
COMP 102.2x
Introduction to Java Programming – Part 2

Lecture 3

T.C. Pong

Department of Computer Science & Engineering

HKUST

• Event driven programming

• Graphical User Interface (or GUI)

Lecture 3

Procedural programming
• Code is executed in a step by step manner.

// A simple demo on Procedural vs Event Driven Programming
public class EventDrivenDemo
{
 private Canvas canvas = new Canvas();
 ColorImage image1 = new ColorImage("happyFace.png");
 ColorImage image2 = new ColorImage("tcpong.jpg");

 public EventDrivenDemo() {
 canvas.add(image2, 200, 200);
 canvas.add(image1);
 }
 public void moveHappyFace(int x, int y){
 image1.setX(x);
 image1.setY(y);
 }
}

 Event driven programming
• In event driven programming, the flow of the

program is determined by events.

• For example, drag an image using a mouse to
overlay that with another image.

Events

In event-driven programming, code is executed
upon activation of events.

• An event can be defined as a type of signal to
the program that something has happened.

• The event can be generated by external user
actions such as mouse movements, mouse
clicks, and keystrokes, or by the operating
system, such as a timer.

 Delegation Event Model

1. An event is generated when a user
interacts with a graphical component on
the Graphical User Interface (GUI).

2. Once the event is generated, the event is
passed (or delegated) to other objects
which handle the event.

3. The objects which handle the events are
called Event listeners/handlers.

 Delegation Event Model

Three main components:

1. Event source

2. Event object

3. Event listener

Event
source

Event
listener

Event object

Event source

• The event source is the origin of which
the event occurs.

• For example

– The Canvas as the source of mouse clicked
events.

– In same games, one can design a cannon
object to be a source for generating
cannon fired event.

Event object

• An event object contains the necessary
information describing the event.

• For example

– A mouse clicked event may include the x, y
positions of the mouse on the Canvas.

– A cannon fired event may include the tilt
angle of the cannon when it is fired.

Event listener
• The event listener (or handler) is the logic

of how the event should be handled.

• For example

– The mouse clicked listener can show a color
image at the x, y position specified by the
mouse click event.

– The cannon fired listener can move the
cannon ball to the destination position
according to the tilt angle specified by the
cannon fired event.

• An interface is a group of related methods with
empty bodies.

• ALL these methods must be defined by any class
which implements that interface.

• An interface declaration is similar to a class
declaration without method bodies, instance and
static variables.

• For example:

 public interface ActionListener {

 public void actionPerformed (ActionEvent e);

 }

Interface

Example: interface

public class Circle implements Shape {
 private double radius;
 private final double PI = 3.1416;

 public Circle (double r) {
 radius = r;
 }
 public double area() {
 return PI * radius * radius;
 }
 public double perimeter() {
 return 2 * PI * radius;
 }
}

public class Rectangle implements Shape {
 private double width;
 private double height;

 public Rectangle(double w, double h) {
 width = w;
 height = h;
 }
 public double area() {
 return width*height;
 }
 public double perimeter() {
 return (width+height) * 2;
 }
}

 // The Shape interface describes the common shape features
public interface Shape {
 public double area();
 public double perimeter();
}

The Mechanism
• Suppose we have an event called Abc.

• Then the AbcSource class will have a method named:

– addAbcListener(AbcListener listener)

for the source object to register its listeners.

• Calling this method allows the source class to know
which listener it should notify when the event occurs.

AbcSource

List of
listeners

AbcListener

Event
handlers

addAbcListerner(listener)

The Mechanism
• The AbcListener class will have a method named:

– public void AbcPerformed (AbcEvent e) {
 // handling the logic
}

• When the event Abc occurs, the method will be called by
the AbcSource class, passing along the AbcEvent object
which describes the event.

AbcSource

List of
listeners

AbcListener

Event
handlers

addAbcListerner(listener) AbcListener
(interface):

AbcPerformed

implements

AbcEvent

• All listeners interested in an event must
implement the event listener interface.

• The Event Listener class is a Java interface
which contains a set of methods to be
implemented.

 class MyListener implements AbcListener {

 public void AbcPerformed(AbcEvent e) {

 // my handling logic

 }

 }

Event Listener

Example: Event Driven Programming

 public void mousePressed(MouseEvent e) { }
 public void mouseReleased(MouseEvent e) { }
 public void mouseEntered(MouseEvent e) { }
 public void mouseExited(MouseEvent e) { }
}

import comp1022p.Canvas;
import comp1022p.ColorImage;
import java.awt.event.MouseListener;
import java.awt.event.MouseEvent;

public class MyListener implements MouseListener {
 private Canvas canvas;

 public MyListener () {
 canvas = new Canvas();
 canvas.addMouseListener(this);
 }

 public void mouseClicked(MouseEvent e) {
 ColorImage image = new ColorImage("happyFace.png");
 int x = e.getX() - image.getWidth()/2;
 int y = e.getY() - image.getHeight()/2;
 canvas.add(image, x, y);
 }

Graphical User Interface (GUI)

Lecture 3

• Modern GUIs are event-driven

• Events occur when the user interact with the
graphic components:
– A mouse click on a button

– A mouse drag on an image

– Some text is input into a textbox

– An item is selected from a pull-down menu

– A window is to be resized or closed

– …

GUI

Window
(JFrame)

Content pane
(JPanel)

Layout
(FlowLayout)

Components
(Jlabel, JButton)

setContentPane

add setLayout

Top-level Containers

Intermediate Containers

Components Layouts

Overall Structure

 Swing component hierarchy

• import java.awt.*;

import javax.swing.*;

java.lang.Object
 java.awt.Component
 java.awt.Container

 javax.swing.JComponent
 javax.swing.JButton
 javax.swing.JLabel
 javax.swing.JPanel
 javax.swing.JTextArea
 javax.swing.JTextField

 java.awt.Window
 java.awt.Frame
 javax.swing.JFrame

Subclass and Inheritance

• A subclass is a class that is derived from another class
(superclass).

– public class SubclassName extends SuperClassName

• The class Object is the root of the Java class hierarchy.

• A subclass inherits all the fields and methods from its
superclass.

• The keyword super can be used for a subclass to
invoke the constructors or methods of its superclass.

Simple GUI Example
import java.awt.*;
import javax.swing.*;

class MyWIndowDemo extends JFrame {
 public MyWindowDemo() {
 setTitle(“Window created using JFrame");
 setSize(400, 200);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);
}

Simple GUI Example
import java.awt.*;
import javax.swing.*;
class MyWindowDemo2 extends JFrame {
 public MyWindowDemo2() {
 setTitle(“Window created using JFrame");
 setSize(400, 200);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);

 JPanel content = new JPanel();
 content.setLayout(new FlowLayout());

 JLabel label = new JLabel(“My Panel");
 content.add(label);
 JButton button = new JButton("Click Me");
 content.add(button);

 setContentPane(content);
}

 Simple GUI Example
import java.awt.*;
import javax.swing.*;
Import java.awt.event.*;
class MyWindowDemo3 extends JFrame {
 public MyWindowDemo2() {
 setTitle(“Window created using JFrame");
 setSize(400, 200);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);

 JPanel content = new JPanel();
 content.setLayout(new FlowLayout());

 JLabel label = new JLabel(“My Panel");
 content.add(label);
 JButton button = new JButton("Click Me");
 content.add(button);

 setContentPane(content);
 }

button.addMouseListener(this);

implements MouseListener

 public void mouseClicked(MouseEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }

 public void mousePressed(MouseEvent e) { }
 public void mouseReleased(MouseEvent e) { }
 public void mouseEntered(MouseEvent e) { }
 public void mouseExited(MouseEvent e) { }
}

 Simple GUI Example
import java.awt.*;
import javax.swing.*;
Import java.awt.event.*;
class MyWindowDemo4 extends JFrame implements MouseListener {
 public MyWindowDemo2() {
 setTitle(“Window created using JFrame");
 setSize(400, 200);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setVisible(true);

 JPanel content = new JPanel();
 content.setLayout(new FlowLayout());
 content.addMouseListener(this);

 JLabel label = new JLabel(“My Panel");
 content.add(label);
 JButton button = new JButton("Click Me");
 content.add(button);
 button.addMouseListener(this);
 setContentPane(content);
 }

 public void mouseClicked(MouseEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }

 public void mouseEntered(MouseEvent e) {
 label.setText("Entered");
 }
 public void mouseExited(MouseEvent e) {
 label.setText("Exited");
 }
 public void mousePressed(MouseEvent e) {
 label.setText("Pressed at " +
 e.getX() + " " + e.getY());
 }
 public void mouseReleased(MouseEvent e) {
 label.setText(“Released at " +
 e.getX() + " " + e.getY());
 }
}

 public void mouseClicked(MouseEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }

 public void mousePressed(MouseEvent e) { }
 public void mouseReleased(MouseEvent e) { }
 public void mouseEntered(MouseEvent e) { }
 public void mouseExited(MouseEvent e) { }
}

