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Video 5.1
Vijay Kumar and Ani Hsieh
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The Purpose of Control

• Understand the “Black Box”

• Evaluate the Performance

• Change the Behavior

Output/ 
Response

Input/Stimulus/ 
Disturbance

System or 
Plant
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Anatomy of a Feedback Control System

Sensor

Controller
Actuator
Gas Pedal

Output
Vehicle 
Speed

Input
Desired 
Speed

Disturbance

+++
-
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Twin Objectives of Control

• Performance

• Disturbance 
Rejection
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Learning Objectives for this Week

• Linear Control

• Modeling in the frequency domain

• Transfer Functions

• Feedback and Feedforward Control
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Frequency Domain Modeling

• Algebraic vs Differential Equations

• Laplace Transforms

• Diagrams
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Laplace Transforms

Integral Transform that maps functions from 
the time domain to the frequency domain

with
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Example

Let                 , compute 
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Inverse Laplace Transforms

Integral Transform that maps functions from 
the frequency domain to the time domain
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Example

Let                       , compute 
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Laplace Transform Tables

http://integral-table.com/downloads/LaplaceTable.pdf
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Video 5.2
Vijay Kumar and Ani Hsieh



Robo3x-1.1     13
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Generalizing

Given

How do we obtain          ?
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Partial Fraction Expansion

Case 1: Roots of D(s) are Real & Distinct

Case 2: Roots of D(s) are Real & Repeated

Case 3: Roots of D(s) are Complex or 
Imaginary
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Case 1: Roots of D(s) are Real & Distinct

Compute the Inverse Laplace of 
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Case 2: Roots of D(s) are Real & Repeated

Compute the Inverse Laplace of 
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Case 3: Roots of D(s) are Complex

Compute the Inverse Laplace of 



Robo3x-1.1     18
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Video 5.3
Vijay Kumar and Ani Hsieh
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Using Laplace Transforms

Given

➢ Solving for x(t)
1. Convert to frequency domain

2. Solve algebraic equation

3. Convert back to time domain
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Properties of Laplace Transforms
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Summary

Laplace Transforms

• time domain <-> frequency domain

• differential equation <-> algebraic equation

• Partial Fraction Expansion factorizes 
“complicated”           expressions to 
simplify computation of inverse Laplace 
Transforms
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Example: Solving an ODE (1)

Given                                             with

,                     and                .  

Solve for         .
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Example: Solving an ODE (2)
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Video 5.4
Vijay Kumar and Ani Hsieh
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Controller Design

OutputInput

Disturbance

++Input +
- Controller



Robo3x-1.1     26
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Controller Design

Output

Disturbance

++Input +
-

Controller
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Controller Design

OutputInput

Disturbance

+++
- Controller

System
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Controller Design

Controller OutputInput

Disturbance

+++
-

System
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Transfer Function

Relate a system’s output to its input
1.Easy separation of INPUT, OUTPUT, 

SYSTEM (PLANT)

2.Algebraic relationships (vs. differential)

3.Easy interconnection of subsystems in a 
MATHEMATICAL framework
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In General

A General N-Order Linear, Time Invariant ODE

G(s) =Transfer Function = output/input

Furthermore, if we know G(s), then

output = G(s)*input

Solution given by
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General Procedure

Given                                                   and desired 
performance criteria

1. Convert   

2. Analyze 

3. Design using 

4. Validate using

5. Iterate
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Underlying Assumptions

Linearity
1. Superposition

2. Homogeneity

System

System

B/c the 
Laplace 

Transform is 
Linear!
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Video 5.5
Vijay Kumar and Ani Hsieh
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Characterizing System Response

Given                         

How do we characterize the performance of 
a system?

• Special Case 1: 1st Order Systems

• Special Case 2: 2nd Order Systems
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Poles and Zeros

Given

Poles

Zeros

Example:
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First Order Systems

In general

Let U(s) = 1/s, then

As such,

Therefore,
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Characterizing First Order Systems

Given                          with U(s) = 1/s
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Characterizing First Order Systems

Time Constant –

Rise Time –

Settling Time –
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Second Order Systems

Given,                                and U(s) = 1/s

Possible Cases
1. r1 & r2 are real & distinct
2. r1 & r2 are real & repeated
3. r1 & r2 are both imaginary
4. r1 & r2 are complex conjugates
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Case 1: Real & Distinct Roots

Overdamped 
response
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Video 5.6
Vijay Kumar and Ani Hsieh
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Case 2: Real & Repeated Roots

Critically 
damped 
response
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Case 3: All Imaginary Roots

Undamped 
response
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Case 4: Roots Are Complex

Underdamped 
response
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A Closer Look at Case 4

Exponential Decay
(Real Part)

Sinusoidal Oscillations
(Imaginary Part)
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Summary of 2nd Order Systems

Given,                                and U(s) = 1/s

Solution is one of the following:

1. Overdamped: r1 & r2 are real & distinct

2. Critically Damped: r1 & r2 are real & 
repeated

3. Undamped: r1 & r2 are both imaginary

4. Underdamped: r1 & r2 are complex 
conjugates
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2nd Order System Parameters

Given                                and U(s) = 1/s

• Natural Frequency – n

System’s frequency of oscillation with no damping

• Damping Ratio – 
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General 2nd Order System

Given                                and U(s) = 1/s

• When b = 0

• For an underdamped system
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General 2nd Order Systems

Second-order system transfer functions have 
the form

with poles of the form 

Example:  For 

Compute , n, and s1,2?
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Video 5.7
Vijay Kumar and Ani Hsieh
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Characterizing Underdamped Systems
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Peak Time

1
2
3

3
2
1

Same Envelope

3
2

1

Motion 
of 

poles
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Settling Time

2 1Same Frequency

Motion 
of 

poles

1

2

2 1
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Overshoot

Motion 
of 

poles

1

1
2

2
3

3

Same Overshoot

1
2

3
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In Summary

s-plane
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Video 5.8
Vijay Kumar and Ani Hsieh
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Independent Joint Control

In general, 

n-Link Robot Arm generally has   ≥ n
actuators

Single Input Single Output (SISO)

Single joint control
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Permanent Magnet DC Motor

• Picture Here

Basic Principle

Source: Wikimedia Commons
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Electrical Part

Armature Current

Back EMF

Motor Torque

Torque Constant
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Mechanical Part

Actuator Dynamics
Gear ratio
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Combining the Two

Correction: the Kb terms should be Km
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Two SISO Outcomes

Input Voltage – Motor Shaft Position

Load Torque – Motor Shaft Position
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Video 5.9
Vijay Kumar and Ani Hsieh
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Two SISO Outcomes

Input Voltage – Motor Shaft Position

Load Torque – Motor Shaft Position

Assumption:  L/R << Jm/Bm
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2nd Order Approximation

Divide by R and set L/R = 0

In the time domain
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Open-Loop System

Actuator Dynamics

• Set-point tracking (feedback)
• Trajectory tracking (feedforward)
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Our Control Objectives

• Motion             sequence of end-effector 
positions and orientations (EE poses)

• EE poses          Joint Angles          Motor 
Commands

• Transfer function

• Three primary linear controller designs:
• P (proportional)
• PD (proportional-derivative)
• PID (proportional-integral-derivative)
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Set-Point Tracking

The Basic PID Controller
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Proportional (P) Control

• Control input proportional to error

• KP – controller gain

• Error is amplified by KP to obtain the desired 
output signal
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P Control of Vehicle Speed

Example: Cruise Control

Desired linear speed

Control input proportional to error 

X

Y

q

v

vehicle wheel speed
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Performance of P Controller

KP = 10 KP = 50

• Increases the controller 
gain decreases rise 
time

• Excessive gain can 
result in overshoot

KP = 100
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Video 5.10
Vijay Kumar and Ani Hsieh
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Proportional-Derivative (PD) Control

• Control input proportional to error AND 1st

derivative of error

• Including rate of change of error helps 
mitigates oscillations
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Performance of PD Controller

KP = 10
KD = 1

KP = 10
KD = 3

Decreases 
rise time

KP = 500
KD = 10

KP = 500
KD = 50

Reduces 
overshoot 
& Settling 

Time
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PD Control of a Joint

Closed loop system given by

w/ 



Robo3x-1.1     76
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

PD Compensated Closed Loop Response (1)
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PD Compensated Closed Loop Response (2)
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Picking KP and KD

Closed loop system

w/

Design Guidelines

• Critically damped w/

• Pick                         and
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Performance of the PD Controller

Assuming                        and 

Tracking error is given by

At steady-state
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Video 5.11
Vijay Kumar and Ani Hsieh



Robo3x-1.1     81
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Proportional-Integral-Derivative (PID) 
Controller

• Control input proportional to error, 1st

derivative AND an integral of the error

• The integral term offsets any steady-state 
errors in the system
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Performance of PID Controller

KP = 10
KD = 3

KP = 10
KD = 3
KI = 1

KP = 10
KD = 3
KI = 50

• Eliminates SS-Error
• Increases overshoot & 

settling time
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PID Control of a Joint

Closed-loop system is given by

w/
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PID Compensated Closed Loop Response (1)
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PID Compensated Closed Loop Response (2)
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Picking KP, KD, and KI

Closed loop system

w/

Design Guidelines

• System stable if KP, KD, and KI >0

•

• Set KI = 0 and pick KP, KD, then go back to pick 
KI w/        in mind
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Summary of PID Characteristics

CL
Response

Rise
Time

%
Overshoot

Settling
Time

S-S
Error

KP Decrease Increase Small 
Change Decrease

KD
Small 

Change Decrease Decrease Small 
Change

KI Decrease Increase Increase Eliminate
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Tuning Gains

• Appropriate gain selection is crucial for 
optimal controller performance

• Analytically (R-Locus, Frequency Design, Ziegler 
Nichols, etc)

• Empirically

• The case for experimental validation
• Model fidelity

• Optimize for specific hardware 

• Saturation and flexibility
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Feedforward Control

• Motion             sequence of end-effector 
positions and orientations (EE poses)

• What if instead of                   , we want 
?
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Video 5.12
Vijay Kumar and Ani Hsieh



Robo3x-1.1     91
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Closed Loop Transfer Function (1)
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Closed Loop Transfer Function (2)
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Closed Loop Transfer Function (3)
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Picking F(s)

Closed loop transfer function given by

Behavior of closed loop response, given by 
roots of

H(s) and F(s) be chosen so that 
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Will This Work?

Let F(s) = 1/G(s), i.e., a(s) = p(s) and b(s) = q(s), 
then

System will track any 
reference trajectory!
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Caveats – Minimum Phase Systems

Picking F(s) = 1/G(s), leads to

• Assume system w/o FF loop is stable

• By picking F(s) = 1/G(s), we require 
numerator of G(s) to be Hurwitz (or 

)
• Systems whose numerators have roots with 

negative real parts are called Minimum Phase
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Feedforward Control w/ Disturbance

Assume: D(s) = constant w/

Pick F(s) = 1/G(s) =

Note the following:
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Tracking Error

Control law in time domain

System dynamics w/ control + disturbance
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Overall Performance


