

Recommendations Worth a Million An Introduction to Clustering

15.071x – The Analytics Edge

Netflix

- Online DVD rental and streaming video service
- More than 40 million subscribers worldwide
- \$3.6 billion in revenue

1

• Key aspect is being able to offer customers accurate movie recommendations based on a customer's own preferences and viewing history

The Netflix Prize

- From 2006 2009 Netflix ran a contest asking the public to submit algorithms to predict user ratings for movies
- Training data set of ~100,000,000 ratings and test data set of ~3,000,000 ratings were provided
- Offered a grand prize of \$1,000,000 USD to the team who could beat Netflix's own algorithm, Cinematch, by more than 10%, measured in RMSE

Contest Rules

- If the grand prize was not yet reached, progress prizes of \$50,000 USD per year would be awarded for the best result so far, as long as it had >1% improvement over the previous year.
- Teams must submit code and a description of the algorithm to be awarded any prizes
- If any team met the 10% improvement goal, last call would be issued and 30 days would remain for all teams to submit their best algorithm.

Initial Results

- The contest went live on October 2, 2006
- By October 8, a team submitted an algorithm that beat Cinematch
- By October 15, there were three teams with algorithms beating Cinematch
- One of these solutions beat Cinematch by >1%, qualifying for a progress prize

Progress During the Contest

- By June 2007, over 20,000 teams had registered from over 150 countries
- The 2007 progress prize went to team BellKor, with an 8.43% improvement on Cinematch
- In the following year, several teams from across the world joined forces

Competition Intensifies

- The 2008 progress prize went to team BellKor which contained researchers from the original BellKor team as well as the team BigChaos
- This was the last progress prize because another 1% improvement would reach the grand prize goal of 10%

Last Call Announced

4

5

6

Grand Prize Team

Dace

BigChaos

• On June 26, 2009, the team BellKor's Pragmatic Chaos submitted a 10.05% improvement over Cinematch

Netflix Prize								
ne Rule	s Leaderboard R	Register	Update S	ubmit Downloa	ad			
103	aderboa	nd	40.0	- 0/				
LCC		ITU	10.0	5% Display	y top 20 leaders.			
Rank	Team Name		Best Score	% Improveme	ent Last Submit Time			
Rank		1805						
Rank	Team Name BellKor's Pragmatic Ch	1805	Best Score	% Improveme	ent Last Submit Time			

0.8593

0.8604

0.8613

9.68

9.56

9.47

2009-06-12 08:20:24

2009-04-22 05:57:03

2009-06-23 23:06:52

15.071x – Recommendations Worth a Million: An Introduction to Clustering

Predicting the Best User Ratings

- Netflix was willing to pay over \$1M for the best user rating algorithm, which shows how critical the recommendation system was to their business
- What data could be used to predict user ratings?
- Every movie in Netflix's database has the ranking from all users who have ranked that movie
- We also know facts about the movie itself: actors, director, genre classifications, year released, etc.

Using Other Users' Rankings

	Men in Black	Apollo 13	Top Gun	Terminator
Amy	5	4	5	4
Bob	3		2	5
Carl		5	4	4
Dan	4	2		

- Consider suggesting to Carl that he watch "Men in Black", since Amy rated it highly and Carl and Amy seem to have similar preferences
- This technique is called **Collaborative Filtering**

Using Movie Information

- We saw that Amy liked "Men In Black"
 - It was directed by Barry Sonnenfeld
 - enfeld n the genres
 - Classified in the genres of action, adventure, sci-fi and comedy
 - It stars actor Will Smith

- Barry Sonnenfeld's movie "Get Shorty"
- "Jurassic Park", which is in the genres of action, adventure, and sci-fi

3

• Will Smith's movie "Hitch"

This technique is called **Content Filtering**

Strengths and Weaknesses

- Collaborative Filtering Systems
 - Can accurately suggest complex items without understanding the nature of the items
 - Requires a lot of data about the user to make accurate recommendations
 - Millions of items need lots of computing power
- Content Filtering
 - Requires very little data to get started
 - Can be limited in scope

Hybrid Recommendation Systems

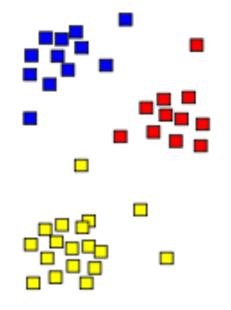
- Netflix uses both collaborative and content filtering
- For example, consider a collaborative filtering approach where we determine that Amy and Carl have similar preferences.
- We could then do content filtering, where we would find that "Terminator", which both Amy and Carl liked, is classified in almost the same set of genres as "Starship Troopers"
- Recommend "Starship Troopers" to both Amy and Carl, even though neither of them have seen it before

MovieLens Data

- <u>www.movielens.org</u> is a movie recommendation website run by the GroupLens Research Lab at the University of Minnesota
- They collect user preferences about movies and do collaborative filtering to make recommendations
- We will use their movie database to do content filtering using a technique called clustering

MovieLens Item Dataset

- Movies in the dataset are categorized as belonging to different genres
 - (Unknown) Action
 - Comedy
 Crime
 - Film Noir Horror
 - Sci-Fi
- Horior Thriller
- Adventure
- Documentary
- Musical
- War


- Animation
- Drama
- Mystery
- Western

- Children's
- Fantasy
- Romance

- Each movie may belong to many genres
- Can we systematically find groups of movies with similar sets of genres?

Why Clustering?

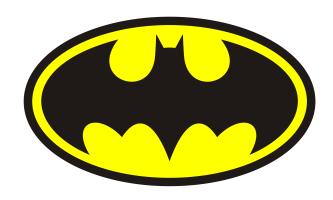
- "Unsupervised" learning
 - Goal is to segment the data into similar groups instead of prediction
- Can also cluster data into "similar" groups and then build a predictive model for each group
 - Be careful not to overfit your model! This works best with large datasets

Types of Clustering Methods

- There are many different algorithms for clustering
 - Differ in what makes a cluster and how to find them
- We will cover
 - Hierarchical
 - K-means in the next lecture

Distance Between Points

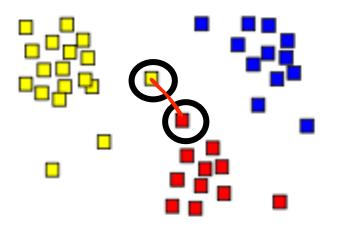
- Need to define distance between two data points
 - Most popular is "Euclidean distance"
 - Distance between points i and j is


$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \ldots + (x_{ik} - x_{jk})^2}$$

where k is the number of independent variables

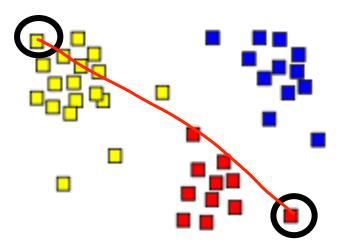
Distance Example

- The movie "Toy Story" is categorized as Animation, Comedy, and Children's
- The movie "Batman Forever" is categorized as Action, Adventure, Comedy, and Crime

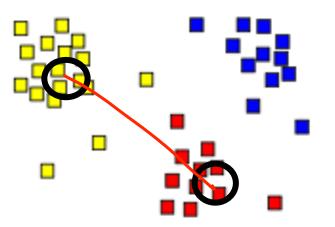

Distance Between Points

 $d = \sqrt{(0-0)^2 + (0-1)^2 + (0-1)^2 + (1-0)^2 + \dots}$ $= \sqrt{5}$

- Other popular distance metrics:
 - Manhattan Distance
 - Sum of absolute values instead of squares
 - Maximum Coordinate Distance
 - Only consider measurement for which data points deviate the most

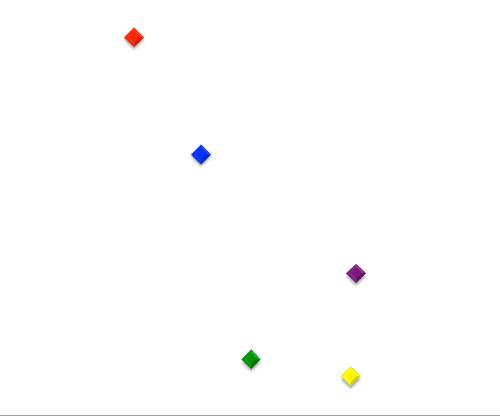

Distance Between Clusters

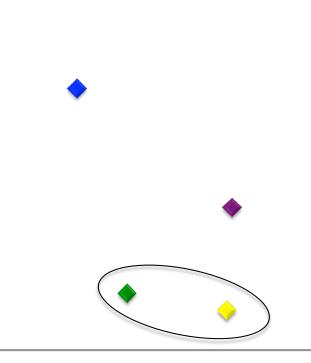
- Minimum Distance
 - Distance between clusters is the distance between points that are the closest

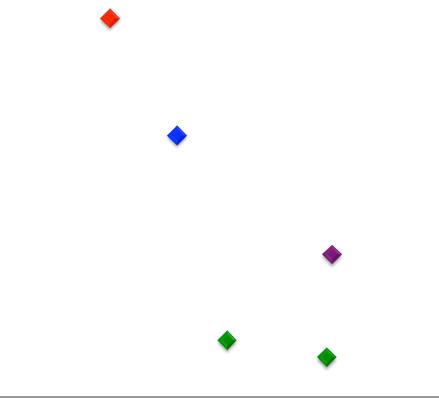

Distance Between Clusters

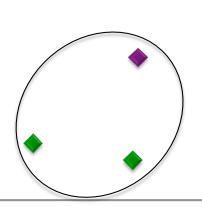
- Maximum Distance
 - Distance between clusters is the distance between points that are the farthest

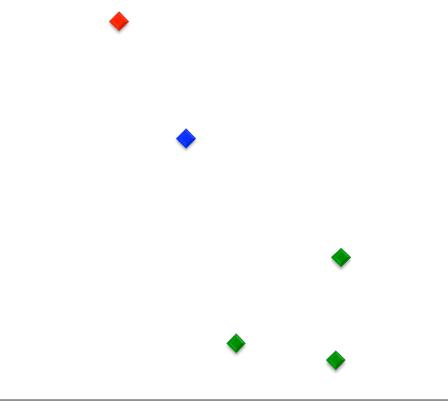
Distance Between Clusters

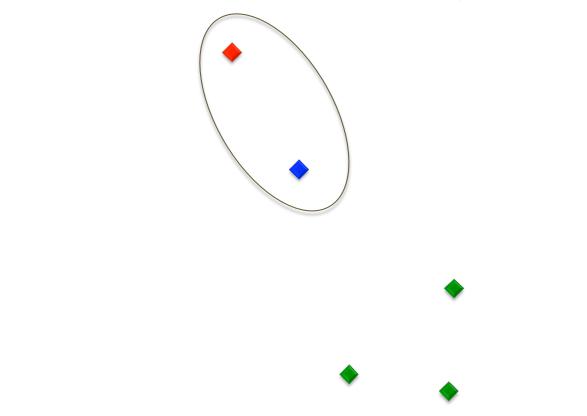

- Centroid Distance
 - Distance between centroids of clusters
 - Centroid is point that has the average of all data points in each component

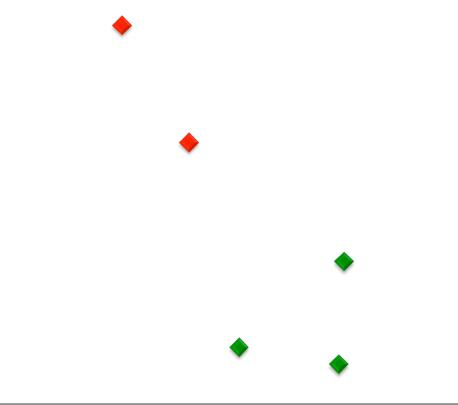

Normalize Data

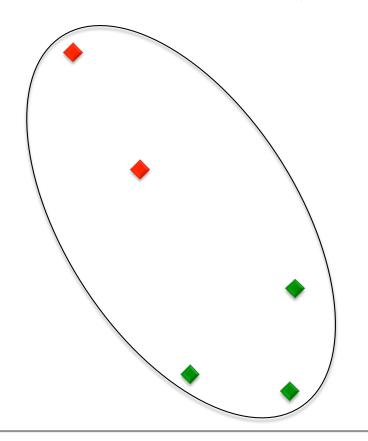

- Distance is highly influenced by scale of variables, so customary to normalize first
- In our movie dataset, all genre variables are on the same scale and so normalization is not necessary
- However, if we included a variable such as "Box Office Revenue," we would need to normalize.

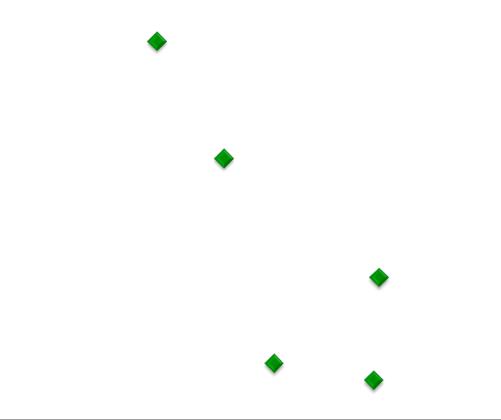

• Start with each data point in its own cluster



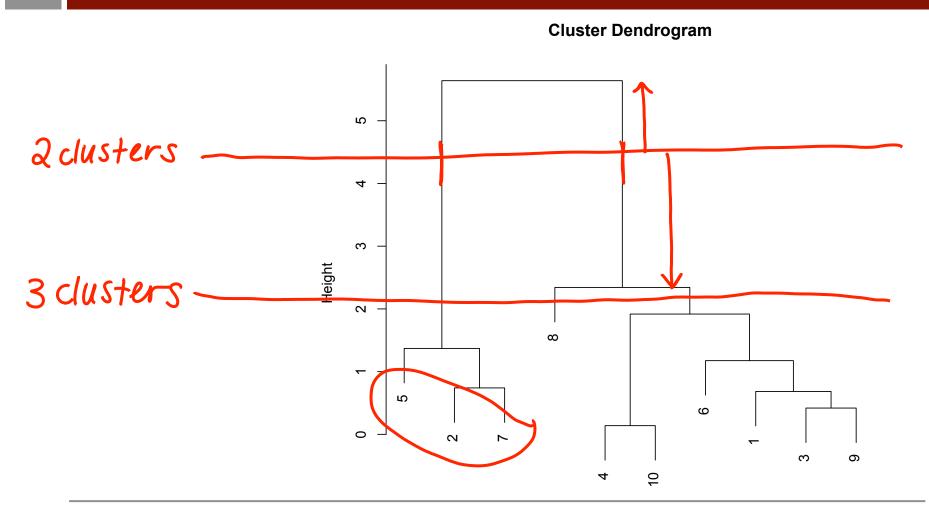

15.071x – Recommendations Worth a Million: An Introduction to Clustering 1







• Combine two nearest clusters (Euclidean, Centroid)


Display Cluster Process

4.0 Height of vertical lines 3.5 represents 3.0 distance between points 2.5 or clusters Height 2.0 1.5 Data points 1.0 listed along 0.5 2 S ო bottom 4

Cluster Dendrogram

15.071x – Recommendations Worth a Million: An Introduction to Clustering 10

Select Clusters

15.071x – Recommendations Worth a Million: An Introduction to Clustering 11

Meaningful Clusters?

- Look at statistics (mean, min, max, . . .) for each cluster and each variable
- See if the clusters have a feature in common that was not used in the clustering (like an outcome)

Beyond Movies: Mass Personalization

- "If I have 3 million customers on the web, I should have 3 million stores on the web"

 Jeff Bezos, CEO of Amazon.com
- Recommendation systems build models about users' preferences to personalize the user experience
- Help users find items they might not have searched for:
 - A new favorite band
 - An old friend who uses the same social media network
 - A book or song they are likely to enjoy

Cornerstone of these Top Businesses

15.071x – Recommendations Worth a Million: An Introduction to Clustering 2

Recommendation Method Used

- Collaborative Filtering
 - Amazon.com
 - Last.fm
 - Spotify
 - Facebook
 - LinkedIn
 - Google News
 - MySpace
 - Netflix

- Content Filtering
 - Pandora
 - IMDB
 - Rotten Tomatoes
 - Jinni
 - Rovi Corporation
 - See This Next
 - MovieLens
 - Netflix

The Netflix Prize: The Final 30 Days

- 29 days after last call was announced, on July 25, 2009, the team The Ensemble submitted a 10.09% improvement
- When Netflix stopped accepting submissions the next day, BellKor's Pragmatic Chaos had submitted a 10.09% improvement solution and The Ensemble had submitted a 10.10% improvement solution
- Netflix would now test the algorithms on a private test set and announce the winners

Winners are Declared!

- On September 18, 2009, a winning team was announced
- BellKor's Pragmatic Chaos won the competition and the \$1,000,000 grand prize

15.071x – Recommendations Worth a Million: An Introduction to Clustering 5

The Edge of Recommendation Systems

- In today's digital age, businesses often have hundreds of thousands of items to offer their customers
- Excellent recommendation systems can make or break these businesses
- Clustering algorithms, which are tailored to find similar customers or similar items, form the backbone of many of these recommendation systems