
Chapter 5

Foundation for inference

In the last chapter we encountered a probability problem in which we calculated the chance
of getting less than 15% smokers in a sample, if we knew the true proportion of smokers
in the population was 0.20. This chapter introduces the topic of inference, that is, the
methods of drawing conclusions when the population value is unknown.

Probability versus inference

Probability Probability involves using a known population value (parameter) to
make a prediction about the likelihood of a particular sample value (statistic).

Inference Inference involves using a calculated sample value (statistic) to esti-
mate or better understand an unknown population value (parameter).

Statistical inference is concerned primarily with understanding the quality of param-
eter estimates. In this chapter, we will focus on the case of estimating a proportion from
a random sample. While the equations and details change depending on the setting, the
foundations for inference are the same throughout all of statistics. We introduce these
common themes in this chapter, setting the stage for inference on other parameters. Un-
derstanding this chapter will make the rest of this book, and indeed the rest of statistics,
seem much more familiar.

5.1 Estimating unknown parameters

5.1.1 Point estimates

 Example 5.1 We take a sample of size n = 80 from a particular county and find
that 12 of the 80 people smoke. Estimate the population proportion based on the
sample. Note that this example differs from Example 4.59 of the previous chapter in
that we are not trying to predict what will happen in a sample. Instead, we have a
sample, and we are trying to infer something about the true proportion.

The most intuitive way to go about doing this is to simply take the sample propor-
tion. That is, p̂ = 12

80 = 0.15 is our best estimate for p, the population proportion.
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The sample proportion p̂ = 0.15 is called a point estimate of the population pro-
portion: if we can only choose one value to estimate the population proportion, this is our
best guess. Suppose we take a new sample of 80 people and recompute the proportion of
smokers in the sample; we will probably not get the exact same answer that we got the first
time. Estimates generally vary from one sample to another, and this sampling variation
tells us how close we expect our estimate to be to the true parameter.

 Example 5.2 In Chapter 2, we found the summary statistics for the number of
characters in a set of 50 email data. These values are summarized below.

x̄ 11,160
median 6,890
sx 13,130

Estimate the population mean based on the sample.

The best estimate for the population mean is the sample mean. That is, x̄ = 11, 160
is our best estimate for µ.⊙
Guided Practice 5.3 Using the email data, what quantity should we use as a point
estimate for the population standard deviation σ?1

5.1.2 Introducing the standard error

Point estimates only approximate the population parameter, and they vary from one sample
to another. It will be useful to quantify how variable an estimate is from one sample to
another. For a random sample, when this variability is small we can have greater confidence
that our estimate is close to the true value.

How can we quantify the expected variability in a point estimate p̂? The discussion
in Section 4.5 tells us how. The variability in the distribution of p̂ is given by its standard
deviation.

SDp̂ =

√
p(1− p)

n

 Example 5.4 Calculate the standard deviation of p̂ for smoking example, where p̂
= 0.15 is the proportion in a sample of size 80 that smoke.

It may seem easy to calculate the SD at first glance, but there is a serious problem:
p is unknown. In fact, when doing inference, p must be unknown, otherwise it is
illogical to try to estimate it. We cannot calculate the SD, but we can estimate it
using, you might have guessed, the sample proportion p̂.

This estimate of the standard deviation is known as the standard error, or SE for
short.

SEp̂ =

√
p̂(1− p̂)

n

1Again, intuitively we would use the sample standard deviation s = 13, 130 as our best estimate for σ.
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 Example 5.5 Calculate and interpret the SE of p̂ for the previous example.

SEp̂ =

√
p̂(1− p̂)

n
=

√
0.15(1− 0.15)

80
= 0.04

The average or expected error in our estimate is 4%.

 Example 5.6 If we quadruple the sample size from 80 to 240, what will happen to
the SE?

SEp̂ =

√
p̂(1− p̂)

n
=

√
0.15(1− 0.15)

240
= 0.02

The larger the sample size, the smaller our standard error. This is consistent with
intuition: the more data we have, the more reliable an estimate will tend to be.
However, quadrupling the sample size does not reduce the error by a factor of 4.
Because of the square root, the effect is to reduce the error by a factor

√
4, or 2.

5.1.3 Basic properties of point estimates

We achieved three goals in this section. First, we determined that point estimates from
a sample may be used to estimate population parameters. We also determined that these
point estimates are not exact: they vary from one sample to another. Lastly, we quantified
the uncertainty of the sample proportion using what we call the standard error. We will
learn how to calculate the standard error for other point estimates such as a mean, a
difference in means, or a difference in proportions in the chapters that follow.

5.2 Confidence intervals

A point estimate provides a single plausible value for a parameter. However, a point
estimate is rarely perfect; usually there is some error in the estimate. In addition to
supplying a point estimate of a parameter, a next logical step would be to provide a
plausible range of values for the parameter.

5.2.1 Capturing the population parameter

A plausible range of values for the population parameter is called a confidence interval.
Using only a point estimate is like fishing in a murky lake with a spear, and using a
confidence interval is like fishing with a net. We can throw a spear where we saw a fish,
but we will probably miss. On the other hand, if we toss a net in that area, we have a good
chance of catching the fish.

If we report a point estimate, we probably will not hit the exact population parameter.
On the other hand, if we report a range of plausible values – a confidence interval – we
have a good shot at capturing the parameter.⊙

Guided Practice 5.7 If we want to be very confident we capture the population
parameter, should we use a wider interval or a smaller interval?2

2If we want to be more confident we will capture the fish, we might use a wider net. Likewise, we use
a wider confidence interval if we want to be more confident that we capture the parameter.
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5.2.2 Constructing a 95% confidence interval

A point estimate is our best guess for the value of the parameter, so it makes sense to build
the confidence interval around that value. The standard error, which is a measure of the
uncertainty associated with the point estimate, provides a guide for how large we should
make the confidence interval.

Constructing a 95% confidence interval
When the sampling distribution of a point estimate can reasonably be modeled as
normal, the point estimate we observe will be within 1.96 standard errors of the
true value of interest about 95% of the time. Thus, a 95% confidence interval
for such a point estimate can be constructed:

point estimate ± 1.96× SE (5.8)

We can be 95% confident this interval captures the true value.

⊙
Guided Practice 5.9 Compute the area between -1.96 and 1.96 for a normal
distribution with mean 0 and standard deviation 1. 3

 Example 5.10 The point estimate from the smoking example was 15%. In the next
chapters we will determine when we can apply a normal model to a point estimate.
For now, assume that the normal model is reasonable. The standard error for this
point estimate was calculated to be SE = 0.04. Construct a 95% confidence interval.

point estimate ± 1.96× SE
0.15 ± 1.96× 0.04

(0.0716 , 0.2284)

We are 95% confident that the true proportion of smokers in this population is be-
tween 7.16% and 22.84%.

 Example 5.11 Based on the confidence interval above, is there evidence that a
smaller proportion smoke in this county than in the state as a whole? The proportion
that smoke in the state is known to be 0.20.

While the point estimate of 0.15 is lower than 0.20, this deviation is likely due to
random chance. Because the confidence interval includes the value 0.20, 0.20 is a
reasonable value for the proportion of smokers in the county. Therefore, based on
this confidence interval, we do not have evidence that a smaller proportion smoke in
the county than in the state.

In Section 1.1 we encountered an experiment that examined whether implanting a
stent in the brain of a patient at risk for a stroke helps reduce the risk of a stroke. The
results from the first 30 days of this study, which included 451 patients, are summarized
in Table 5.1. These results are surprising! The point estimate suggests that patients who
received stents may have a higher risk of stroke: ptrmt − pctrl = 0.090.

3We will leave it to you to draw a picture. The Z scores are Zleft = −1.96 and Zright = 1.96. The
area between these two Z scores is 0.9500. This is where “1.96” comes from in the 95% confidence interval
formula.
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stroke no event Total
treatment 33 191 224
control 13 214 227
Total 46 405 451

Table 5.1: Descriptive statistics for 30-day results for the stent study.

 Example 5.12 Consider the stent study and results. The conditions necessary to
ensure the point estimate ptrmt−pctrl = 0.090 is nearly normal have been verified for
you, and the estimate’s standard error is SE = 0.028. Construct a 95% confidence
interval for the change in 30-day stroke rates from usage of the stent.

The conditions for applying the normal model have already been verified, so we can
proceed to the construction of the confidence interval:

point estimate ± 1.96× SE
0.090 ± 1.96× 0.028

(0.035 , 0.145)

We are 95% confident that implanting a stent in a stroke patient’s brain. Since the
entire interval is greater than 0, it means the data provide statistically significant
evidence that the stent used in the study increases the risk of stroke, contrary to
what researchers had expected before this study was published!

We can be 95% confident that a 95% confidence interval contains the true population
parameter. However, confidence intervals are imperfect. About 1-in-20 (5%) properly con-
structed 95% confidence intervals will fail to capture the parameter of interest. Figure 5.2
shows 25 confidence intervals for a proportion that were constructed from simulations where
the true proportion was p = 0.3. However, 1 of these 25 confidence intervals happened not
to include the true value.⊙

Guided Practice 5.13 In Figure 5.2, one interval does not contain the true pro-
portion, p = 0.3. Does this imply that there was a problem with the simulations
run?4

5.2.3 Changing the confidence level

Suppose we want to consider confidence intervals where the confidence level is somewhat
higher than 95%: perhaps we would like a confidence level of 99%.

 Example 5.14 Would a 99% confidence interval be wider or narrower than a 95%
confidence interval?

Using a previous analogy: if we want to be more confident that we will catch a fish,
we should use a wider net, not a smaller one. To be 99% confidence of capturing the
true value, we must use a wider interval. On the other hand, if we want an interval
with lower confidence, such as 90%, we would use a narrower interval.

4No. Just as some observations occur more than 1.96 standard deviations from the mean, some point
estimates will be more than 1.96 standard errors from the parameter. A confidence interval only provides
a plausible range of values for a parameter. While we might say other values are implausible based on the
data, this does not mean they are impossible.
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Figure 5.2: Twenty-five samples of size n = 300 were simulated when p =
0.30. For each sample, a confidence interval was created to try to capture
the true proportion p. However, 1 of these 25 intervals did not capture
p = 0.30.

The 95% confidence interval structure provides guidance in how to make intervals with
new confidence levels. Below is a general 95% confidence interval for a point estimate that
comes from a nearly normal distribution:

point estimate ± 1.96× SE (5.15)

There are three components to this interval: the point estimate, “1.96”, and the standard
error. The choice of 1.96 × SE was based on capturing 95% of the distribution since the
estimate is within 1.96 standard deviations of the true value about 95% of the time. The
choice of 1.96 corresponds to a 95% confidence level.⊙

Guided Practice 5.16 If X is a normally distributed random variable, how often
will X be within 2.58 standard deviations of the mean?5

To create a 99% confidence interval, change 1.96 in the 95% confidence interval formula
to be 2.58. Guided Practice 5.16 highlights that 99% of the time a normal random variable
will be within 2.58 standard deviations of its mean. This approach – using the Z scores in
the normal model to compute confidence levels – is appropriate when the point estimate
is associated with a normal distribution and we can properly compute the standard error.
Thus, the formula for a 99% confidence interval is

point estimate ± 2.58× SE (5.17)

Figure 5.3 provides a picture of how to identify z? based on a confidence level.

5This is equivalent to asking how often the Z score will be larger than -2.58 but less than 2.58. (For a
picture, see Figure 5.3.) There is ≈ 0.99 probability that the unobserved random variable X will be within
2.58 standard deviations of the mean.
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standard deviations from the mean

−3 −2 −1 0 1 2 3

95%, extends −1.96 to 1.96

99%, extends −2.58 to 2.58

Figure 5.3: The area between -z? and z? increases as |z?| becomes larger.
If the confidence level is 99%, we choose z? such that 99% of the normal
curve is between -z? and z?, which corresponds to 0.5% in the lower tail
and 0.5% in the upper tail: z? = 2.58.

⊙
Guided Practice 5.18 Create a 99% confidence interval for the impact of the
stent on the risk of stroke using the data from Example 5.12. The point estimate is
0.090, and the standard error is SE = 0.028. It has been verified for you that the
point estimate can reasonably be modeled by a normal distribution.6

Confidence interval for any confidence level
If the point estimate follows the normal model with standard error SE, then a
confidence interval for the population parameter is

point estimate ± z? × SE

where z? corresponds to the confidence level selected.

Finding the value of z? that corresponds to a particular confidence level is most easily
accomplished by using a new table, called the t table. For now, what is noteworthy about
this table is that the bottom row corresponds to confidence levels. The numbers inside the
table are the critical values, but which row should we use? Later in this book, we will see
that a t curve with infinite degrees of freedom corresponds to the normal curve. For this
reason, when finding using the t table to find the appropriate z?, always use row ∞.

6Since the necessary conditions for applying the normal model have already been checked for us, we can
go straight to the construction of the confidence interval: point estimate ± 2.58 × SE → (0.018, 0.162).
We are 99% confident that implanting a stent in the brain of a patient who is at risk of stroke increases
the risk of stroke within 30 days by a rate of 0.018 to 0.162 (assuming the patients are representative of
the population).
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one tail 0.100 0.050 0.025 0.010 0.005
df 1 3.078 6.314 12.71 31.82 63.66

2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
...

...
...

...
...

1000 1.282 1.646 1.962 2.330 2.581
∞ 1.282 1.645 1.960 2.326 2.576

Confidence level C 80% 90% 95% 98% 99%

Table 5.4: An abbreviated look at the t table. The columns correspond to
confidence levels. Row ∞ corresponds to the normal curve.

TIP: Finding z? for a particular confidence level
We select z? so that the area between -z? and z? in the normal model corresponds
to the confidence level. Use the t table at row ∞ to find the critical value z?.

⊙
Guided Practice 5.19 In Example 5.12 we found that implanting a stent in
the brain of a patient at risk for a stroke increased the risk of a stroke. The study
estimated a 9% increase in the number of patients who had a stroke, and the standard
error of this estimate was about SE = 2.8% or 0.028. Compute a 90% confidence
interval for the effect. Note: the conditions for normality had earlier been confirmed
for us.7

The normal approximation is crucial to the precision of these confidence intervals. The
next two chapters provides detailed discussions about when the normal model can safely
be applied to a variety of situations. When the normal model is not a good fit, we will use
alternate distributions that better characterize the sampling distribution.

5.2.4 Margin of error

The confidence intervals we have encountered thus far have taken the form

point estimate ± z∗ × SE

Confidence intervals are also often reported as

point estimate ± margin of error

For example, instead of reporting an interval as 0.09 ± 1.645× 0.028 or (0.044, 0.136), it
could be reported as 0.09 ± 0.046.

7We must find z? such that 90% of the distribution falls between -z? and z? in the standard normal
model. Using the t table with a confidence level of 90% at row ∞ gives 1.645. Thus z? = 1.645. The 90%
confidence interval can then be computed as

point estimate ± z? × SE
0.09 ± 1.645× 0.028

(0.044 , 0.136)

That is, we are 90% confident that implanting a stent in a stroke patient’s brain increased the risk of stroke
within 30 days by 4.4% to 13.6%.
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The margin of error is the distance between the point estimate and the lower or
upper bound of a confidence interval.

Margin of error
A confidence interval can be written as point estimate ± margin of error.
For a confidence interval for a proportion, the margin of error is z? × SE.

⊙
Guided Practice 5.20 To have a smaller margin or error, should one use a larger
sample or a smaller sample?8

⊙
Guided Practice 5.21 What is the margin of error for the confidence interval:
(0.035, 0.145)?9

5.2.5 Interpreting confidence intervals

A careful eye might have observed the somewhat awkward language used to describe con-
fidence intervals. Correct interpretation:

We are [XX]% confident that the population parameter is between...

Incorrect language might try to describe the confidence interval as capturing the population
parameter with a certain probability.10 This is one of the most common errors: while it
might be useful to think of it as a probability, the confidence level only quantifies how
plausible it is that the parameter is in the interval.

As we saw in Figure 5.2, the 95% confidence interval method has a 95% probability of
producing an interval that will contain the population parameter. However, each individual
interval either does or does not contain the population parameter.

Another especially important consideration of confidence intervals is that they only
try to capture the population parameter. Our intervals say nothing about the confidence
of capturing individual observations, a proportion of the observations, or about capturing
point estimates. Confidence intervals only attempt to capture population parameters.

8Intuitively, a larger sample should tend to yield less error. We can also note that n, the sample size is
in the denominator of the SE formula, so a n goes up, the SE and thus the margin of error go down.

9Because we both add and subtract the margin of error to get the confidence interval, the margin of
error is half of the width of the interval. (0.145− 0.035)/2 = 0.055.

10To see that this interpretation is incorrect, imagine taking two random samples and constructing two
95% confidence intervals for an unknown proportion. If these intervals are disjoint, can we say that there
is a 95%+95%=190% chance that the first or the second interval captures the true value?
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5.2.6 Using confidence intervals: a stepwise approach

Follow these six steps when carrying out any confidence interval problem.

Steps for using confidence intervals (AP exam tip) The AP exam is scored
in a standardized way, so to ensure full points for a problem, make sure to complete
each of the following steps.

1. State the name of the CI being used.

2. Verify conditions to ensure the standard error estimate is reasonable and
the point estimate is unbiased and follows the expected distribution, often a
normal distribution.

3. Plug in the numbers and write the interval in the form

point estimate ± critical value× SE of estimate

So far, the critical value has taken the form z?.

4. Evaluate the CI and write in the form ( , ).

5. Interpret the interval: “We are [XX]% confident that the true [describe the
parameter in context] falls between [identify the upper and lower endpoints
of the calculated interval].

6. State your conclusion to the original question. (Sometimes, as in the case of
the examples in this section, no conclusion is necessary.)

5.3 Introducing Hypothesis testing

 Example 5.22 Suppose your professor splits the students in class into two groups:
students on the left and students on the right. If p̂

L
and p̂

R
represent the proportion

of students who own an Apple product on the left and right, respectively, would you
be surprised if p̂

L
did not exactly equal p̂

R
?

While the proportions would probably be close to each other, they are probably not
exactly the same. We would probably observe a small difference due to chance.

Studying randomness of this form is a key focus of statistics. How large would the
observed difference in these two proportions need to be for us to believe that there is a real
difference in Apple ownership? In this section, we’ll explore this type of randomness in the
context of an unknown proportion, and we’ll learn new tools and ideas that will be applied
throughout the rest of the book.

5.3.1 Case study: medical consultant

People providing an organ for donation sometimes seek the help of a special medical con-
sultant. These consultants assist the patient in all aspects of the surgery, with the goal
of reducing the possibility of complications during the medical procedure and recovery.
Patients might choose a consultant based in part on the historical complication rate of the
consultant’s clients.
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One consultant tried to attract patients by noting the average complication rate for
liver donor surgeries in the US is about 10%, but her clients have had only 3 complications
in the 62 liver donor surgeries she has facilitated. She claims this is strong evidence that
her work meaningfully contributes to reducing complications (and therefore she should
be hired!).

 Example 5.23 We will let p represent the true complication rate for liver donors
working with this consultant. Estimate p using the data, and label this value p̂.

The sample proportion for the complication rate is 3 complications divided by the
62 surgeries the consultant has worked on: p̂ = 3/62 = 0.048.

 Example 5.24 Is it possible to prove that the consultant’s work reduces complica-
tions?

No. The claim implies that there is a causal connection, but the data are observa-
tional. For example, maybe patients who can afford a medical consultant can afford
better medical care, which can also lead to a lower complication rate.

 Example 5.25 While it is not possible to assess the causal claim, it is still possible
to ask whether the low complication rate of p̂ = 0.048 provides evidence that the
consultant’s true complication rate is different than the average complication rate in
the US. Why might we be tempted to immediately conclude that the consultant’s
true complication rate is different than the average complication rate? Can we draw
this conclusion?

Her sample complication rate is p̂ = 0.048, 0.052 lower than the average complication
rate in the US of 10%. However, we cannot yet be sure if the observed difference
represents a real difference or is just the result of random variation. We wouldn’t
expect the sample proportion to be exactly 0.10, even if the truth was that her real
complication rate was 0.10.

5.3.2 Setting up the null and alternate hypothesis

We can set up two competing hypotheses about the consultant’s true complication rate.
The first is call the null hypothesis and represents either a skeptical perspective or a
perspective of no difference. The second is called the alternative hypothesis (or alternate
hypothesis) and represents a new perspective such as the possibility that there has been a
change or that there is a treatment effect in an experiment.

Null and alternative hypotheses

The null hypothesis is abbreviated H0. It states that nothing has changed and
that any deviation from what was expected is due to chance error.

The alternative hypothesis is abbreviated HA. It asserts that there has been
a change and that the observed deviation is too large to be explained by
chance alone.
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 Example 5.26 Identify the null and alternative claim regarding the consultant’s
complication rate.

H0: The true complication rate for the consultant’s clients is the same as the average
complication rate in the US of 10%.

HA: The true complication rate for the consultant’s clients is different than 10%.

Often it is convenient to write the null and alternative hypothesis in mathematical or
numerical terms. To do so, we must first identify the quantity of interest. This quantity of
interest is known as the parameter for a hypothesis test.

Parameters and point estimates

A parameter for a hypothesis test is the “true” value of the population of inter-
est. When the parameter is a proportion, we call it p.

A point estimate is calculated from a sample. When the point estimate is a
proportion, we call it p̂.

The observed or sample proportion 0f 0.048 is a point estimate for the true proportion.
The parameter in this problem is the true proportion of complications for this consultant’s
clients. The parameter is unknown, but the null hypothesis is that it equals the overall
proportion of complications: p = 0.10. This hypothesized value is called the null value.

Null value of a hypothesis test
The null value is the value hypothesized for the parameter in H0, and it is some-
times represented with a subscript 0, e.g. p0 (just like H0).

In the medical consultant case study, the parameter is p and the null value is p0 = 0.10.
We can write the null and alternative hypothesis as numerical statements as follows.

• H0: p = 0.10 (The complication rate for the consultant’s clients is equal to the US
average of 10%.)

• HA: p 6= 0.10 (The complication rate for the consultant’s clients is not equal to the
US average of 10%.)

Hypothesis testing
These hypotheses are part of what is called a hypothesis test. A hypothesis
test is a statistical technique used to evaluate competing claims using data. Often
times, the null hypothesis takes a stance of no difference or no effect. If the null
hypothesis and the data notably disagree, then we will reject the null hypothesis
in favor of the alternative hypothesis.

Don’t worry if you aren’t a master of hypothesis testing at the end of this sec-
tion. We’ll discuss these ideas and details many times in this chapter and the two
chapters that follow.

The null claim is always framed as an equality: it tells us what quantity we should use
for the parameter when calculating the p-value. There are three choices for the alternative
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hypothesis, depending upon whether the researcher is trying to prove that the value of the
parameter is greater than, less than, or not equal to the null value.

TIP: Always write the null hypothesis as an equality
We will find it most useful if we always list the null hypothesis as an equality
(e.g. p = 7) while the alternative always uses an inequality (e.g. p 6= 0.7, p > 0.7,
or p < 0.7).

⊙
Guided Practice 5.27 According to US census data, in 2012 the percent of male
residents in the state of Alaska was 52.1%.11 A researcher plans to take a random
sample of residents from Alaska to test whether or not this is still the case. Write
out the hypotheses that the researcher should test in both plain and statistical lan-
guage. 12

When the alternative claim uses a 6=, we call the test a two-sided test, because either
extreme provides evidence against H0. When the alternative claim uses a < or a >, we call
it a one-sided test.

TIP: One-sided and two-sided tests
If the researchers are only interested in showing an increase or a decrease, but not
both, use a one-sided test. If the researchers would be interested in any difference
from the null value – an increase or decrease – then the test should be two-sided.

 Example 5.28 For the example of the consultant’s complication rate, we knew that
her sample complication rate was 0.048, which was lower than average US complica-
tion rate of 0.10. Why did we conduct a two-sided hypothesis test for this setting?

The setting was framed in the context of the consultant being helpful, but what if the
consultant actually performed worse than the average? Would we care? More than
ever! Since we care about a finding in either direction, we should run a two-sided test.

Caution: One-sided hypotheses are allowed only before seeing data
After observing data, it is tempting to turn a two-sided test into a one-sided test.
Avoid this temptation. Hypotheses must be set up before observing the data.
If they are not, the test must be two-sided.

5.3.3 Evaluating the hypotheses with a p-value

 Example 5.29 There were 62 patients in the consultant’s sample. If the null claim
is true, how many would we expect to have had a complication?

If the null claim is true, we would expect about 10% of the patients, or about 6.2 to
have a complication.

11http://www.census.gov/newsroom/releases/archives/population/cb13-112.html
12H0: p = 0.521; The proportion of male residents in Alaska is unchanged from 2012. HA: p 6= 0.521;

The proportion of male residents in Alaska has changed from 2012. Note that it could have increased or
decreased.

http://www.census.gov/newsroom/releases/archives/population/cb13-112.html
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The complication rate in the consultant’s sample of size 62 was 0.048 (0.048×62 ≈ 3).
What is the probability that a sample would produce a number of complications rates this
far from the expected value of 6.2, if her true complication rate were 0.10, that is, if H0

were true. The probability, which is estimated in the section that follows, turns out the be
0.2444. We call his quantity the p-value.

Interpreting the p-value
The p-value is the probability of observing data at least as favorable to the alter-
native hypothesis as our current data set, if the null hypothesis were true.
When examining a a proportion we can also interpret the p-value as follows, de-
pending upon the nature of the alternative hypothesis.

When the p-value is small, i.e. less than a previously set threshold, we say the results
are statistically significant. This means the data provide such strong evidence against
H0 that we reject the null hypothesis in favor of the alternative hypothesis. The thresh-
old, called the significance level and often represented by α (the Greek letter alpha), is

α
significance
level of a
hypothesis test

typically set to α = 0.05, but can vary depending on the field or the application. Using a
significance level of α = 0.05 in the discrimination study, we can say that the data provided
statistically significant evidence against the null hypothesis.

Statistical significance
We say that the data provide statistically significant evidence against the null
hypothesis if the p-value is less than some reference value, usually α = 0.05.

Recall that the null claim is the claim of no difference. If we reject H0, we are asserting
that there is a real difference. If we do not reject H0, we are saying that the null claim is
reasonable. That is, we have not disproved it.

⊙
Guided Practice 5.30 Because the p-value is 0.2444, which is larger than the
significance level 0.05, we do not reject the null hypothesis. Explain what this means
in the context of the problem using plain language.13

 Example 5.31 In the previous exercise, we did not reject H0. This means that we
did not disprove the null claim. Is this equivalent to proving the null claim is true?

No. We did not prove that the consultant’s complication rate is exactly equal to 10%.
Recall that the test of hypothesis starts by assuming the null claim is true. That is,
the test proceeds as an argument by contradiction. If the null claim is true, there is a
0.2444 chance of seeing sample data as divergent from 10% as we saw in our sample.
Because 0.2444 is large, it is within the realm of chance error and we cannot say the
null hypothesis is unreasonable.14

13The data do not provide evidence that the consultant’s complication rate is significantly lower or
higher that the average US rate of 10%.

14The p-value is actually a conditional probability. It is P(getting data at least as divergent from the
null value as we observed | H0 is true). It is NOT P( H0 is true | we got data this divergent from the null
value.
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TIP: Double negatives can sometimes be used in statistics
In many statistical explanations, we use double negatives. For instance, we might
say that the null hypothesis is not implausible or we failed to reject the null hypoth-
esis. Double negatives are used to communicate that while we are not rejecting a
position, we are also not saying that we know it to be true.

 Example 5.32 Does the conclusion in Guided Practice 5.30 imply for certain there
is no real association between the surgical consultant’s work and the risk of compli-
cations? Explain.

No. It might be that the consultant’s work is associated with a lower or higher risk
of complications. However, the data did not provide enough information to reject the
null hypothesis.

 Example 5.33 An experiment was conducted where study participants were ran-
domly divided into two groups. Both were given the opportunity to purchase a DVD,
but the one half was reminded that the money, if not spent on the DVD, could be
used for other purchases in the future while the other half was not. The half that
were reminded that the money could be used on other purchases were 20% less likely
to continue with a DVD purchase. We determined that such a large difference would
only occur about 1-in-150 times if the reminder actually had no influence on student
decision-making. What is the p-value in this study? Was the result statistically
significant?

The p-value was 0.006 (about 1/150). Since the p-value is less than 0.05, the data
provide statistically significant evidence that US college students were actually influ-
enced by the reminder.

What’s so special about 0.05?
We often use a threshold of 0.05 to determine whether a result is statistically
significant. But why 0.05? Maybe we should use a bigger number, or maybe a
smaller number. If you’re a little puzzled, that probably means you’re reading
with a critical eye – good job! We’ve made a video to help clarify why 0.05 :

www.openintro.org/why05

Sometimes it’s also a good idea to deviate from the standard. We’ll discuss when
to choose a threshold different than 0.05 in Section 5.3.6.

Statistical inference is the practice of making decisions and conclusions from data in
the context of uncertainty. Errors do occur, just like rare events, and the data set at hand
might lead us to the wrong conclusion. While a given data set may not always lead us to
a correct conclusion, statistical inference gives us tools to control and evaluate how often
these errors occur.

http://www.openintro.org/why05
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5.3.4 Calculating the p-value by simulation (special topic)

When conditions for the applying the normal model are met, we use the normal model to
find the p-value of a test of hypothesis. In the complication rate example, the distribution
is not normal. It is, however, binomial, because we are interested in how many out of 62
patients will have complications.

We could calculate the p-value of this test using binomial probabilities. A more general
approach, though, for calculating p-values when the normal model does not apply is to use
what is known as simulation. While performing this procedure is outside of the scope
of the course, we provide an example here in order to better understand the concept of a
p-value.

We simulate 62 new patients to see what result might happen if the complication rate
really is 0.10. To do this, we could use a deck of cards. Take one red card, nine black
cards, and mix them up. If the cards are well-shuffled, drawing the top card is one way of
simulating the chance a patient has a complication if the true rate is 0.10: if the card is
red, we say the patient had a complication, and if it is black then we say they did not have
a complication. If we repeat this process 62 times and compute the proportion of simulated
patients with complications, p̂sim, then this simulated proportion is exactly a draw from
the null distribution.

There were 5 simulated cases with a complication and 57 simulated cases without a
complication: p̂sim = 5/62 = 0.081.

One simulation isn’t enough to get a sense of the null distribution, so we repeated the
simulation 10,000 times using a computer. Figure 5.5 shows the null distribution from these
10,000 simulations. The simulated proportions that are less than or equal to p̂ = 0.048 are
shaded. There were 1222 simulated sample proportions with p̂sim ≤ 0.048, which represents
a fraction 0.1222 of our simulations:

left tail =
Number of observed simulations with p̂sim ≤ 0.048

10000
=

1222

10000
= 0.1222

However, this is not our p-value! Remember that we are conducting a two-sided test, so
we should double the one-tail area to get the p-value:15

p-value = 2× left tail = 2× 0.1222 = 0.2444

5.3.5 Decision errors

The hypothesis testing framework is a very general tool, and we often use it without a
second thought. If a person makes a somewhat unbelievable claim, we are initially skeptical.
However, if there is sufficient evidence that supports the claim, we set aside our skepticism.
The hallmarks of hypothesis testing are also found in the US court system.

 Example 5.34 A US court considers two possible claims about a defendant: she is
either innocent or guilty. If we set these claims up in a hypothesis framework, which
would be the null hypothesis and which the alternative?

The jury considers whether the evidence is so convincing (strong) that there is no
reasonable doubt regarding the person’s guilt. That is, the skeptical perspective (null
hypothesis) is that the person is innocent until evidence is presented that convinces
the jury that the person is guilty (alternative hypothesis).

15This doubling approach is preferred even when the distribution isn’t symmetric, as in this case.
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Figure 5.5: The null distribution for p̂, created from 10,000 simulated stud-
ies. The left tail contains 12.22% of the simulations. We double this value
to get the p-value.

Jurors examine the evidence to see whether it convincingly shows a defendant is guilty.
Notice that if a jury finds a defendant not guilty, this does not necessarily mean the jury is
confident in the person’s innocence. They are simply not convinced of the alternative that
the person is guilty.

This is also the case with hypothesis testing: even if we fail to reject the null hypothesis,
we typically do not accept the null hypothesis as truth. Failing to find strong evidence for
the alternative hypothesis is not equivalent to providing evidence that the null hypothesis
is true.

Hypothesis tests are not flawless. Just think of the court system: innocent people are
sometimes wrongly convicted and the guilty sometimes walk free. Similarly, data can point
to the wrong conclusion. However, what distinguishes statistical hypothesis tests from a
court system is that our framework allows us to quantify and control how often the data
lead us to the incorrect conclusion.

There are two competing hypotheses: the null and the alternative. In a hypothesis
test, we make a statement about which one might be true, but we might choose incorrectly.
There are four possible scenarios in a hypothesis test, which are summarized in Table 5.6.

Test conclusion

do not reject H0 reject H0 in favor of HA

H0 true okay Type 1 Error
Truth

HA true Type 2 Error okay

Table 5.6: Four different scenarios for hypothesis tests.

A Type 1 Error is rejecting the null hypothesis when H0 is actually true. When w
reject the null hypothesis, it is possible that we make a Type 1 Error. A Type 2 Error is
failing to reject the null hypothesis when the alternative is actually true.

 Example 5.35 In a US court, the defendant is either innocent (H0) or guilty (HA).
What does a Type 1 Error represent in this context? What does a Type 2 Error
represent? Table 5.6 may be useful.

If the court makes a Type 1 Error, this means the defendant is innocent (H0 true) but
wrongly convicted. A Type 2 Error means the court failed to reject H0 (i.e. failed to
convict the person) when she was in fact guilty (HA true).
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⊙
Guided Practice 5.36 A group of women bring a class action law suit that claims
discrimination in promotion rates. What would a Type 1 Error represent in this
context?16

 Example 5.37 How could we reduce the Type 1 Error rate in US courts? What
influence would this have on the Type 2 Error rate?

To lower the Type 1 Error rate, we might raise our standard for conviction from
“beyond a reasonable doubt” to “beyond a conceivable doubt” so fewer people would
be wrongly convicted. However, this would also make it more difficult to convict the
people who are actually guilty, so we would make more Type 2 Errors.

⊙
Guided Practice 5.38 How could we reduce the Type 2 Error rate in US courts?
What influence would this have on the Type 1 Error rate?17

The example and Exercise above provide an important lesson: if we reduce how often
we make one type of error, we generally make more of the other type.

5.3.6 Choosing a significance level

Choosing a significance level for a test is important in many contexts, and the traditional
level is 0.05. However, it is sometimes helpful to adjust the significance level based on the
application. We may select a level that is smaller or larger than 0.05 depending on the
consequences of any conclusions reached from the test.

If making a Type 1 Error is dangerous or especially costly, we should choose a small
significance level (e.g. 0.01 or 0.001). Under this scenario, we want to be very cautious
about rejecting the null hypothesis, so we demand very strong evidence favoring the alter-
native HA before we would reject H0.

If a Type 2 Error is relatively more dangerous or much more costly than a Type 1
Error, then we should choose a higher significance level (e.g. 0.10). Here we want to be
cautious about failing to reject H0 when the null is actually false.

TIP: Significance levels should reflect consequences of errors
The significance level selected for a test should reflect the real-world consequences
associated with making a Type 1 or Type 2 Error.

16We must first identify which is the null hypothesis and which is the alternative. The alternative
hypothesis is the one that bears the burden of proof, so the null hypothesis is that there was no discrim-
ination and the alternative hypothesis is that there was descrimination. Making a Type 1 Error in this
context would mean that in fact there was no discrimination, even though we concluded that women were
discriminated against. Notice that this does not necessarily mean something was wrong with the data or
that we made a computational mistake. Sometimes data simply point us to the wrong conclusion, which
is why scientific studies are often repeated to check initial findings.

17To lower the Type 2 Error rate, we want to convict more guilty people. We could lower the standards
for conviction from “beyond a reasonable doubt” to “beyond a little doubt”. Lowering the bar for guilt
will also result in more wrongful convictions, raising the Type 1 Error rate.
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5.3.7 Formal hypothesis testing: a stepwise approach

Carrying out a formal test of hypothesis (AP exam tip)
Follow these seven steps when carrying out a hypothesis test.

1. State the name of the test being used.

2. Verify conditions to ensure the standard error estimate is reasonable and the
point estimate follows appropriate distribution and is unbiased.

3. First write the hypotheses in plain language, then set them up in mathemat-
ical notation.

4. Identify the significance level α.

5. Calculate the test statistic, often Z, using an appropriate point estimate of
the parameter of interest and its standard error.

test statistic =
point estimate− null value

SE of estimate

6. Find the p-value, compare it to α, and state whether to reject or not reject
the null hypothesis.

7. Write your conclusion.

5.4 Does it make sense?

5.4.1 When to retreat

Statistical tools rely on conditions. When the conditions are not met, these tools are
unreliable and drawing conclusions from them is treacherous. The conditions for these
tools typically come in two forms.

• The individual observations must be independent. A random sample from less
than 10% of the population ensures the observations are independent. In experiments,
we generally require that subjects are randomized into groups. If independence fails,
then advanced techniques must be used, and in some such cases, inference may not
be possible.

• Other conditions focus on sample size and skew. For example, if the sample
size is too small, the skew too strong, or extreme outliers are present, then the normal
model for the sample mean will fail.

Verification of conditions for statistical tools is always necessary. Whenever conditions are
not satisfied for a statistical technique, there are three options. The first is to learn new
methods that are appropriate for the data. The second route is to consult a statistician.18

The third route is to ignore the failure of conditions. This last option effectively invalidates
any analysis and may discredit novel and interesting findings.

Finally, we caution that there may be no inference tools helpful when considering data
that include unknown biases, such as convenience samples. For this reason, there are books,

18If you work at a university, then there may be campus consulting services to assist you. Alternatively,
there are many private consulting firms that are also available for hire.
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courses, and researchers devoted to the techniques of sampling and experimental design.
See Sections 1.3-1.5 for basic principles of data collection.

5.4.2 Statistical significance versus practical significance

When the sample size becomes larger, point estimates become more precise and any real
differences in the mean and null value become easier to detect and recognize. Even a
very small difference would likely be detected if we took a large enough sample. Some-
times researchers will take such large samples that even the slightest difference is detected.
While we still say that difference is statistically significant, it might not be practically
significant.

Statistically significant differences are sometimes so minor that they are not practically
relevant. This is especially important to research: if we conduct a study, we want to focus
on finding a meaningful result. We don’t want to spend lots of money finding results that
hold no practical value.

The role of a statistician in conducting a study often includes planning the size of
the study. The statistician might first consult experts or scientific literature to learn what
would be the smallest meaningful difference from the null value. She also would obtain some
reasonable estimate for the standard deviation. With these important pieces of information,
she would choose a sufficiently large sample size so that the power for the meaningful
difference is perhaps 80% or 90%. While larger sample sizes may still be used, she might
advise against using them in some cases, especially in sensitive areas of research.

5.4.3 Statistical power of a hypothesis test

When the alternative hypothesis is true, the probability of not making a Type 2 Error is
called power. It is common for researchers to perform a power analysis to ensure their study
collects enough data to detect the effects they anticipate finding. As you might imagine, if
the effect they care about is small or subtle, then if the effect is real, the researchers will
need to collect a large sample size in order to have a good chance of detecting the effect.
However, if they are interested in large effect, they need not collect as much data.

The Type 2 Error rate β and the magnitude of the error for a point estimate are
controlled by the sample size. Real differences from the null value, even large ones, may
be difficult to detect with small samples. If we take a very large sample, we might find
a statistically significant difference but the magnitude might be so small that it is of no
practical value.



Chapter 7

Inference for numerical data

Chapter 5 introduced a framework for statistical inference based on confidence intervals
and hypotheses. Chapter 6 summarized inference procedures for categorical data (counts
and proportions). In this chapter, we focus on inference procedures for numerical data and
we encounter several new point estimates and scenarios. In each case, the inference ideas
remain the same:

1. Determine which point estimate or test statistic is useful.

2. Identify an appropriate distribution for the point estimate or test statistic.

3. Apply the ideas from Chapter 5 using the distribution from step 2.

Each section in Chapter 7 explores a new situation: a single mean (7.1), the mean of
differences (7.2), the difference between means (7.3); and the comparison of means across
multiple groups (7.4).

7.1 Inference for a single mean with the t distribution

When certain conditions are satisfied, the sampling distribution associated with a sample
mean or difference of two sample means is nearly normal. However, this becomes more
complex when the sample size is small, where small here typically means a sample size
smaller than 30 observations. For this reason, we’ll use a new distribution called the t
distribution that will often work for both small and large samples of numerical data.

7.1.1 Using the Z distribution for inference when µ is unknown
and σ is known

We have seen in Section 4.2 that the distribution of a sample mean is normal if the popula-
tion is normal or if the sample size is at least 30. In these problems, we used the population
mean and population standard deviation to find a Z score. However, in the case of infer-
ence, the parameters will be unknown. In rare circumstances we may know the standard
deviation of a population, even though we do not know its mean. For example, in some
industrial process, the mean may be known to shift over time, while the standard deviation
of the process remains the same. In these cases, we can use the normal model as the basis
for our inference procedures. We use x̄ as our point estimate for µ and the SD formula

268
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calculated in Section 4.2: SD = σ√
n

.

CI: x̄ ± Z∗
σ√
n

Z =
x̄− null value

σ√
n

What happens if we do not know the population standard deviation σ, as is usually the
case? The best we can do is use the sample standard deviation, denoted by s, to estimate
the population standard deviation.

SE =
s√
n

However, when we do this we run into a problem: when carrying out our inference pro-
cedures we will be trying to estimate two quantities: both the mean and the standard
deviation. Looking at the SD and SE formulas, we can make some important observations
that will give us a hint as to what will happen when we use s instead of σ.

• For a given population, σ is a fixed number and does not vary.

• s, the standard deviation of a sample, will vary from one sample to the next and will
not be exactly equal to σ.

• The larger the sample size n, the better the estimate s will tend to be for σ.

For this reason, the normal model still works well when the sample size is larger than
about 30. For smaller sample sizes, we run into a problem: our estimate of s, which is used
to compute the standard error, isn’t as reliable and tends to add more variability to our
estimate of the mean. It is this extra variability that leads us to a new distribution: the
t distribution.

7.1.2 Introducing the t distribution

When we use the sample standard deviation s in place of the population standard deviation
σ to standardize the sample mean, we get an entirely new distribution - one that is similar
to the normal distribution, but has greater spread. This distribution is known as the t
distribution. A t distribution, shown as a solid line in Figure 7.1, has a bell shape. However,
its tails are thicker than the normal model’s. This means observations are more likely to
fall beyond two standard deviations from the mean than under the normal distribution.1

These extra thick tails are exactly the correction we need to resolve the problem of a poorly
estimated standard deviation.

The t distribution, always centered at zero, has a single parameter: degrees of freedom.
The degrees of freedom (df) describe the precise form of the bell-shaped t distribution.
Several t distributions are shown in Figure 7.2. When there are more degrees of freedom,
the t distribution looks very much like the standard normal distribution.

Degrees of freedom (df)
The degrees of freedom describe the shape of the t distribution. The larger the de-
grees of freedom, the more closely the distribution approximates the normal model.

1The standard deviation of the t distribution is actually a little more than 1. However, it is useful to
always think of the t distribution as having a standard deviation of 1 in all of our applications.
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Figure 7.1: Comparison of a t distribution (solid line) and a normal distri-
bution (dotted line).
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Figure 7.2: The larger the degrees of freedom, the more closely the t dis-
tribution resembles the standard normal model.

When the degrees of freedom is about 30 or more, the t distribution is nearly indis-
tinguishable from the normal distribution. In Section 7.1.3, we relate degrees of freedom
to sample size.

We will find it very useful to become familiar with the t distribution, because it plays
a very similar role to the normal distribution during inference for numerical data. We use a
t table, partially shown in Table 7.3, in place of the normal probability table for numerical
data when the population standard deviation is unknown, especially when the sample size
is small. A larger table is presented in Appendix B.2 on page 390.

Each row in the t table represents a t distribution with different degrees of freedom.
The columns correspond to tail probabilities. For instance, if we know we are working with
the t distribution with df = 18, we can examine row 18, which is highlighted in Table 7.3.
If we want the value in this row that identifies the cutoff for an upper tail of 10%, we can
look in the column where one tail is 0.100. This cutoff is 1.33. If we had wanted the cutoff
for the lower 10%, we would use -1.33. Just like the normal distribution, all t distributions
are symmetric.
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one tail 0.100 0.050 0.025 0.010 0.005
df 1 3.078 6.314 12.71 31.82 63.66

2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
...

...
...

...
...

17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

...
...

...
...

...
1000 1.282 1.646 1.962 2.330 2.581
∞ 1.282 1.645 1.960 2.326 2.576

Confidence level C 80% 90% 95% 98% 99%

Table 7.3: An abbreviated look at the t table. Each row represents a
different t distribution. The columns describe the cutoffs for specific tail
areas. The row with df = 18 has been highlighted.

−4 −2 0 2 4

Figure 7.4: The t distribution with 18 degrees of freedom. The area below
-2.10 has been shaded.

 Example 7.1 What proportion of the t distribution with 18 degrees of freedom falls
below -2.10?

Just like a normal probability problem, we first draw the picture in Figure 7.4 and
shade the area below -2.10. To find this area, we identify the appropriate row: df =
18. Then we identify the column containing the absolute value of -2.10; it is the third
column. Because we are looking for just one tail, we examine the top line of the table,
which shows that a one tail area for a value in the third row corresponds to 0.025.
About 2.5% of the distribution falls below -2.10. In the next example we encounter
a case where the exact t value is not listed in the table.
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Figure 7.5: Left: The t distribution with 20 degrees of freedom, with the
area above 1.65 shaded. Right: The t distribution with 2 degrees of free-
dom, with the area further than 3 units from 0 shaded.

 Example 7.2 A t distribution with 20 degrees of freedom is shown in the left panel
of Figure 7.5. Estimate the proportion of the distribution falling above 1.65.

We identify the row in the t table using the degrees of freedom: df = 20. Then we
look for 1.65; it is not listed. It falls between the first and second columns. Since
these values bound 1.65, their tail areas will bound the tail area corresponding to
1.65. We identify the one tail area of the first and second columns, 0.050 and 0.10,
and we conclude that between 5% and 10% of the distribution is more than 1.65
standard deviations above the mean. If we like, we can identify the precise area using
statistical software: 0.0573.

 Example 7.3 A t distribution with 2 degrees of freedom is shown in the right panel
of Figure 7.5. Estimate the proportion of the distribution falling more than 3 units
from the mean (above or below).

As before, first identify the appropriate row: df = 2. Next, find the columns that
capture 3; because 2.92 < 3 < 4.30, we use the second and third columns. Finally,
we find bounds for the tail areas by looking at the two tail values: 0.05 and 0.10. We
use the two tail values because we are looking for two (symmetric) tails.

7.1.3 The t distribution and the standard error of a mean

When estimating the mean and standard deviation from a small sample, the t distribution
is a more accurate tool than the normal model. This is true for both small and large
samples.

TIP: When to use the t distribution
Use the t distribution for inference of the sample mean when observations are
independent and nearly normal. You may relax the nearly normal condition as
the sample size increases. For example, the data distribution may be moderately
skewed when the sample size is at least 30.
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To proceed with the t distribution for inference about a single mean, we must check
two conditions.

Independence of observations. We verify this condition just as we did before. We
collect a simple random sample from less than 10% of the population, or if it was an
experiment or random process, we carefully check to the best of our abilities that the
observations were independent.

n ≥ 30 or observations come from a nearly normal distribution. We can easily check
if the sample size is at least 30. If it is not, then this second condition requires more
care. We often (i) take a look at a graph of the data, such as a dot plot or box plot,
for obvious departures from the normal model, and (ii) consider whether any previous
experiences alert us that the data may not be nearly normal.

When examining a sample mean and estimated standard deviation from a sample of n
independent and nearly normal observations, we use a t distribution with n− 1 degrees of
freedom (df). For example, if the sample size was 19, then we would use the t distribution
with df = 19 − 1 = 18 degrees of freedom and proceed exactly as we did in Chapter 5,
except that now we use the t table.

The t distribution and the SE of a mean
In general, when the population mean is uknown, the population standard devi-
ation will also be unknown. When this is the case, we estimate the population
standard deviation with the sample standard deviation and we use SE instead
of SD.

SEx̄ =
s√
n

When we use the sample standard deviation, we use the t distribution with df =
n− 1 degrees of freedom instead of the normal distribution.

7.1.4 The normality condition

When the sample size n is at least 30, the Central Limit Theorem tells us that we do not
have to worry too much about skew in the data. When this is not true, we need verify
that the observations come from a nearly normal distribution. In some cases, this may be
known, such as if the population is the heights of adults.

What do we do, though, if the population is not known to be approximately normal
AND the sample size is small? We must look at the distribution of the data and check for
excessive skew.

Caution: Checking the normality condition
We should exercise caution when verifying the normality condition for small sam-
ples. It is important to not only examine the data but also think about where
the data come from. For example, ask: would I expect this distribution to be
symmetric, and am I confident that outliers are rare?

You may relax the normality condition as the sample size goes up. If the sample size
is 10 or more, slight skew is not problematic. Once the sample size hits about 30, then mod-
erate skew is reasonable. Data with strong skew or outliers require a more cautious analysis.



274 CHAPTER 7. INFERENCE FOR NUMERICAL DATA

7.1.5 One sample t confidence intervals

Dolphins are at the top of the oceanic food chain, which causes dangerous substances such
as mercury to concentrate in their organs and muscles. This is an important problem for
both dolphins and other animals, like humans, who occasionally eat them. For instance,
this is particularly relevant in Japan where school meals have included dolphin at times.

Figure 7.6: A Risso’s dolphin.
—————————–
Photo by Mike Baird (http://www.bairdphotos.com/).

Here we identify a confidence interval for the average mercury content in dolphin
muscle using a sample of 19 Risso’s dolphins from the Taiji area in Japan.2 The data are
summarized in Table 7.7. The minimum and maximum observed values can be used to
evaluate whether or not there are obvious outliers or skew.

n x̄ s minimum maximum
19 4.4 2.3 1.7 9.2

Table 7.7: Summary of mercury content in the muscle of 19 Risso’s dolphins
from the Taiji area. Measurements are in µg/wet g (micrograms of mercury
per wet gram of muscle).

 Example 7.4 Are the independence and normality conditions satisfied for this
data set?

The observations are a simple random sample and consist of less than 10% of the
population, therefore independence is reasonable. The summary statistics in Table 7.7
do not suggest any skew or outliers; all observations are within 2.5 standard deviations
of the mean. Based on this evidence, the normality assumption seems reasonable.

2Taiji was featured in the movie The Cove, and it is a significant source of dolphin and whale meat in
Japan. Thousands of dolphins pass through the Taiji area annually, and we will assume these 19 dolphins
represent a simple random sample from those dolphins. Data reference: Endo T and Haraguchi K. 2009.
High mercury levels in hair samples from residents of Taiji, a Japanese whaling town. Marine Pollution
Bulletin 60(5):743-747.

http://www.bairdphotos.com/
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In the normal model, we used z? and the standard deviation to determine the width
of a confidence interval. We revise the confidence interval formula slightly when using the
t distribution:

x̄ ± t?dfSE

The sample mean is computed just as before: x̄ = 4.4. In place of the standard deviation

t?df
Multiplication
factor for
t conf. intervalof x̄, we use the standard error of x̄: SEx̄ = s/

√
n = 0.528.

The value t?df is a cutoff we obtain based on the confidence level and the t distribution
with df degrees of freedom. Before determining this cutoff, we will first need the degrees
of freedom.

Degrees of freedom for a single sample
If the sample has n observations and we are examining a single mean, then we use
the t distribution with df = n− 1 degrees of freedom.

In our current example, we should use the t distribution with df = 19−1 = 18 degrees
of freedom. Then identifying t?18 is similar to how we found z?.

• For a 95% confidence interval, we want to find the cutoff t?18 such that 95% of the t
distribution is between -t?18 and t?18.

• We look in the t table on page 271, find the column with 95% along the bottom row
and then the row with 18 degrees of freedom: t?18 = 2.10.

Generally the value of t?df is slightly larger than what we would get under the normal model
with z?.

Finally, we can substitute all our values into the confidence interval equation to create
the 95% confidence interval for the average mercury content in muscles from Risso’s dolphins
that pass through the Taiji area:

x̄ ± t?18SE

4.4 ± 2.10× 0.528 df = 18

(3.29 , 5.51)

We are 95% confident the true average mercury content of muscles in Risso’s dolphins is
between 3.29 and 5.51 µg/wet gram. This is above the Japanese regulation level of 0.4
µg/wet gram.

Finding a t confidence interval for the mean
Based on a sample of n independent and nearly normal observations, a confidence
interval for the population mean is

x̄ ± t?dfSE df = n− 1

where x̄ is the sample mean, t?df corresponds to the confidence level and degrees of
freedom, and SE is the standard error as estimated by the sample.
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Constructing a confidence interval for a mean

1. State the name of the CI being used: 1-sample t interval.

2. Verify conditions.

• A simple random sample

• Population is known to be normal OR n ≥ 30 OR graph of sample is
approximately symmetric with no outliers, making the assumption that
the population is normal a reasonable one

3. Plug in the numbers and write the interval in the form

point estimate ± critical value× SE of estimate

Use a point estimate of x̄, df = n− 1, find critical value t? using the t table
at row= n− 1, and compute SE = s√

n
.

4. Evaluate the CI and write in the form ( , ).

5. Interpret the interval: “We are [XX]% confident that the true average of [...]
is between [...] and [...].”

6. State your conclusion to the original question.

⊙
Guided Practice 7.5 The FDA’s webpage provides some data on mercury con-
tent of fish.3 Based on a sample of 15 croaker white fish (Pacific), a sample mean and
standard deviation were computed as 0.287 and 0.069 ppm (parts per million), re-
spectively. The 15 observations ranged from 0.18 to 0.41 ppm. We will assume these
observations are independent. Construct an appropriate 95% confidence interval for
the true average mercury content of croaker white fish (Pacific). Is there evidence
that the average mercury content is greater than 0.275 ppm?4

7.1.6 Choosing a sample size when estimating a mean

Many companies are concerned about rising healthcare costs. A company may estimate
certain health characteristics of its employees, such as blood pressure, to project its future
cost obligations. However, it might be too expensive to measure the blood pressure of every
employee at a large company, and the company may choose to take a sample instead.

3http://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm115644.htm
4The interval called for in this problem is a 1-sample t interval. We will assume that the sample was

random. n is small, but there are no obvious outliers; all observations are within 2 standard deviations
of the mean. If there is skew, it is not evident. Therefore we do not have reason to believe the mercury
content in the population is not nearly normal in this type of fish. We can now identify and calculate
the necessary quantities. The point estimate is the sample average, which is 0.287. The standard error:
SE = 0.069√

15
= 0.0178. Degrees of freedom: df = n − 1 = 14. Using the t table, we identify t?14 = 2.145.

The confidence interval is given by: 0.287 ± 2.145× 0.0178 → (0.249, 0.325). We are 95% confident that
the true average mercury content of croaker white fish (Pacific) is between 0.249 and 0.325 ppm. Because
the interval contains 0.275 as well as value less than 0.275, we do not have evidence that the true average
mercury content is greater than 0.275, even though our sample average was 0.287.

http://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm115644.htm
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 Example 7.6 Blood pressure oscillates with the beating of the heart, and the sys-
tolic pressure is defined as the peak pressure when a person is at rest. The average
systolic blood pressure for people in the U.S. is about 130 mmHg with a standard
deviation of about 25 mmHg. How large of a sample is necessary to estimate the aver-
age systolic blood pressure with a margin of error of 4 mmHg using a 95% confidence
level?

First, we frame the problem carefully. Recall that the margin of error is the part
we add and subtract from the point estimate when computing a confidence interval.
When the standard deviation is known, the margin of error for a 95% confidence
interval estimating a mean can be written as

ME95% = 1.96× σemployee√
n

The challenge in this case is to find the sample size n so that this margin of error is
less than or equal to 4, which we write as an inequality:

1.96× σemployee√
n

≤ 4

In the above equation we wish to solve for the appropriate value of n, but we need
a value for σemployee before we can proceed. However, we haven’t yet collected any
data, so we have no direct estimate! Instead, we use the best estimate available to us:
the approximate standard deviation for the U.S. population, 25. To proceed and solve
for n, we substitute 25 for σemployee:

1.96× σemployee√
n

≈ 1.96× 25√
n
≤ 4

1.96× 25

4
≤
√
n(

1.96× 25

4

)2

≤ n

150.06 ≤ n
n = 151

The minimum sample size that meets the condition is 151. We round up because the
sample size must be an integer and it must be greater than or equal to 150.06.

A potentially controversial part of Example 7.6 is the use of the U.S. standard deviation
for the employee standard deviation. Usually the standard deviation is not known. In such
cases, it is reasonable to review scientific literature or market research to make an educated
guess about the standard deviation.

Identify a sample size for a particular margin of error
To estimate the necessary sample size for a maximum margin of error m, we set
up an equation to represent this relationship:

ME = z?
σ√
n
≤ m

where z? is chosen to correspond to the desired confidence level, and σ is the
standard deviation associated with the population. Solve for the sample size, n.
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Figure 7.8: Histogram of time for a single sample of size 100.

Sample size computations are helpful in planning data collection, and they require
careful forethought.

7.1.7 Hypothesis testing for a mean

Is the typical US runner getting faster or slower over time? We consider this question in the
context of the Cherry Blossom Run, comparing runners in 2006 and 2012. Technological
advances in shoes, training, and diet might suggest runners would be faster in 2012. An
opposing viewpoint might say that with the average body mass index on the rise, people
tend to run slower. In fact, all of these components might be influencing run time.

The average time for all runners who finished the Cherry Blossom Run in 2006 was
93.29 minutes (93 minutes and about 17 seconds). We want to determine using data from
100 participants in the 2012 Cherry Blossom Run whether runners in this race are getting
faster or slower, versus the other possibility that there has been no change.⊙

Guided Practice 7.7 What are appropriate hypotheses for this context?5

⊙
Guided Practice 7.8 The data come from a simple random sample from less than
10% of all participants, so the observations are independent. However, should we be
worried about skew in the data? A histogram of the differences was shown in the left
panel of Figure 7.8. 6

With independence satisfied and skew not a concern, we can proceed with performing
a hypothesis test using the t distribution.⊙

Guided Practice 7.9 The sample mean and sample standard deviation are 95.61
and 15.78 minutes, respectively. Recall that the sample size is 100. What is the
p-value for the test, and what is your conclusion?7

5H0: The average 10 mile run time in 2012 was the same as in 2006 (93.29 minutes). µ = 93.29.
HA: The average 10 mile run time for 2012 was different than 93.29 minutes. µ 6= 93.29.

6Since the sample size 100 is greater than 30, we do not need to worry about slight skew in the data.
7With the conditions satisfied for the t distribution, we can compute the standard error (SE =

15.78/
√

100 = 1.58 and the T score: T = 95.61−93.29
1.58

= 1.47. For df = 100 − 1 = 99, we would find
a p-value between 0.10 and 0.20 (two-sided!). Because the p-value is greater than 0.05, we do not reject
the null hypothesis. That is, the data do not provide strong evidence that the average run time for the
Cherry Blossom Run in 2012 is any different than the 2006 average.
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Hypothesis test for a mean

1. State the name of the test being used: 1-sample t test.

2. Verify conditions.

• Data come from a simple random sample.

• Population is known to be normal OR n ≥ 30 OR graph of data is
approximately symmetric with no outliers, making the assumption that
population is normal a reasonable one.

3. Write the hypotheses in plain language, then set them up in mathematical
notation.

• H0 : µ = µ0

• H0 : µ 6= or < or > µ0

4. Identify the significance level α.

5. Calculate the test statistic and df .

t =
point estimate− null value

SE of estimate

The point estimate is x̄, SE = s√
n

, and df = n− 1.

6. Find the p-value, compare it to α, and state whether to reject or not reject
the null hypothesis.

7. Write your conclusion.

⊙
Guided Practice 7.10 Recall the example about the mercury content in croaker
white fish (Pacific). Based on a sample of 15, a sample mean and standard deviation
were computed as 0.287 and 0.069 ppm (parts per million), respectively. Carry out
an appropriate test to determine 0.25 is a reasonable value for the average mercury
content.8

 Example 7.11 Recall that the 95% confidence interval for the average mercuy
content in croaker white fish was (0.249, 0.325). Discuss whether the conclusion of the
test of hypothesis is consistent or inconsistent with the conclusion of the hypothesis
test.

It is consistent because 0.25 is located (just barely) inside the confidence interval,
so it is a reasonable value. Our hypothesis test did not reject the hypothesis that
µ = 0.25, implying that it is a plausible value. Note, though, that the hypothesis test
did not prove that µ = .25. A hypothesis cannot prove that the mean is a specific
value. It can only find evidence that it is not a specific value. Note also that the
p-value was close to the cutoff of 0.05. This is because the value 0.25 was close to
edge of the confidence interval.

8We should carry out a 1-sample t test. The conditions have already been checked. H0 : µ = 0.25;
The true average mercury content is 0.25 ppm. HA : µ 6= 0.25; The true average mercury content is not
equal to 0.25 ppm. Let α = 0.05. SE = 0.069√

15
= 0.0178. t = 0.287−0.25

0.0178
= 2.07 df = 15 − 1 = 14.

p-value= 0.057 > 0.05, so we do not reject the null hypothesis. We do not have sufficient evidence that the
average mercury content in croaker white fish is not 0.25.



5 Foundation for inference

5.1 (a) Mean. Each student reports a numeri- cal value: a number of hours. (b) Mean. Each student
reports a number, which is a percent- age, and we can average over these percentages. (c)
Proportion. Each student reports Yes or No, so this is a categorical variable and we use a
proportion. (d) Mean. Each student reports a number, which is a percentage like in part (b). (e)
Proportion. Each student reports whether or not he got a job, so this is a categorical variable and
we use a proportion.

5.3 (a) Mean: 13.65. Median: 14. (b) SD: 1.91. IQR: 15 − 13 = 2. (c) Z16 = 1.23, which is not
unusual since it is within 2 SD of the mean. Z18 = 2.23, which is generally considered unusual.  (d) 
No.  Point estimates that are based on samples only approximate the population parameter, and they vary 
from one sample to another.  (e) We use the SE, which is 

o
1.91/

√
100 = 0.191 for this sample’s mean.

5.5 Recall that the general formula is

point estimate± z? × SE

First, identify the three different values. The point estimate is 45%, z? = 1.96 for a 95% con- fidence 
level, and SE = 1.2%. Then, plug the values into the formula:

45%± 1.96× 1.2% → (42.6%, 47.4%)

Appendix A

End of chapter exercise
solutions

We are 95% confident that the proportion of US adults who live with one or more chronic condi-
tions is between 42.6% and 47.4%.

5.7 (a) False. Confidence intervals provide a range of plausible values, and sometimes the truth is
missed. A 95% confidence interval “misses” about 5% of the time. (b) True. Notice that the
description focuses on the true popu- lation value. (c) True. If we examine the 95% confidence
interval computed in Exercise 5.5, we can see that 50% is not included in this interval. This means
that in a hypothesis test, we would reject the null hypothesis that the proportion is 0.5. (d) False.
The standard error describes the uncertainty in the overall estimate from natural fluctuations due
to randomness, not the uncer- tainty corresponding to individuals’ responses.



5.9 The subscript pr corresponds to provoca- tive and con to conservative. (a) H0 : ppr = pcon. HA :

ppr 6= pcon. (b) -0.35. (c) The left tail for the p-value is calculated by adding up the two left bins:
0.005 + 0.015 = 0.02. Doubling the one tail, the p-value is 0.04. (Students may have approximate
results, and a small number of students may have a p-value of about 0.05.) Since the p-value is low,
we reject H0. The data provide strong evidence that people react differ- ently under the two
scenarios.

5.11 The primary concern is confirmation bias. If researchers look only for what they suspect to be
true using a one-sided test, then they are for- mally excluding from consideration the possibil- ity
that the opposite result is true. Additionally, if other researchers believe the opposite possibility might be 
true, they would be very skeptical of the one-sided test.

305.13 (a) H0 : p = 0.69. HA : p 6= 0.69. (b) pˆ = 17 = 0.57. (c) The success-failure condition is not 
satisfied; note that it is appropriate to use the null value (p0 = 0.69) to compute the expected
number of successes and failures. (d) Answers may vary. Each student can be represented with a
card. Take 100 cards, 69 black cards representing those who follow the news about Egypt and 31 red
cards represent- ing those who do not. Shuffle the cards and draw with replacement (shuffling each
time in between draws) 30 cards representing the 30 high school students. Calculate the proportion
of black cards in this sample, pˆsim, i.e. the pro- portion of those who follow the news in the sim-
ulation. Repeat this many times (e.g. 10,000 times) and plot the resulting sample propor- tions. The

p-value will be two times the propor- tion of simulations where pˆsim ≤ 0.57. (Note: we would
generally use a computer to perform these simulations.) (e) The p-value is about 0.001 + 0.005 +
0.020 + 0.035 + 0.075 = 0.136, meaning the two-sided p-value is about 0.272. Your p-value may
vary slightly since it is based on a visual estimate. Since the p-value is greater than 0.05, we fail to
reject H0. The data do not provide strong evidence that the proportion of high school students who
followed the news about Egypt is different than the proportion of American adults who did.



APPENDIX A. END OF CHAPTER EXERCISE SOLUTIONS

7 Inference for numerical data

?
57.1 (a) df = 6 − 1 = 5, t    = 2.02 (col- umn with two tails of 0.10, row with df = 5). (b) df = 21 − 1 

= 5, t?20 = 2.53 (column with two tails of 0.02, row with df = 20). (c) df = 28, t?28 = 2.05. (d) df = 
11, t?11 = 3.11.

7.3 The mean is the midpoint: x¯ = 20. Identify the margin of error:  ME = 1.015, then use t*35 = 2.03 
and SE = s/    

 √
n in the formula for margin of error to identify s = 3.

7.5 (a) H0: µ = 8 (New Yorkers sleep 8 hrs per night on average.) HA: µ < 8 (New York- ers sleep 
less than 8 hrs per night on average.) (b) Independence: The sample is random and from less than 
10% of New Yorkers. The sample is small, so we will use a t distribution. For this size sample, slight 
skew is acceptable, and the min/max suggest there is not much skew in the data. T = −1.75. df = 
25 − 1 = 24. (c) 0.025 < p-value < 0.05. If in fact the true population mean of the amount New 
Yorkers sleep per night was 8 hours, the probability of getting a ran- dom sample of 25 New 
Yorkers where the aver- age amount of sleep is 7.73 hrs per night or less is between 0.025 and 0.05. 
(d) Since p-value < 0.05, reject H0. The data provide strong evi- dence that New Yorkers sleep less 
than 8 hours per night on average. (e) No, as we rejected H0.

7.7 t?19 is 1.73 for a one-tail. We want the lower tail, so set -1.73 equal to the T score, then solve for 
x¯: 56.91.

7.9 (a) For each observation in one data set, there is exactly one specially-corresponding ob- 
servation in the other data set for the same geo- graphic location. The data are paired. (b) H0 : µdif 

f = 0 (There is no difference in average daily high temperature between January 1, 1968 and January 1, 
2008 in the continental US.) HA : µdif f > 0 (Average daily high tempera- ture in January 1, 1968 
was lower than average daily high temperature in January, 2008 in the continental US.) If you 
chose a two-sided test, that would also be acceptable. If this is the case, note that your p-value will 
be a little bigger than what is reported here in part (d). (c) Indepen- dence: locations are random 
and represent less than 10% of all possible locations in the US. The sample size is at least 30. We 
are not given the distribution to check the skew. In prac- tice, we would ask to see the data to check 
this condition, but here we will move forward under the assumption that it is not strongly skewed. 
(d) Z = 1.60 → p-value = 0.0548. (e) Since the p-value > α (since not given use 0.05), fail to reject 
H0. The data do not provide strong evidence of temperature warming in the conti- nental US. 
However it should be noted that the p-value is very close to 0.05. (f) Type 2, since we may have 
incorrectly failed to reject H0. There may be an increase, but we were unable to de- tect it. (g) Yes, 
since we failed to reject H0, which had a null value of 0.

7.11 (a) (-0.03, 2.23). (b) We are 90% con- fident that the average daily high on January 1, 2008 in 
the continental US was 0.03 degrees lower to 2.23 degrees higher than the average daily high on 
January 1, 1968. (c) No, since 0 is included in the interval.
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