Impedance

Impedance, Z is, in general, a complex quantity composed of a real part and an imaginary part. We usually use the symbol R to represent its real part and we call it its resistance, and we use the symbol X to represent its imaginary part and we call it its reactance.

$$
\mathbf{Z}=\mathbf{R}+\mathbf{j} \mathbf{X}
$$

Since the impedance of a capacitor imaginary and negative,

$$
Z_{C}=\frac{1}{j \omega C}=-\frac{j}{\omega C}
$$

and that of an inductor is imaginary and positive,

$$
Z_{L}=j \omega L
$$

we say that when X is positive (as in $Z_{1}=3+4 j$) we call Z an inductive impedance and when X is negative (as in $Z_{2}=9-17 j$) we call it a capacitive impedance.

Occasionally, we may need to express Z in polar form

$$
\mathbf{Z}=|\mathbf{Z}| e^{j \theta}
$$

where its magnitude $|Z|$ and phase angle θ are related to components R and X of the rectangular form by

$$
|\mathbf{Z}|=\sqrt[+]{R^{2}+X^{2}}, \quad \text { and } \quad \theta=\tan ^{-1}\left(\frac{X}{R}\right)
$$

Impedances in Series and in Parallel

N impedances connected in series (sharing the same phasor current) can be combined into a single equivalent impedance $Z_{\text {eq }}$ whose value is equal to the algebraic sum of the individual impedances.

$$
Z_{e q}=\sum_{i=1}^{N} Z_{i}
$$

N impedances connected in parallel (sharing the same phasor voltage) can be combined into a single equivalent impedance $Z_{\text {eq }}$ whose value is equal to:

$$
\frac{1}{Z_{e q}}=\sum_{i=1}^{N} \frac{1}{Z_{i}}
$$

Some material reproduced with permission from Ulaby, F. T., \& Maharbiz, M. M. (2012). Circuits. $2^{\text {nd }}$ Edition, NTS Press.

