Introduction to Big Data
with Apache Spark

J\Z @databricks’
rK

I d b BerkeleyX

Spa

This Lecture

The Big Data Problem

—anag

—ardware for Big Data
Distributing Work

ing Failures and Slow Machines

Map

Reduce and Complex Jobs

Apache Spark

Some [raditional Analysis Tools

e Unix shell commands, Pandas, R

All run on a
single machinel

The Big Data Problem

Data growing faster than computation speeds

Growing data sources
» Web, mobile, scientific, ...

Storage getting cheaper
» Size doubling every |8 months

But, stalling CPU speeds and storage
bottlenecks

st

“ ;.,'i!!lllll‘l!w

.'..(.. |||||||||||||| !m i

"The data deluge

strongis sronger

= SCIENCEINTHE
Pl DETABYTEERA g

Big Data Examples

Facebook’s daily logs: 60 TB
|,000 genomes project: 200 TB
Google web index: |10+ PB

Cost of | TB of disk: ~$35

Time to read | TB from disk: 3 hours
(100 MB/s)

The Big Data Problem

* A single machine can no longer process or even store all
the datal

* Only solution Is to distribute data over large clusters

S,

3 RAT A5 2 2
S srbordd e
TR LS -

Fre

Hardware for Big Data

r r r r
r r r r
r r r r

| ots of hard drives ... and CPUs

Hardware for Big Data

One big box? P
(1990's solution)

But, expensive
» Low volume
» All “premium’ hardware

And, still not big enough!

Image: Wikimedia Commons / User:Tonusamuel

Hardware for Big Data

Consumer-grade hardware
Not “gold plated”

Maﬂy deSk'tOp_hke servers Image: Stve Jurvson/FIickr
Easy to add capacity
Cheaper per CPU/disk

Complexity in software

Problems with Cheap Hardware

Failures, Google’'s numbers:
|-5% hard drives/year
0.2% DIMMs/year

Network speeds versus shared memory
Much more latency
Network slower than storage

Uneven performance

What's Hard About Cluster Computing?

* How do we split work across machines!?

How do you count the num
occurrences of each word in a @

‘I am Sam
| am Sam

Sam | am

Do you like

Green eggs and ham?”

)

;3
am: 3
Sam: 3
do: |
you: |
like: |

her of

ocument!

One Approach: Use a Hash Table

‘' am Sam {}
| am Sam
Sam | am
Do you like
Green eggs and ham!?”

One Approach: Use a Hash Table

“Ilam Sam {\ 1}
| am Sam
Sam | am
Do you like
Green eggs and ham!?”

One Approach: Use a Hash Table

“Ilam| Sam {\; 1,
| am Sam ,
am: 1}
Sam | am
Do you like

Green eggs and ham!?”

One Approach: Use a Hash Table

“I'am|Sam {\; 1,

| am Sam ,
am: 1,

Sam | am

Do you like Sam: 1}
Green eggs and ham!?”

One Approach: Use a Hash Table

“I'am Sam {\; 2,
[lam Sam ,

am: 1,
Sam | am

Do you like Sam: 1}
Green eggs and ham!?”

What it the Document i1s Really Big!

.
“l'am Sam

| am Sam >'§:<§'

Sam | am)
Do you like

Green eggs and ham? | > {%
| do not like them

Sam | am

%
| do not like > {%

Green eggs and ham
Would you like them
Here or there? } {%

y

What it the Document i1s Really Big!

“l am Sam
| am Sam
Sam | am
Do you like
Green eggs and ham?
| do not like them
Sam | am
| do not like
Green eggs and ham
Would you like them

Here or there!?

Machines |- 4

{I: 3,
am: 3,
Sam: 3

{do:2,
)

{Sam: |,
o)

{Would: I,
)

Machine 5

{I: 6,
am: 4,
Sam: 4,

do: 3

)

What's the
problem with this
approach?

What it the Document i1s Really Big!

“l am Sam
| am Sam
Sam | am
Do you like
Green eggs and ham?
| do not like them
Sam | am
| do not like
Green eggs and ham
Would you like them

Here or there!?

Machines |- 4

{I: 3,
am: 3,
Sam: 3

{do:2,
)

{Sam: |,
o)

{Would: I,
)

Results have to fit
on one machine

What it the Document i1s Really Big!

“l am Sam
| am Sam
Sam | am
Do you like
Green eggs and ham?
| do not like them
Sam | am
| do not like
Green eggs and ham
Would you like them

Here or there!?

{I: 3,
am: 3,
Sam: 3

{do:2,
)

{Sam: |,
o)

Y

{Would: I,
)

{I: 4,
am: 3,

)

Can add aggregation
layers but results still
must fit on one machine

)

{I: 2,
do: I,

{I: 6,
am: 3,
you: 2,
not: |,

What it the Document i1s Really Big!

“l am Sam
| am Sam
Sam | am
Do you like
Green eggs and ham?
| do not like them
Sam | am
| do not like
Green eggs and ham
Would you like them

Here or there!?

{1,

am: |,

)

{I: 6,
do: 3,
)

{do: I,
you: |,

)

{Would: I,
you: |,

)

{Would: [,
you: |,

)

Machines |- 4

Use Divide and
Conquerl!

What it the Document i1s Really Big!

“l am Sam
| am Sam
Sam | am
Do you like
Green eggs and ham?
| do not like them
Sam | am
| do not like
Green eggs and ham
Would you like them

~

Here or there!?

{1,

am: |,

)

{do: I,
you: |,

)

{Would: I,
you: |,

)

{Would: 1, |,
you: |,

!
Machines |- 4

{I: 6,
do: 3,
)

{am:5,
Sam: 4,
)

{you: 2,
)

{Would: I,
)

Machines |- 4

Use Divide and
Conquerl!

What it the Document i1s Really Big!

“I am Sam

| am Sam

Do you like
Green eggs and ha
| do not like them
""""""" Samlam
| do not like

Would you like the
Here or there!?

Use Divide and
Conquerl!

What it the Document i1s Really Big!

“I'am Sam
| am Sam Google
_____________ Samlam Map Reduce 2004
Do you like

Green eggs and ha
| do not like them

Ny
| v/)
B n) Zh\ i L'\’

Sam | am -2_
| do not like {you'} ’

Would you like the
Here or there!?

{Would: I,
you: |,

g) _

{Would: I,

http://research.google.com/archive/mapreduce.html

Map Reduce for Sorting

“l am Sam
| am Sam
Sam | am
Do you like
Green eggs and ham?
| do not like them
Sam | am
| do not like
Green eggs and ham
Would you like them

~

Here or there!?

{1,

am: |,

)

{do: I,
you: |,

)

{1:would,
2:you,

)

{3: do,
4: Sam,
)

{Would: I,
you: |,

)

{5:am,

)

{Would: 1, |,

you: |,

)

{6:1
)

“What word Is
used most!”’

What's Hard About Cluster Computing?

* How to divide work across machines!
» Must consider network, data locality
» Moving data may be very expensive

* How to deal with failures!
» | server fails every 3 years =» with 10,000 nodes see |10 faults/day
» Even worse: stragglers (not failed, but slow nodes)

How Do We Deal with Failures!?

“I am Sam

| am Sam

Sam | am

Do you like {do: 1,
Green eggs and ham? | > é\é} you: I,
| do not like them a2

%
Sam | am {Would: |,
| do not like > é\é} you: |,
Green eggs and ham "
Would you like them
Would: [,
Here or there? } {?} { y;):l: |

7 !

How Do We Deal with Machine Faillures?

“l am Sam
| am Sam
Sam | am
Do you like
Green eggs and ham?
| do not like them
Sam | am
| do not like
Green eggs and ham
Would you like them

Here or there!?

438

{1,

am: |,

»

{do: I,
you: |,

)

{Would: I,
you: |,

)

{Would: I,
you: |,

)

Launch another task

How Do We Deal with Slow

“l'am Sam

| am Sam >'§:<§'

Sam | am)
Do you like

Green eggs and ham? | > {%
| do not like them

Sam | am

%
| do not like > {%

Green eggs and ham
Would you like them
Here or there? } {%

y

asks?

How Do We Deal with Slow Tasks!?

. Cry N Launch
— 1,

amom | 1383 x) another
Sam | am y o | -task!

Do you like

Green eggs and ham? | > é\é} VOU:}l’
| do not like them

%
Sam | am {Would: |,
| do not like > é\é} you: |,
Green eggs and ham "
Would you like them
Would: [,
Here or there? } {?} { y;):l: |

7 !

Map Reduce: Distributed Execution
MAP REDUCE

Each stage

- g% passes through

8) 53 the hard drives
ziﬁ%
tos

228
%
328

Map Reduce: Iterative Jobs

[terative jobs involve a lot of disk /O for each repetition

Disk /O is
very slow!

Apache Spark Motivation

* Using Map Reduce for complex jobs, interactive queries
and online processing involves lots of disk I/O

ﬁ&ma +

Interactive mining Stream processing

Also, iterative jobs

Disk /O is very slow

Tech Trend: Cost of Memory

Historical Cost of Computer Memory and Storage
1.00E+09

~ N/
1.00E+08 > I v/

- S : Lower cost means can
R, put more memory In

1.00E+05

e s N each server

1.00E+03

1.00E+02

1.00E+01

PRICE

1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05 1 1
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

YEAR

http:// www.jcmit.com/mem?20 4.htm

Hardware for Big Data

L
o0
OO

| ots of hard drives ... and CPUs
I e T

... .and memory!

Opportunrty

* Keep more data in-memory

* Create new distributed execution engine:

Spqr‘l'g

http://people.csail.mit.edu/matei/papers/2010/hotcloud spark.pdf

Use Memory Instead of Disk
HDFS HDfS HDFS HDFS

— — read write ‘ \ read write ‘ \

~ result |
—

rteration 2

~ result 2

- result 3

In-Memory Data Sharing

HDFS

iteration | rteration 2

Input

one-time L result |

processing

- result 2

~ result 3

Distributed
memory

Input

[| 0-100x faster than network and disk]

Resilient Distributed Datasets (RDDs)

Write programs in terms of operations on distributed datasets

Partitioned collections of objects spread across a cluster; stored in
memory or on disk

RDDs built and manipulated through a diverse
set of parallel transformations (map, filter; join)
and actions (count, collect, save)

RDDs automatically rebuilt on machine failure

The Spark Computing Framework

* Provides programming abstraction and parallel runtime
to hide complexities of fault-tolerance and slow
machines

* ‘“Here's an operation, run it on all of the data”
» | don't care where it runs (you schedule that)
» In fact, feel free to run it twice on different
nodes

Spark Tools

MLIib
(machine
learning)

Spark
Streaming

Apache Spark

Spark and Map Reduce Differences

Hadoop Spark
Map Reduce

Storage Disk only In-memory or on disk
Operations Map and Map, Reduce, Join,
Reduce Sample, etc...
Execution model Batch Batch, interactive,
streaming
Programming Java Scala, Java, R, and Python

environments

Other Spark and Map Reduce Differences

* Generalized patterns
= unified engine for many use cases

* Lazy evaluation of the lineage graph
= reduces walt states, better pipelining

* |ower overhead for starting jobs

* |ess expensive shuffles

In-Memory Can Make a Big Difference

* [wo rterative Machine Learning algorithms:

K-means Clustering

' ' 121 “ Hadoop MR
“ Spark
0 50 100 150 sec
Logistic Regression
' ' ' 80 “ Hadoop MR
0.96 “ Spark

0 20 40 60 80 |00 sec

st Pub

ic CloL

d Petabyte Sort

Daytona Gray 100 TB

sort benchmark record
(tied for |t place)

Daytona Rules

Hadoop MR Spark Spark

Record Record 1PB
Data Size 102.57TB 100 TB 1000 TB
Elapsed Time 72 mins 23 mins 234 mins
Nodes 2100 206 190
Cores 50400 physical 6592 virtualized |6080 virtualized
Cluster disk 3150 GB/s

/ 618 GB/s 570 GB/s

throughput (est.)
Sort Benchmark

Yes Yes No

Network

dedicated data
center, 10Gbps

virtualized (EC2)
10Gbps network

virtualized (EC2)
10Gbps network

Sort rate

1.42 TB/min

4.27 TB/min

4.27 TB/min

Sort rate/node

0.67 GB/min

20.7 GB/min

22.5 GB/min

http://databricks.com/blog/2014/1 1/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

Spark Expertise Tops Big Data Median Salaries

High-salary tools: median salaries of respondents who use a given tool

Hbase o [l

Teradata]
Hortonworks i f——
Pig B
Homegrown (avt) I
[
I T T |

Amazon Elastic MapReduce (EMR)
Cassandra
Netezza (IBM) I

Storm I E———
Spark iy il

20k 40k 60k 80k 100k 120k 140k 160k 180k 200k
Total Salary (USD)

Over 800 respondents across 53 countries and 41 U.S. states

http://www.oreilly.com/data/free/20 | 4-data-science-salary-survey.csp

2004

History Review

MapReduce paper

Spark paper

2002
MapReduce @ Google

2008
Hadoop Summit

2006
Hadoop @ Yahoo!

2014
Apache Spark top-level

Historical References

circa 1979 — Stanford, MIT, CMU, etc.: set/list operations in LISP, Prolog, etc., for parallel processing
http://www-formal.stanford.edu/jmc/history/lisp/lisp.htm

circa 2004 — Google: MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat
http://research.google.com/archive/mapreduce.html

circa 2006 — Apache Hadoop, originating from the Yahoo!'s Nutch Project
Doug Cutting
http://research.yahoo.com/files/cutting.pdf

circa 2008 — Yahoo!: web scale search indexing
Hadoop Summit, HUG, etc.
http://developer.yahoo.com/hadoop/

circa 2009 — Amazon AWS: Elastic MapReduce
Hadoop modified for EC2/S3, plus support for Hive, Pig, Cascading, etc.
http://aws.amazon.com/elasticmapreduce/

Spark Research Papers

Spark: Cluster Computing with Working Sets
Matei Zaharia, Mosharaf Chowdhury, Michael |. Franklin, Scott Shenker, lon Stoica

USENIX HotCloud (2010)
people.csail. mit.edu/matei/papers/20 | O/hotcloud spark.pdf

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matel Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael |. Franklin,
Scott Shenker, lon Stoica

NSDI (2012)

usenix.org/system/files/conference/nsdil 2/nsdi| 2-final | 38.pdf

