(af

Why do SW Projects Fail?

* Don't do what customers want
» Or projects are late

* Or over budget

* Or hard to maintain and evolve
* Or all of the above

* Inspired Agile Lifecycle

(af

Agile Lifecycle

* Work closely, continuously with
stakeholders to develop requirements, tests

— Users, customers, developers, maintenance
programmers, operators, project managers, ...

« Maintain working prototype while deploying
new features every iteration
— Typically every 1 or 2 weeks
— Instead of 5 major phases, each months long

* Check with stakeholders on what’s next,
to validate building right thing (vs. verify)

Agile Iteration

v

(' Talk to "Customer" (Ch.5))

-~

-
-
-~
-~
-~
-~

Legacy (Ch. 8) \
e ”"‘“"s\s Y

Design patterns (Ch. 10) (Behavior-Driven Design: User Stories (Ch. 5))

-~
~
~
~
~
-~
-~
~
-~
-~
-~
~

| Test-Driven Development: Unit Test (Ch. 6)

A
Measure Velocity (Ch. 9)

A4
Deploy to Cloud (Ch. 12 and Ap. A)

(af

Behavior-Driven Design (BDD)

 BDD asks questions about behavior of app
before and during development to reduce
miscommunication

* Requirements written down as user stories
— Lightweight descriptions of how app used

 BDD concentrates on behavior of app vs.
Implementation of app

— Test Driven Design or TDD (next chapter) tests
Implementation

(af

User Stories

« 1-3 sentences in everyday
— Fits on 3" x 5" index card
— Written by/with custo
* “Connextra” for

— Feature name
— As a [kind of stakeholder],

anguage

ADD

A MOUI\FE

A< a movie fan

So that

Moule

S sharea

[want toadd amovie
+o Rptten Potatoesdeln

So that [l can achieve some goall,

| want to [do some task]

— 3 phrases must be there, can be in any order
 |dea: user story can be formulated as acceptance

test before code is written

(af

Why 3x5 Cards?

* (from User Interface community)

* Nonthreatening => all stakeholders
participate in brainstorming

« Easy to rearrange => all stakeholders
participate Iin prioritization

* Since stories must be short, easy to change
during development
— As often get new insights during development

Qf Different stakeholders may
ExEg describe behavior differently

« See which of my friends are going to a show
— As a theatergoer
— So that | can enjoy the show with my friends

— | want to see which of my Facebook friends are
attending a given show

 Show patron’s Facebook friends
— As a box office manager
— So that | can induce a patron to buy a ticket

— | want to show her which of her Facebook friends
are going to a given show

(af

Product Backlog

* Real systems have 100s of user stories

« Backlog: User Stories not yet completed
— (We'll see Backlog again with Pivotal Tracker)

* Prioritize so most valuable items highest

* Organize so they match SW releases over
time

Which expression statement regarding BDD
and user stories is FALSE?

] BDD is designed to help with validation (build
the right thing) in addition to verification

] BDD should test app implementation

] User stories in BDD play same role as design
requirements in Big Design Up Front

This is a valid User Story: “Search TMDb
| want to search TMDb
As a movie fan
So that | can more easily find info”

[]

SMART stories

» Specific
 Measurable

* Achievable
(ideally, implement in
1 iteration)

* Relevant
(“the 5 why’s”)

* Timeboxed
(know when to give up)

10

Specific & Measurable

« Each scenario testable

— Implies known good input
and expected results exist

* Anti-example:
“Ul should be user-friendly”

« Example: Given/When/Then. l
1.Given some specific starting condition(s),

2.When | do X,

3.Then one or more specific thing(s) should
happen

11

(af

Achievable

« Complete in 1 iteration

e |f can’t deliver feature in
literation, deliver
subset of stories

— Always aim for working
code @ end of iteration

12

(af

Timeboxed

« Estimate what's achievable using velocity
— Each story assigned points

(1-3) based on difficulty
— Velocity | Bemlé Tand

= Points completed / iteration (I | X j
— Use measured velocity to plan future iterations

& adjust points per story
* Pivotal Tracker (later) tracks velocity

13

(af

Relevant: “business value”

« Ask "Why?” recursively until discover
business value, or kill the story:
— Protect revenue
— Increase revenue
— Manage cost
— Increase brand value
— Making the product remarkable
— Providing more value to your customers

http://wiki.github.com/aslakhellesoy/cucumber
has a good example

14

http://wiki.github.com/aslakhellesoy/cucumber

Stories are SMART—
Fxeg but features should be relevant

« Specific & Measurable: can | test it?
* Achievable? / Timeboxed?
* Relevant? use the "5 whys”

« Show patron’s Facebook friends
As a box office manager

So that | can induce a patron to
buy a ticket

| want to show her which Facebook =
friends are going to a given show

15

Which feature below is LEAST SMART?

0 User can search for a movie by title

] Rotten Potatoes should have good response
time

7 When adding a movie, 99% of Add Movie pages
should appear within 3 seconds

] As a customer, | want to see the top 10 movies
sold, listed by price, so that | can buy the
cheapest ones first

16

(af

Cucumber: Big Idea

» Tests from customer-friendly user stories
— Acceptance: ensure satisfied customer

— Integration: ensure interfaces between modules
consistent assumptions, communicate correctly.

« Cucumber meets halfway between customer
and developer

— User stories don't look like code, so clear to
customer and can be used to reach agreement

— Also aren't completely freeform, so can connect
to real tests

17

(af

Example User Story

| Feature: User can manually add movie | 1 Feature

| Scenario: Add a movie | =1 Scenarios / Feature
Given T'am on the RottenPotatoes home page

When | follow "Add new movie"

Then | should be on the Create New Movie page

When | fill in "Title" with "Men In Black"

And | select "PG-13" from "Rating"

And | press "Save Changes"

Then | should be on the RottenPotatoes home page

And | should see "Men In Black"

3 to 8 Steps / Scenario

18

Qf Cucumber User Story,
EECS Feature, and Steps

» User story: refers to a single feature

 Feature: 1 or more scenarios that show
different ways a feature Is used

— Keywords Feature and Scenario identify the
respective components

* Scenario: 3 to 8 steps that describe scenario

« Step definitions: Ruby code that tests steps
— Usually many steps per step definition

19

(af

5 Step Keywords

1. Given steps represent the state of the
world before an event: preconditions

2. When steps represent the event
(e.q., push a button)

3. Then steps represent the expected
outcomes; check If its true

4. | 5. And and But extend the previous step

20

Qf Steps, Step Definitions,
EECS and Regular Expressions

» User stories kept in one set of files: steps

« Separate set of files has Ruby code that
tests steps: step definitions

« Step definitions are like method definitions,
steps of scenarios are like method calls

 How match steps with step definitions?

* Regexes to match the English phrases in
steps of scenarios to step definitions!
— Given /A?:[{}1)am on (.+)\$/
— “l am on the Rotten Potatoes home page”

21

(af

Red-Yellow-Green Analysis

* Cucumber colors steps
* Green for passing
o Yellow for not yet implemented

* Red for failing
(then following steps are Blue)

« Goal: Make all steps green for pass
(Hence green vegetable for name of tool)

22

(af

Capybara

* Need tool to act like user that pretends to be
user follow scenarios of user story

« Capybara simulates browser

— Can interact with app to receive pages
— Parse the HTML
— Submit forms as a user would

« Cannot handle JavaScript

— Other tool (Webdriver) can handle JS, but it
runs a lot slower, won't need yet

23

(af

Demo

* Add feature to cover existing functionality

— Note: This example is doing it in wrong order —
should write tests first

— Just done for pedagogic reasons
* (Or can look at screencast:
http://vimeo.com/34754747)

24

Which is FALSE about Cucumber and

Capybara? EECS

0 Cucumber and Capybara can perform
acceptance and integration tests

(] A Feature has =21 User Stories, which are
composed typically of 3 to 8 Steps

] Steps use Given for current state, When for
action, and Then for consequences of action

1 Cucumber matches step definitions to scenario
steps using regexes, and Capybara pretends to
be user that interacts with SaaS app

accordingly e

Qf SaaS User Interface Design
EECS

« SaaS apps often faces users
—User stories need User Interface (Ul)

« Want all stakeholders
Involved in Ul design
— Don’t want Ul rejected!

* Need Ul equivalent
of 3x5 cards

» Sketches: pen and paper
drawings or “Lo-FiI UI”

26

Lo-Fi1 Ul Example

C RCKTE NEW MOVIE

Mmovie e T —)

MOV (E RATWG (1
RELCASE DTS |]

MOVIE DESCRETOR

(Figure 4.3, Engineering Long Lasti SAIE Gl
igure 4.3, Engineering Long Lasting

Software by Armando Fox and David
Patterson, Alpha edition, 2012.) L—

27

(af

Storyboards

* Need to show how
Ul changes based on
user actions

« HCI => “storyboards”
 Like scenes In a movie
 But not linear

28

Example Storyboard

=0 @OT/‘{(OES(*\ s b@’(k‘(ﬁeg.
Acc MOVIES LIST REKRTE pew MV (E
E\TL@},F(LDG\ DAE | MORE houe e T

MOVIE RATWNG []
\;_,1; | E

REABRSE BATE)
AR NGw MOVIE
VI e L

MOV (€ bei&“’“ﬂ»\

NEECRPTOR

Bl S 0TS

(Figure 4.4, Engineering Long Lasting
Software by Armando Fox and David
Patterson, Alpha edition, 2012.)

(af

Lo-FI to HTML

» Tedious to do sketches and storyboards,
but easier than producing HTML!

— Also less intimidating to nontechnical
stakeholders => More likely to suggest
changes to Ul if not code behind it

— More likely to be happy with ultimate Ul

* Next steps: CSS (Cascading Style Sheets)
and Haml
— Make It pretty after it works

30

Which is FALSE about Lo-Fi UI?

] Like 3x5 cards, sketches and storyboards are
more likely to involve all stakeholders vs. code

(] The purpose of the Lo-Fi Ul approach is to
debug the Ul before you program it

] SaaS apps usually have a user interfaces
associated with the user stories

1 While it takes more time than building a
prototype Ul in CSS and Haml, the Lo-Fi
approach is more likely to lead to a Ul that
customers like

31

(af

And In Conclusion

* Debugging: Read, Ask, Search, Post

 Ralls Pitfalls: Too much code in Controller,
Some extra code Iin View

* Agile — prototypes, Iiterate with customer
 BDD — Design of app before implementation

« User Story — all stakeholders write what
features want on 3x5 cards

« Cucumber — magically turns 3x5 card user
stories Into acceptance tests for app

32

