
Why do SW Projects Fail?

• Don't do what customers want

• Or projects are late

• Or over budget

• Or hard to maintain and evolve

• Or all of the above

• Inspired Agile Lifecycle

1

Agile Lifecycle

• Work closely, continuously with

stakeholders to develop requirements, tests

– Users, customers, developers, maintenance

programmers, operators, project managers, …

• Maintain working prototype while deploying

new features every iteration

– Typically every 1 or 2 weeks

– Instead of 5 major phases, each months long

• Check with stakeholders on what’s next,

to validate building right thing (vs. verify)

2

3

Agile Iteration

Behavior-Driven Design (BDD)

• BDD asks questions about behavior of app

before and during development to reduce

miscommunication

• Requirements written down as user stories

– Lightweight descriptions of how app used

• BDD concentrates on behavior of app vs.

implementation of app

– Test Driven Design or TDD (next chapter) tests

implementation

4

User Stories

• 1-3 sentences in everyday language

– Fits on 3” x 5” index card

– Written by/with customer

• “Connextra” format:

– Feature name

– As a [kind of stakeholder],

So that [I can achieve some goal],

I want to [do some task]

– 3 phrases must be there, can be in any order

• Idea: user story can be formulated as acceptance

test before code is written

5

Why 3x5 Cards?

• (from User Interface community)

• Nonthreatening => all stakeholders

participate in brainstorming

• Easy to rearrange => all stakeholders

participate in prioritization

• Since stories must be short, easy to change

during development

– As often get new insights during development

6

Different stakeholders may

describe behavior differently
• See which of my friends are going to a show

– As a theatergoer

– So that I can enjoy the show with my friends

– I want to see which of my Facebook friends are

attending a given show

• Show patron’s Facebook friends

– As a box office manager

– So that I can induce a patron to buy a ticket

– I want to show her which of her Facebook friends

are going to a given show
7

Product Backlog

• Real systems have 100s of user stories

• Backlog: User Stories not yet completed

– (We’ll see Backlog again with Pivotal Tracker)

• Prioritize so most valuable items highest

• Organize so they match SW releases over

time

8

BDD should test app implementation

User stories in BDD play same role as design

requirements in Big Design Up Front

This is a valid User Story: “Search TMDb

 I want to search TMDb

 As a movie fan

 So that I can more easily find info”

BDD is designed to help with validation (build

the right thing) in addition to verification
☐

☐

☐

☐

9

Which expression statement regarding BDD

and user stories is FALSE?

SMART stories

• Specific

• Measurable

• Achievable

(ideally, implement in

1 iteration)

• Relevant

(“the 5 why’s”)

• Timeboxed

(know when to give up)

10

Specific & Measurable

• Each scenario testable

– Implies known good input

and expected results exist

• Anti-example:

“UI should be user-friendly”

• Example: Given/When/Then.

1.Given some specific starting condition(s),

2.When I do X,

3.Then one or more specific thing(s) should

happen

 11

Achievable

• Complete in 1 iteration

• If can’t deliver feature in

1iteration, deliver

subset of stories

– Always aim for working

code @ end of iteration

12

Timeboxed

• Estimate what’s achievable using velocity

– Each story assigned points

(1-3) based on difficulty

– Velocity

= Points completed / iteration

– Use measured velocity to plan future iterations

& adjust points per story

• Pivotal Tracker (later) tracks velocity

 13

Relevant: “business value”

• Ask “Why?” recursively until discover

business value, or kill the story:

– Protect revenue

– Increase revenue

– Manage cost

– Increase brand value

– Making the product remarkable

– Providing more value to your customers

http://wiki.github.com/aslakhellesoy/cucumber

has a good example
14

http://wiki.github.com/aslakhellesoy/cucumber

Stories are SMART—

but features should be relevant

• Specific & Measurable: can I test it?

• Achievable? / Timeboxed?

• Relevant? use the “5 whys”

• Show patron’s Facebook friends

As a box office manager

So that I can induce a patron to

buy a ticket

I want to show her which Facebook

friends are going to a given show

15

Rotten Potatoes should have good response

time

When adding a movie, 99% of Add Movie pages

should appear within 3 seconds

As a customer, I want to see the top 10 movies

sold, listed by price, so that I can buy the

cheapest ones first

User can search for a movie by title ☐

☐

☐

☐

16

Which feature below is LEAST SMART?

Cucumber: Big Idea

• Tests from customer-friendly user stories

– Acceptance: ensure satisfied customer

– Integration: ensure interfaces between modules

consistent assumptions, communicate correctly.

• Cucumber meets halfway between customer

and developer

– User stories don't look like code, so clear to

customer and can be used to reach agreement

– Also aren't completely freeform, so can connect

to real tests
17

Example User Story

Feature: User can manually add movie

Scenario: Add a movie

 Given I am on the RottenPotatoes home page

 When I follow "Add new movie"

 Then I should be on the Create New Movie page

 When I fill in "Title" with "Men In Black"

 And I select "PG-13" from "Rating"

 And I press "Save Changes"

 Then I should be on the RottenPotatoes home page

 And I should see "Men In Black"

18

3 to 8 Steps / Scenario

≥1 Scenarios / Feature

1 Feature

Cucumber User Story,

Feature, and Steps

• User story: refers to a single feature

• Feature: 1 or more scenarios that show

different ways a feature is used

– Keywords Feature and Scenario identify the

respective components

• Scenario: 3 to 8 steps that describe scenario

• Step definitions: Ruby code that tests steps

– Usually many steps per step definition

19

5 Step Keywords

1. Given steps represent the state of the

world before an event: preconditions

2. When steps represent the event

(e.g., push a button)

3. Then steps represent the expected

outcomes; check if its true

4. / 5. And and But extend the previous step

20

Steps, Step Definitions,

and Regular Expressions

• User stories kept in one set of files: steps

• Separate set of files has Ruby code that

tests steps: step definitions

• Step definitions are like method definitions,

steps of scenarios are like method calls

• How match steps with step definitions?

• Regexes to match the English phrases in

steps of scenarios to step definitions!
– Given /^(?:|{}I)am on (.+)\$/

– “I am on the Rotten Potatoes home page”
21

Red-Yellow-Green Analysis

• Cucumber colors steps

• Green for passing

for not yet implemented

• Red for failing

(then following steps are Blue)

• Goal: Make all steps green for pass

 (Hence green vegetable for name of tool)

22

Capybara

• Need tool to act like user that pretends to be

user follow scenarios of user story

• Capybara simulates browser

– Can interact with app to receive pages

– Parse the HTML

– Submit forms as a user would

• Cannot handle JavaScript

– Other tool (Webdriver) can handle JS, but it

runs a lot slower, won’t need yet

23

Demo

• Add feature to cover existing functionality

– Note: This example is doing it in wrong order –

should write tests first

– Just done for pedagogic reasons

• (Or can look at screencast:

 http://vimeo.com/34754747)

24

A Feature has ≥1 User Stories, which are

composed typically of 3 to 8 Steps

Steps use Given for current state, When for

action, and Then for consequences of action

Cucumber matches step definitions to scenario

steps using regexes, and Capybara pretends to

be user that interacts with SaaS app

accordingly

Cucumber and Capybara can perform

acceptance and integration tests
☐

☐

☐

☐

25

Which is FALSE about Cucumber and

Capybara?

SaaS User Interface Design

• SaaS apps often faces users

User stories need User Interface (UI)

• Want all stakeholders

involved in UI design

– Don’t want UI rejected!

• Need UI equivalent

of 3x5 cards

• Sketches: pen and paper

drawings or “Lo-Fi UI”

 26

Lo-Fi UI Example

27

(Figure 4.3, Engineering Long Lasting

Software by Armando Fox and David

Patterson, Alpha edition, 2012.)

Storyboards

• Need to show how

UI changes based on

user actions

• HCI => “storyboards”

• Like scenes in a movie

• But not linear

28

Example Storyboard

29

(Figure 4.4, Engineering Long Lasting

Software by Armando Fox and David

Patterson, Alpha edition, 2012.)

Lo-Fi to HTML

• Tedious to do sketches and storyboards,

but easier than producing HTML!

– Also less intimidating to nontechnical

stakeholders => More likely to suggest

changes to UI if not code behind it

– More likely to be happy with ultimate UI

• Next steps: CSS (Cascading Style Sheets)

and Haml

– Make it pretty after it works

30

The purpose of the Lo-Fi UI approach is to

debug the UI before you program it

SaaS apps usually have a user interfaces

associated with the user stories

While it takes more time than building a

prototype UI in CSS and Haml, the Lo-Fi

approach is more likely to lead to a UI that

customers like

Like 3x5 cards, sketches and storyboards are

more likely to involve all stakeholders vs. code
☐

☐

☐

☐

31

Which is FALSE about Lo-Fi UI?

And in Conclusion

• Debugging: Read, Ask, Search, Post

• Rails Pitfalls: Too much code in Controller,

Some extra code in View

• Agile – prototypes, iterate with customer

• BDD – Design of app before implementation

• User Story – all stakeholders write what

features want on 3x5 cards

• Cucumber – magically turns 3x5 card user

stories into acceptance tests for app

32

