
Model-View-Controller!

Engineering Software as a Service §2.5!
Armando Fox!

1!
© 2013 Armando Fox & David Patterson, all rights reserved

Whither frameworks?!

•  Is there common application
structure…!

•  in interactive user-facing apps…!
•  …that could simplify app development

if we captured them in a framework?!

2!

3!

The MVC Design Pattern!
•  Goal: separate organization of data (model) from UI & presentation

(view) by introducing controller !
–  mediates user actions requesting access to data!
–  presents data for rendering by the view!

•  Web apps may seem “obviously” MVC by design, but other
alternatives are possible...!

Controller • User actions!
• Directives for
rendering data!

• Read data!
• Update data!

• Data provided to views
through controller!

Model!View!

Each entity has a model,
controller, & set of views!

5!

Moviegoers
Controller

Moviegoer!

Reviews
Controller

Review!

Movies
Controller

Movie!

Alternatives to MVC!

6!

Rails supports SaaS apps structured as MVC, but
other architectures may be better fit for some apps.!

Page Controller!
(Ruby Sinatra)!

page A A!

page B

page C

B!
C!

models!

Front Controller!
(J2EE servlet)!

app

models!

views!

Template View
(PHP)!

models!

views!

All MVC apps have both a “client” part (e.g. Web
browser) and a “cloud” part (e.g. Rails app on
cloud).!
Model-View-Controller is just one of several
possible ways to structure a SaaS app.!
Peer-to-peer apps (vs. client-server apps) can
be structured as Model-View-Controller.	

In SaaS apps on the Web, controller actions
and view contents are transmitted using HTTP.!

☐!

☐

☐

☐

7!

Which statement is NOT true
about the Model-View-Controller
(MVC) architectural pattern:

Models, Databases, and
Active Record!

Engineering Software as a Service §2.6!
Armando Fox!

8!
© 2013 Armando Fox & David Patterson, all rights reserved

• How should we store and retrieve
record-oriented structured data?!

• What is the relationship between
data as stored and data as
manipulated in a programming
language?!

9!

10!

In-Memory vs. In-Storage
objects!

•  How to represent persisted object in storage!
– Example: Movie with name & rating attributes!

•  Basic operations on object: CRUD (Create,
Read, Update, Delete)!

•  ActiveRecord: every model knows how to
CRUD itself, using common mechanisms!

11!

#<Movie:0x1295580>
m.name, m.rating, ...

?!
marshal/serialize!

unmarshal/deserialize!#<Movie:0x32ffe416>
m.name, m.rating, ...

Rails Models Store Data in
Relational Databases (RDBMS)  

•  Each type of model gets its own database table!
–  All rows in table have identical structure !
–  one row in table == one instance of model’s class!
–  Each column stores value of an attribute of the model!
–  Each row has unique value for primary key (by

convention, in Rails this is an integer and is called id)!

•  Schema: Collection of all tables and their structure!

id! rating! title! release_date!
2! G! Gone With the Wind! 1939-12-15!
11! PG! Casablanca! 1942-11-26!
...! ...! ...! ...!
35! PG! Star Wars! 1977-05-25!

Alternative: DataMapper!
•  Data Mapper associates separate mapper with

each model!
–  Idea: keep mapping independent of particular data store

used => works with more types of databases!
–  Used by Google AppEngine!
–  Con: can’t exploit 

RDBMS features to  
simplify complex 
queries & relationships!

•  We’ll revisit when  
talking about  
associations !

13!

Part of the Model’s job is to convert between
in-memory and stored representations of
objects.!Although Model data is displayed by the View, a
Models’ direct interaction is with Controllers.!
Although DataMapper doesn’t use relational
databases, it’s a valid way to implement a Model.	

The CRUD actions only apply to models backed by
a database that supports ActiveRecord.!

☐!

☐

☐

☐

14!

Which statement is not true about the
Model in Model-View-Controller:

Controllers, Routes, and
RESTfulness!

Engineering Software as a Service §2.7!
Armando Fox!

15!
© 2013 Armando Fox & David Patterson, all rights reserved

• What design decisions would allow
our app to support Service-
Oriented Architecture?!

16!

17!

REST (Representational State
Transfer)—R. Fielding, 2000!

•  Idea: URI names resource, not page or action !
–  Self-contained: which resource, and what to do to it!
–  Responses include hyperlinks to discover additional

RESTful resources!
–  “a post hoc [after the fact] description of the features

that made the Web successful”!
•  A service (in the SOA sense) whose operations

are like this is a RESTful service!
•  Ideally, RESTful URIs name the operations!

Routes!

•  In MVC, each interaction the user can do is
handled by a controller action!
– Ruby method that handles that interaction !

•  A route maps <HTTP method, URI> to
controller action!

•  !

19!

Route! Action!

GET /movies/3 Show info about movie whose ID=3!

POST /movies Create new movie from attached form data!

PUT /movies/5 Update movie ID 5 from attached form data!

DELETE /movies/5 Delete movie whose ID=5!

Brief Intro to Rails’ Routing
Subsystem!

•  dispatch <method,URI> to correct controller action!
•  provides helper methods that generate a

<method,URI> pair given a controller action!
•  parses query parameters from both URI and form

submission into a convenient hash!
•  Built-in shortcuts to generate all CRUD routes

(though most apps will also have other routes)!

20!

I GET /movies {:action=>"index", :controller=>"movies"}
C POST /movies {:action=>"create", :controller=>"movies"}
 GET /movies/new {:action=>"new", :controller=>"movies"}
 GET /movies/:id/edit {:action=>"edit", :controller=>"movies"}
R GET /movies/:id {:action=>"show", :controller=>"movies"}
U PUT /movies/:id {:action=>"update", :controller=>"movies"}
D DELETE /movies/:id {:action=>"destroy", :controller=>"movies"}

 rake routes!

GET /movies/3/edit HTTP/1.0!

•  Matches route:!
GET /movies/:id/edit {:action=>"edit", :controller=>"movies"}!

•  Parse wildcard parameters: params[:id] = "3"
•  Dispatch to edit method in movies_controller.rb
•  To include a URI in generated view that will submit the form

to the update controller action with params[:id]==3,
call helper:  
 update_movie_path(3) # => PUT /movies/3!

21!

I GET /movies {:action=>"index", :controller=>"movies"}
C POST /movies {:action=>"create", :controller=>"movies"}
 GET /movies/new {:action=>"new", :controller=>"movies"}
 GET /movies/:id/edit {:action=>"edit", :controller=>"movies"}
R GET /movies/:id {:action=>"show", :controller=>"movies"}
U PUT /movies/:id {:action=>"update", :controller=>"movies"}
D DELETE /movies/:id {:action=>"destroy", :controller=>"movies"}

 rake routes!

In an MVC app, every route must eventually
trigger a controller action. !
One common set of RESTful actions is the
CRUD actions on models. !
The route always contains one or more
"wildcard" parameters, such as :id, to identify
the particular resource instance in the operation	

A resource may be existing content or a request
to modify something.!

☐!

☐

☐

☐

22!

Which statement is NOT true regarding
Rails RESTful routes and the
resources to which they refer:

Template Views and Haml!

Engineering Software as a Service §2.8!
Armando Fox!

23!
© 2013 Armando Fox & David Patterson, all rights reserved

• HTML is how we must present
content to browsers…!

• …but what's the process by which
our app's output becomes HTML?!

24!

25!

Template View pattern!

•  View consists of markup with selected
interpolation to happen at runtime!
– Usually, values of variables or result of

evaluating short bits of code!
•  In Elder Days, this was the app (e.g. PHP)!
•  Alternative: Transform View !

26!

Haml!
Closure!

Renderer
(Action-
View)!

HTML!
erb!

Closure!

Movie!Movie!Movie!

Renderer
(Action-
View)!

XML!

JSON

Haml is HTML on a diet!
%h1.pagename All Movies
%table#movies
 %thead
 %tr
 %th Movie Title
 %th Release Date
 %th More Info
 %tbody
 - @movies.each do |movie|
 %tr
 %td= movie.title
 %td= movie.release_date
 %td= link_to "More on #{movie.title}", |

 movie_path(movie) |
= link_to 'Add new movie', new_movie_path

27!

Don’t put code in your views!

•  Syntactically, you can put any code in view!
•  But MVC advocates thin views & controllers!

– Haml makes deliberately awkward to put in lots
of code!

•  Helpers (methods that “prettify” objects for
including in views) have their own place in
Rails app!

•  Alternative to Haml: html.erb (Embedded
Ruby) templates, look more like PHP!

28!

It will work when developing against a
“toy” database, but not in production!
It won’t work, because Views can’t
communicate directly with Models!
Behavior varies depending on the app!

It will work, but it’s bad form and violates
the MVC guidelines!

☐!

☐

☐

☐

29!

What happens if you embed code in
your Rails views that tries to directly
access the model (in the database)?

Summary & Reflections: 
 SaaS Architecture  

(Engineering Software as a Service
§2.9-2.10)!

Armando Fox!

30!
© 2013 Armando Fox & David Patterson, all rights reserved

The big picture (technologies)!

Controller

View Model

• URI’s, HTTP, TCP/IP stack!
• REST & RESTful routes!

• Databases & migrations !
• CRUD!• HTML & CSS!

• XML & XPath!

c. 2008: “Rails doesn’t scale”!
•  Scalability is an architectural concern—not

confined to language or framework!
•  The stateless tiers of 3-tier arch do scale!

–  With cloud computing, just worry about constants!
•  Traditional relational databases do not scale!
•  Various solutions combining relational and non-

relational storage (“NoSQL”) scale much better!
–  DataMapper works well with some of them!

•  Intelligent use of caching (later in course) can
greatly improve the constant factors!

32!

Frameworks, Apps, Design
patterns!

•  Many design patterns so far, more to come!
•  In 1995, it was the wild west: biggest Web

sites were minicomputers, not 3-tier/cloud!
•  Best practices (patterns) “extracted” from

experience and captured in frameworks!
•  But API’s transcended it: 1969 protocols +

1960s markup language + 1990 browser +
1992 Web server works in 2011!

33!

Architecture is about
Alternatives!

Pattern we’re using! Alternatives!
Client-Server! Peer-to-Peer!
Shared-nothing (cloud computing)! Symmetric multiprocessor, shared

global address space!
Model-View-Controller! Page controller, Front controller,

Template view!
Active Record! Data Mapper!
RESTful URIs (all state affecting
request is explicit)!

Same URI does different things
depending on internal state!

34!

As you work on other SaaS apps beyond this course, you
should find yourself considering different architectural

choices and questioning the choices being made.

Summary: Architecture & Rails!

•  Model-view-controller is a well known
architectural pattern for structuring apps!

•  Rails codifies SaaS app structure as MVC!
•  Views are Haml w/embedded Ruby code,

transformed to HTML when sent to browser!
•  Models are stored in tables of a relational

database, accessed using ActiveRecord!
•  Controllers tie views and models together

via routes and code in controller methods!

Relational databases scale better than
“NoSQL” databases !
The programming language used (Ruby,
Java, etc.) isn’t a main factor in scalability!
Scalability can be impeded by any part of
the app that becomes a bottleneck!

Shared-nothing clusters scale better than
systems built from mainframes !

☐!

☐

☐

☐

36!

Other factors being equal, which
statement is NOT true regarding SaaS
scalability?

