

• He found that about 1 person in 1,000 had *Extra Sensory Perception*
 » They could correctly guess the color of all 10 cards

Example from Jeff Ullman/Anand Rajaraman
Rhine Paradox

• Called back “psychic” subjects and had them repeat test
 » They all failed

• Concluded that act of telling psychics that they have psychic abilities causes them to lose it…(!)

• Q: What’s wrong with his conclusion?
Rhine’s Error

• What’s wrong with his conclusion?

• \(2^{10} = 1,024\) combinations of red and blue of length 10

• 0.98 probability at least 1 subject in 1,000 will guess correctly
Spark’s Machine Learning Toolkit

- **mllib**: scalable, distributed machine learning library
 » Scikit-learn like ML toolkit, Interoperates with [NumPy](https://numpy.org)

- **Classification**:
 » SVM, Logistic Regression, Decision Trees, Naive Bayes, …

- **Regression**: Linear, Lasso, Ridge, …

- **Miscellaneous**:
 » Alternating Least Squares, K-Means, SVD
 » Optimization primitives (SGD, L-BGFS)
 » …
Lab: Collaborative Filtering

Goal: predict users’ movie ratings based on past ratings of other movies

<table>
<thead>
<tr>
<th>Movies</th>
<th>Users</th>
</tr>
</thead>
</table>

$\text{Ratings} =$
Model and Algorithm

- Model **Ratings** as product of **User (A)** and **Movie Feature (B)** matrices of size U×K and M×K

 \[R = A \times B^T \]

- **K**: rank

- Learn **K** factors for each user

- Learn **K** factors for each movie
Model and Algorithm

• Model **Ratings** as product of **User (A)** and **Movie Feature (B)** matrices of size $U \times K$ and $M \times K$

 $$R = AB^T$$

• **Alternating Least Squares (ALS)**
 » Start with random A and B vectors
 » Optimize user vectors (A) based on movies
 » Optimize movie vectors (B) based on users
 » Repeat until converged
Learn More about Spark and ML

- **Scalable ML BerkeleyX MOOC**
 » Starts June 29, 2015