
Last Lecture

Object Oriented Programming

• Classes

• Objects and Instance variables

• Constructors

• Methods

Lecture 4

Object Oriented Programming

• Class, instance and local variables

• Scope of variables

Branching statements

• if-else

• switch

What is a variable scope?
• The scope of a variable is the section of a program

in which the variable can be used.

• What if we have two variables declared with the
same name?

4

London, England

London, Arkansas

London, Kentucky

London, Ohio

London, Ontario, CA

What is a variable scope?

Scope Rules for Variables

• Instance (or class) variables are accessible from
anywhere within the class where they are declared.

• Local variables (including parameters) are accessible
only inside the method where they are declared.

• Variables declared within a program block enclosed in
a pair of curly braces { } are local to the program block.

• What if we have two variables declared with the same
name?

Scope Rules for Variables

Name resolution rules for variables with the same
name:

– Attempt to find a matching variable declaration in its
current block

– If not found, attempt to find a matching variable
declaration in its parent’s block

– The process will repeat until the scope of variable is
resolved

– Compilation error if the variable can’t be resolved even in
the outermost code block

An Example: Bank Account

7

import comp1022p.IO;
/**
* A bank account has a balance and an owner who can make
* deposits to and withdrawals from the account.
*/
public class BankAccount {

private double balance = 0.0; // Initial balance is set to zero
private String owner = "NoName"; // Name of owner

/**
* Default constructor for a bank account with zero balance
*/
public BankAccount () { }
/**
* Construct a balance account with a given initial balance and owner’s name
* @param initialBalance the initial balance
* @param name name of owner
*/
public BankAccount (double initialBalance, String name) {

balance = initialBalance;
owner = name;

}

Instance variables

An Example: Bank Account

8

/**
* Method for depositing money to the bank account
* @param dAmount the amount to be deposited
*/

public void deposit(double dAmount) {
balance = balance + dAmount;

}
/**
* Method for withdrawing money from the bank account
* @param wAmount the amount to be withdrawn
*/

public void withdraw(double wAmount) {
balance = balance - wAmount;

}
/**
* Method for getting the current balance of the bank account
* @return the current balance
*/
public double getBalance() {

return balance;
}

An Example: Bank Account

9

/**
* Method for depositing money to the bank account
* @param dAmount the amount to be deposited
*/

public void deposit(double amount) {
balance = balance + amount;

}
/**
* Method for withdrawing money from the bank account
* @param wAmount the amount to be withdrawn
*/

public void withdraw(double amount) {
balance = balance - amount;

}
/**
* Method for getting the current balance of the bank account
* @return the current balance
*/
public double getBalance() {

return balance;
}

An Example: Bank Account

10

/**
* Method for depositing money to the bank account
* @param dAmount the amount to be deposited
*/

public void deposit(double amount) {
balance = balance + amount;

}
/**
* Method for withdrawing money from the bank account
* @param wAmount the amount to be withdrawn
*/

public void withdraw(double) {
balance = balance – ;

}
/**
* Method for getting the current balance of the bank account
* @return the current balance
*/
public double getBalance() {

return balance;
}

balance
balance

/**

* CourseGrade determines the final grade which is computed as

* the weighted sum of the grades obtained in exam, lab and homework

*/

public class CourseGrade

{

public static void main(String[] args)

{

final int examWeight = 70; // Percentage weight given to examination

final int labWeight = 20; // Percentage weight given to lab work

final int hwWeight = 10; // Percentage weight given to homework assignment

double examScore; // Examination score obtained by student

double labScore; // Lab score obtained by student

double hwScore; // Homework score obtained by student

double finalGrade; // Final grade obtained by student

CourseGrade example

// Ask student to input scores for exam, lab and nomework

IO.output("Enter your exam grade: ");

examScore = IO.inputDouble();

IO.output("Enter your lab grade: ");

labScore = IO.inputDouble();

IO.output("Enter your homework grade: ");

hwScore = IO.inputDouble();

// Computer final grade as the weighted sum of exam, lab and homework scores

examScore = examScore * (examWeight / 100.0);

labScore = labScore * (labWeight / 100.0);

hwScore = hwScore * (hwWeight / 100.0);

finalGrade = examScore + labScore + hwScore;

// Output the final grade

IO.outputln("Your final grade is " + finalGrade);

}

}

CourseGrade example

Grade Report

/**

* CS101Grade captures the performance of students in a course including

* their exam, lab and homework scores and compute the final grade as a

* weighted sum of the exam, lab and homework scores

*/

public class CS101Grade

{

// static and instance variables

final int examWeight = 70; // Percentage weight given to examination

final int labWeight = 20; // Percentage weight given to lab work

final int hwWeight = 10; // Percentage weight given to homework assignment

double examScore; // Examination score obtained by student

double labScore; // Lab score obtained by student

double hwScore; // Homework score obtained by student

double finalGrade; // Final grade obtained by student

Static Variables

/**

* CS101Grade captures the performance of students in a course including

* their exam, lab and homework scores and compute the final grade as a

* weighted sum of the exam, lab and homework scores

*/

public class CS101Grade

{

// static and instance variables

private static final int examWeight = 70; // Percentage weight given to examination

private static final int labWeight = 20; // Percentage weight given to lab work

private static final int hwWeight = 10; // Percentage weight given to homework assignment

private double examScore; // Examination score obtained by student

private double labScore; // Lab score obtained by student

private double hwScore; // Homework score obtained by student

private double finalGrade; // Final grade obtained by student

private String studentName; // Name of a particular student

Static Variables

/**

* Constructor declaration

*/

public CS101Grade(String name) {

studentName = name;

}

/**

* Method getScores obtains all scores for a student

*/

public void getScores() {

IO.output("Enter your exam grade: ");

examScore = IO.inputDouble();

IO.output("Enter your lab grade: ");

labScore = IO.inputDouble();

IO.output("Enter your homework grade: ");

hwScore = IO.inputDouble();

}

/**

* Compute final grade as the weighted sum of exam, lab and homework scores

*

* @param examScore Exam score of student

* @param labScore Lab score of student

* @param hwScore Homework score of student

* @return Weighted sum of examScore, labScore and hwScore in double type

*/

public double computeGrade(double examScore, double labScore, double hwScore)

{

examScore = examScore * (examWeight / 100.0);

labScore = labScore * (labWeight / 100.0);

hwScore = hwScore * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

/**

* Set the finalGrade by calling computeGrade

*/

public void setFinalGrade(){

finalGrade = computeGrade(examScore, labScore, hwScore);

}

/**

* Output the final results

*/

public void outputResult(){

IO.outputln("For " + studentName + ": examScore = " + examScore +

" labScore = " + labScore + " hwScore = " + hwScore +

" finalGrade = " + finalGrade);

}

}

90.0

Memory allocation for variables

examWeight

70

labWeight hwWeight labScore hwScoreexamScore finalGrade

20 1070 80.0 70.090.0 ?

final int examWeight = 70;

final int labWeight = 20;

final int hwWeight = 10;

double examScore;

double labScore;

double hwScore;

double finalGrade;

labScore hwScoreexamScore

computeGrade

Method: computeGrade

examWeight

70

labWeight hwWeight labScore hwScoreexamScore finalGrade

20 1070 80.0 70.090.090.0 ?80.0 70.090.090.0

public double computeGrade(double examScore, double labScore, double hwScore) {

examScore = examScore * (examWeight / 100.0);

labScore = labScore * (labWeight / 100.0);

hwScore = hwScore * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

finalGrade = computeGrade(examScore, labScore, hwScore);An instance of StudentGrade

labScore hwScoreexamScore

computeGrade

Method: computeGrade

examWeight

70

labWeight hwWeight labScore hwScoreexamScore finalGrade

20 1070 80.0 70.090.090.0 ?

80.0 70.0

90.0

90.0

public double computeGrade(double examScore, double labScore, double hwScore) {

examScore = examScore * (examWeight / 100.0);

labScore = labScore * (labWeight / 100.0);

hwScore = hwScore * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

An instance of StudentGrade

90.063.0 16.0 7.0

86.0

/**

* Compute final grade as the weighted sum of exam, lab and homework scores

*

* @param examScore Exam score of student

* @param labScore Lab score of student

* @param hwScore Homework score of student

* @return Weighted sum of examScore, labScore and hwScore in double type

*/

public double computeGrade(double examScore, double labScore, double hwScore)

{

examScore = examScore * (examWeight / 100.0);

labScore = labScore * (labWeight / 100.0);

hwScore = hwScore * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

/**

* Compute final grade as the weighted sum of exam, lab and homework scores

*

* @param examScore Exam score of student

* @param labScore Lab score of student

* @param hwScore Homework score of student

* @return Weighted sum of examScore, labScore and hwScore in double type

*/

public double computeGrade(double x, double y, double z)

{

x = x * (examWeight / 100.0);

y = y * (labWeight / 100.0);

z = z * (hwWeight / 100.0);

return x + y + z;

}

/**

* Compute final grade as the weighted sum of exam, lab and homework scores

*

* @param examScore Exam score of student

* @param labScore Lab score of student

* @param hwScore Homework score of student

* @return Weighted sum of examScore, labScore and hwScore in double type

*/

public double computeGrade(double x, double y, double z)

{

examScore = x * (examWeight / 100.0);

labScore = y * (labWeight / 100.0);

hwScore = z * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

y zx

computeGrade

Method: computeGrade

examWeight

70

labWeight hwWeight labScore hwScoreexamScore finalGrade

20 1070 80.0 70.090.090.0 ?80.0 70.090.090.0

public double computeGrade(double x, double y, double z) {

examScore = x * (examWeight / 100.0);

labScore = y * (labWeight / 100.0);

hwScore = z * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

finalGrade = computeGrade(examScore, labScore, hwScore);

y zx

computeGrade

Method: computeGrade

examWeight

70

labWeight hwWeight labScore hwScoreexamScore finalGrade

20 1070 80.0 70.090.090.0 ?

80.0 70.0

90.0

90.0

public double computeGrade(double x, double y, double z) {

examScore = x * (examWeight / 100.0);

labScore = y * (labWeight / 100.0);

hwScore = z * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

An instance of StudentGrade

90.063.0 16.0 7.0

86.0

/**

* Compute final grade as the weighted sum of exam, lab and homework scores

*

* @param examScore Exam score of student

* @param labScore Lab score of student

* @param hwScore Homework score of student

* @return Weighted sum of examScore, labScore and hwScore in double type

*/

public double computeGrade(double x, double y, double z)

{

double examScore = x * (examWeight / 100.0);

double labScore = y * (labWeight / 100.0);

double hwScore = z * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

y zx

computeGrade

Method: computeGrade

examWeight

70

labWeight hwWeight labScore hwScoreexamScore finalGrade

20 1070 80.0 70.090.090.0 ?

80.0 70.0

90.0

90.0

public double computeGrade(double x, double y, double z) {

double examScore = x * (examWeight / 100.0);

double labScore = y * (labWeight / 100.0);

double hwScore = z * (hwWeight / 100.0);

return examScore + labScore + hwScore;

}

An instance of StudentGrade

90.0

63.0 16.0 7.0

86.0

examScore labScore hwScore

/**

* Compute final grade as the weighted sum of exam, lab and homework scores

*

* To illustrate the use of the keyward “this” which can be used to make

* reference to the current object, that is, the object whose method or

* constructor is being called.

*

*/

public double computeGrade(double examScore, double labScore, double hwScore)

{

this.examScore = examScore * (examWeight / 100.0);

this.labScore = labScore * (labWeight / 100.0);

this.hwScore = hwScore * (hwWeight / 100.0);

return this.examScore + this.labScore + this.hwScore;

}

The “this” keyword

labScore hwScoreexamScore

computeGrade

The “this” keyword

examWeight

70

labWeight hwWeight labScore hwScoreexamScore finalGrade

20 1070 80.0 70.090.090.0 ?

80.0 70.0

90.0

90.0

public double computeGrade(double examScore, double labScore, double hwScore) {

this.examScore = examScore * (examWeight / 100.0);

this.labScore = labScore * (labWeight / 100.0);

this.hwScore = hwScore * (hwWeight / 100.0);

return this.examScore + this.labScore + this.hwScore;

}

An instance of StudentGrade

90.0

63.0 16.0 7.0

86.0

return examScore + labScore + hwScore;

What is a variable scope?
• Scope of a variable is the region by which the variable can be

used

• A variable’s scope is enclosed by the closest pair of curly
braces { } that enclose the variable declaration

• What if we have two variables declared with the same name?

32

London, England

London, Arkansas

London, Kentucky

London, Ohio

London, Ontario, CA

What is a variable scope?

What is a variable scope?
• Scope of a variable is the region by which the variable can be

used

• A variable’s scope is enclosed by the closest pair of curly
braces { } that enclose the variable declaration

• What if we have two variables declared with the same name?
– Attempt to find a matching variable declaration in its current block

– If not found, attempt to find a matching variable declaration in its
parent’s block

– The process will repeat until the scope of variable is resolved

– Compilation error occurs if the variable can’t be resolved even in the
outermost code block

The Car Example

34

// A class of Car objects that can move forward, backward and turn
public class Car2
{

String owner = "NoName";
ColorImage carImage = new ColorImage(“Car1.png”);
double gasMileage = 10.0; // Liters of gas used for every 100km
double gasInTank = 10.0;

Instance
variables

Class Car2

Owner [String] : “NoName”

carImage [ColorImage] :

gasMileage [double] : 10.0

gasInTank [double] : 10.0

The Car Example

35

// Constructor for Car2
public Car2(String nameOfOwner)

{
owner = nameOfOwner;
carImage = new ColorImage();

}

public static void main(String[] args) {
Car2 carOfJohn = new Car2(“John”);
Car2 carOfMary = new Car2(“Mary”);

Owner [String] : “John”

carImage [ColorImage] :

gasMileage [double] : 10.0

gasInTank [double] : 10.0

Owner [String] : “Mary”

carImage [ColorImage] :

gasMileage [double] : 10.0

gasInTank [double] : 10.0

carOfJohn

carOfMary

Memory stack
for local variables

Heap for
Instance variables

Reference
address

Primitive types and Reference types

TC

For primitive types, mailbox was used as an analogy for memory space allocated.

Owner [String] : “John”

carImage [ColorImage] :

gasMileage [double] : 10.0

gasInTank [double] : 10.0

examScore [double]

labScore [double]

hwScore [double]

finalScore [double]

Owner : “NoName”

Reference types

T.C. John

The Car Example

38

// Constructor for Car2
public Car2(String nameOfOwner)

{
owner = nameOfOwner;
carImage = new ColorImage();

}

public static void main(String[] args) {
Car2 carOfJohn = new Car2(“John”);
Car2 carOfMary = new Car2(“Mary”);

Owner [String] : “John”

carImage [ColorImage] :

gasMileage [double] : 10.0

gasInTank [double] : 10.0

Owner [String] : “Mary”

carImage [ColorImage] :

gasMileage [double] : 10.0

gasInTank [double] : 10.0

address2

address1carOfJohn

carOfMary

Memory stack
for local variables

Heap for
Instance variables

Reference
address

Class, Instance and Local Variables
Local variable Instance variable Class / static variable

Declaration Inside a method/constructor or as
formal parameters

Inside a class, but outside
methods/constructors

Inside a class with ‘static’, but
outside methods/constructors

Usage and
Lifetime

Used by methods to hold intermediate
results. Created when the method is
entered and destroyed on exit.

A separate copy is created for each
object using the keyword new and
destroyed when no more reference
is made by any object.

One single copy of variable shared
by all objects is created when the
program starts and destroyed
when the program ends.

Example:
Class of Car2

Public void moveForward(int dist) {
….

double gasUsed =
Math.abs(dist) / 100.0 * gasMileage;

String owner = "NoName";
ColorImage carImage =

new ColorImage(“Car1.png”);
double gasMileage = 10.0;

static final int NUMOFWHEEL = 4;

Initialization Must be initialized before use. Initialized to default values. E.g. 0
for numbers and null for objects.

Initialized to default values. E.g. 0
for numbers and null for objects.

Scope and
Visibility

Visible only in the method/constructor
or block in which they are declared.
Access modifiers cannot be used.

Can be seen by all methods
/constructors in the class. Visibility
to other classes depends on access
modifiers. They are often declared a
private to protect them from being
accidentally changed.

Same as instance variables but
often declared as constants.

39

Boolean Expressions

Boolean expressions are similar to arithmetic expressions
except:
• Boolean type is declared using the keyword boolean
• Boolean variables have only two possible values: true or

false
• Arithmetic operators are now replaced by relational

operators and conditional operators
• Examples:

– gasInTank == 0 is true if the value in gasInTank is equal to 0, and is false
otherwise

– examScore <= 100.0 is true if the value in examScore is less than 100.0,
and is false otherwise

– (examScore >= 0.0) && (examScore <= 100.0) returns true if examScore is within
the range from 0.0 to 100.0 and false otherwise

– Mathematical expression 0 < examScore < 100 not a legal Java expression.

Relational operators

Operator Name Example

< Less than 2 < 3

<= Less than or equal to 2 <= 3

> Greater than 2 > 3

>= Greater than or equal to 2 >= 3

== Equal to
(Note that, you must have two
consecutive ‘=‘)

2 == 3

!= Not equal to 2 != 3

Conditional operators

• They are used to connect multiple boolean
expressions

Operator Name Example

! Logical NOT ! (2 == 3)

&& Logical AND 4 < 5 && 2 < 3

|| Logical OR 4 < 5 || 2 < 3

• Truth table

– A mathematical table used in logic to compute the values of
logical expressions

• Truth table for Logical NOT

– For example: if p represents a false boolean expression, !p
represents a true boolean expression

p !p

false true

true false

Truth Table for Logical NOT

Truth Table for Logical AND

• If both P and Q are true (i.e. both represent true boolean
expressions), P && Q is true

• Otherwise, P && Q is false

• E.g. (examScore >= 0.0) && (examScore <= 100.0)

P Q P && Q

false false false

false true false

true false false

true true true

Truth Table for Logical OR

• If both P and Q are false (i.e. both represent false boolean
expressions), P || Q is false

• Otherwise, P || Q is true

• E.g. (COMP1022PGrade == ‘A’ || COMP1021Grade == ‘A’)
are good programmers.

P Q P || Q

false false false

false true true

true false true

true true true

More Operator Precedence

• Precedence of operators (from highest to lowest)
– Logical not !

– Multiplicative operators * / %

– Additive operators + -

– Relational ordering < <= >= >

– Relational equality == !=

– Logical and &&

– Logical or ||

– Assignment =

Branching Statements

• Motivation
– A computer program should be

smart enough to make decisions
and behave differently
depending on the situation

– Example

• Taking a lift/elevator in a building

• Taking alternative action when you
car is running out of gas

Types of branching statements
• There are three different types of

branching statements
– if statements

– if-else statements

– switch statements

• General format :
– Condition part checks if the condition (usually a

boolean expression) is satisfied

– Action part performs the action if the condition
is satisfied

48

if statements

if (boolean-expression) {

// if block

statement(s);

}

Note: the curly brackets { } can be
omitted if there is only one statement

condition

action

true

false

Flowchart

Example : Absolute value

50

/**

* The method absolute takes an integer

* parameter & returns its absolute value

*

* @param value argument whose absolute value is

* to be determined

* @return absolute value of the argument

*/

public int absolute (int value)

{

if(value < 0)

value = -value;

return value;

}

if-else statements

if (boolean-expression) {

//if-block

statement(s)-for-true-case;

}

else {

//else-block

statements(s)-for-false-case;

}

Note: the curly brackets { } can be omitted if
there is only one statement in either block

condition

Statement(s)
for true case

true false

Statement(s)
for false case

Flowchart

Example : Find the Larger One

52

/**

* The method larger returns the larger of two

* integer parameters

*

* @param value1 first argument for comparison

* @param value2 second argument for comparison

* @return larger of the two arguments

*/

public int larger (int value1, int value2)

{

if(value1 > value2)

return value1;

else

return value2;

}

Example : moveForward

53

public void moveForward(int dist)

{

/*

* Need to check if there is enough gas to travel the given

* distance dist

*/

// move the car by a distance dist in the orientation of the car

double radian = Math.toRadians(carImage.getRotation());

double distX = dist * Math.cos(radian);

double distY = dist * Math.sin(radian);

carImage.setX(carImage.getX() + (int)distX);

carImage.setY(carImage.getY() + (int)distY);

double gasUsed = Math.abs(dist) * gasMileage / 100.0;

gasInTank = gasInTank - gasUsed;

IO.outputln("Gas used:" + gasUsed + ",gas remained:" + gasInTank);

}

Example : moveForward

54

/*

* Need to check if there is enough gas to travel the given

* distance dist

*/

// First determine the maximum distance that the car could

// travel with the amount of gas in tank.

int maxDist = (int)(gasInTank / gasMileage * 100.0);

if (Math.abs(dist) > maxDist)

dist = maxDist;

Example : moveForward

55

/*

* Need to check if there is enough gas to travel the given

* distance dist

*/

// First determine the maximum distance that the car could

// travel with the amount of gas in tank.

int maxDist = (int)(gasInTank / gasMileage * 100.0);

if (Math.abs(dist) > maxDist)

if (dist < 0) dist = - maxDist;

else dist = maxDist;

Example : moveForward

56

/*

* Need to check if there is enough gas to travel the given

* distance dist

*/

// First determine the maximum distance that the car could

// travel with the amount of gas in tank.

int maxDist = (int)(gasInTank / gasMileage * 100.0);

if (Math.abs(dist) > maxDist)

if (dist < 0) dist = - maxDist;

else dist = maxDist;

Example : moveForward

57

/*

* Need to check if there is enough gas to travel the given

* distance dist

*/

// First determine the maximum distance that the car could

// travel with the amount of gas in tank.

int maxDist = (int)(gasInTank / gasMileage * 100.0);

if (Math.abs(dist) > maxDist)

if (dist < 0) dist = - maxDist;

else dist = maxDist;

Example : moveForward

58

/*

* Need to check if there is enough gas to travel the given

* distance dist

*/

// First determine the maximum distance that the car could

// travel with the amount of gas in tank.

int maxDist = (int)(gasInTank / gasMileage * 100.0);

if (Math.abs(dist) > maxDist)

{

if (dist < 0) dist = - maxDist;

else dist = maxDist;

IO.outputln(“Not enough gas to complete the trip!”);

}

Example : moveForward

59

public void moveForward(int dist)

{

int maxDist = (int) (gasInTank / gasMileage * 100.0);

if (Math.abs(dist) > maxDist)

{

if (dist < 0) dist = - maxDist;

else dist = maxDist;

IO.outputln("Not enough gas to complete the trip!");

}

// move the car by a distance dist in the orientation of the car

double radian = Math.toRadians(carImage.getRotation());

double distX = dist * Math.cos(radian);

double distY = dist * Math.sin(radian);

carImage.setX(carImage.getX() + (int)distX);

carImage.setY(carImage.getY() + (int)distY);

double gasUsed = Math.abs(dist) * gasMileage / 100.0;

gasInTank = gasInTank - gasUsed;

IO.outputln("Gas used:" + gasUsed + ",gas remained:" + gasInTank);

}

Dangling-else problem

int a=10, b=5, c=10;

if(a>b)

if(b>c)

a = 20;

else

a = 30;

int a=10, b=5, c=10;

if(a>b)

if(b>c)

a = 20;

else

a = 30;

Question: The only difference between the two
code blocks is the indentation on the else-clause.
• Which if-statement does the else-clause belong to?
• What would be the value of a?

? ?

Dangling-else problem

int a=10, b=5, c=10;

if(a>b) {

if(b>c)

a = 20;

else

a = 30;

}

• Indentation takes no effect.
• The else-clause is paired with the closest possible if-clause.
• Use braces to make your intention clear!
• a = 30 is the correct result.

int a=10, b=5, c=10;

if(a>b)

if(b>c)

a = 20;

else

a = 30;

the
same as

if-else-if Statement

• Example:
if(score >= 90)

Grade = ‘A’;

else if(score >= 80)

Grade = ‘B’;

else if(score >= 70)

Grade = ‘C’;

else if(score >= 50)

Grade = ‘D’;

else

Grade = ‘F’;

if-else-if Statement

• Example:
if(score >= 90)

Grade = ‘A’;

if(score >= 80)

Grade = ‘B’;

if(score >= 70)

Grade = ‘C’;

if(score >= 50)

Grade = ‘D’;

else

Grade = ‘F’;

Switch statement

value1

action 1

value2

action 2

valueN-1

action N-1

valueN

action 4

Multi-way

expression

...

The switch statement allows more than two execution paths.

Switch statement

• Switch expression

– Must be a value of char, byte, short, int or
String type

• The value1, value2...valueN

– must be of the same type as the switch
expression

• The keyword break is used to exit the switch
statement

– Without the keyword break, the flow moves to
the next case until a break is met

• Default (optional)

– Only be executed when no other case is
matched

switch (switch-expression) {

case value1: statement(s)1;

/* If you forget the “break;” here, the flow moves to
the next case until a break is met */

break;

case value2: statement(s)2;

break;

…

case valueN: statement(s)N;

break;

/* default case is optional */

default: statement(s)-for-default;

}

Switch statement

Action 1

Action 4

Action 3

Action 2

case 1

case 2

case 3

default

case 1

case 2

case 3

case 4

Switch Statement

• Example:
if(score >= 90)

Grade = ‘A’;

else if(score >= 80)

Grade = ‘B’;

else if(score >= 70)

Grade = ‘C’;

else if(score >= 50)

Grade = ‘D’;

else

Grade = ‘F’;

• Example:
switch(score/10) {

case 10: //next action

case 9: grade = 'A';

break;

case 8: grade = 'B';

break;

case 7: grade = 'C';

break;

case 6: //next action

case 5: grade = 'D';

break;

default:grade = 'F';

}

