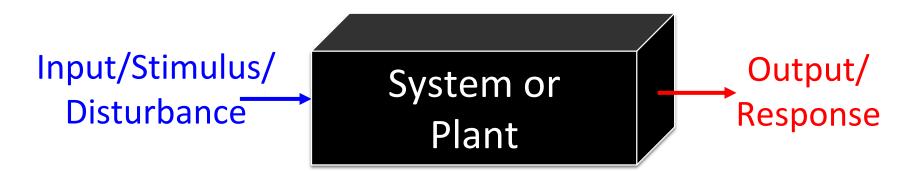


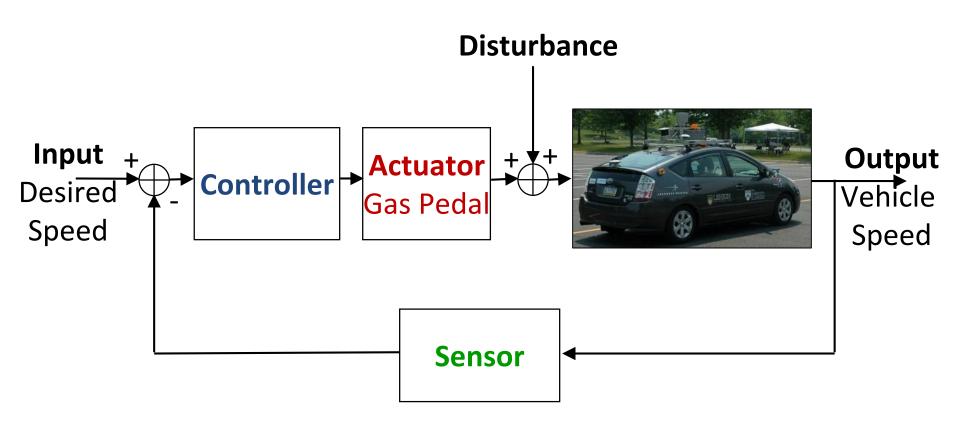
Video 5.1 Vijay Kumar and Ani Hsieh

The Purpose of Control



- Understand the "Black Box"
- Evaluate the Performance
- Change the Behavior

Anatomy of a Feedback Control System

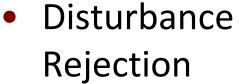


Twin Objectives of Control

• Performance

$$m\ddot{q} = -b\dot{q} + u_{engine} + u_{hill}$$

$$u_{engine} = K(v_{des} - v)$$



Learning Objectives for this Week

- Linear Control
 - Modeling in the frequency domain
 - Transfer Functions
 - Feedback and Feedforward Control

Frequency Domain Modeling

$$a_{m}\frac{d^{m}}{dt^{m}}q(t) + a_{m-1}\frac{d^{m-1}}{dt^{m-1}}q(t) + \dots + a_{1}\frac{d}{dt}q(t) + a_{0}q(t) = \tau(t)$$

$$b_{k}\frac{d^{k}}{dt^{k}}\tau(t) + b_{k}\frac{d^{k-1}}{dt^{k-1}}\tau(t) + \dots + b_{0}\tau(t)$$

- Algebraic vs Differential Equations
- Laplace Transforms
- Diagrams

Laplace Transforms

Integral Transform that maps functions from the *time* domain to the *frequency* domain

$$\mathbb{L}[f(t)] = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

with $s = \sigma + j\omega$

Example

Let f(t) = 1, compute $\mathbb{L}[f(t)]$ $\mathbb{L}[f(t)] = \int_{0^{-}}^{\infty} e^{-st} dt$ $= -\frac{e^{-st}}{s}|_{0^{-}}^{\infty}$ $= 0 - \left(-\frac{1}{s}\right) = \frac{1}{s}$

Inverse Laplace Transforms

Integral Transform that maps functions from the *frequency* domain to the *time* domain

$$\mathbb{L}^{-1}[F(s)] = \int_{\sigma-j\omega}^{\sigma+j\omega} F(s)e^{st}ds$$

Example

Let
$$F(s) = \frac{1}{s+a}$$
, compute $\mathbb{L}^{-1}[F(s)]$
 $\mathbb{L}^{-1}[F(s)] = \int_{\sigma-j\omega}^{\sigma+j\omega} \frac{e^{st}}{s+a} ds$

Laplace Transform Tables

f(t)	E(z)
	F(s)
$\delta(t) = \begin{cases} +\infty, & t = 0\\ 0, & t \neq 0 \end{cases}$	1
$\mathcal{U}(t) = \begin{cases} 1, & t \ge 0\\ 0, & t < 0 \end{cases}$	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
te^{at}	$\frac{1}{(s-a)^2}$
$sin(\phi t)$	$\frac{k}{s^2 + k^2}$
$cos(\phi t)$	$\frac{s}{s^2 + k^2}$
$e^{at}sin(\phi t)$	$\frac{k}{(s-a)^2+k^2}$
$e^{at}cos(\phi t)$	$\frac{s-a}{(s-a)^2+k^2}$
$\mathcal{U}(t-a)$	$\frac{e^{-as}}{s}$

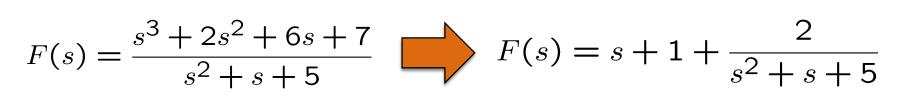
http://integralotable.com/downloads/leaplageTable.pdf

Video 5.2 Vijay Kumar and Ani Hsieh

Generalizing

Given
$$F(s) = \frac{s^3 + 2s^2 + 6s + 7}{s^2 + s + 5}$$

How do we obtain f(t) ?



Partial Fraction Expansion

$$F(s) = \frac{N(s)}{D(s)}$$

Case 1: Roots of D(s) are Real & Distinct Case 2: Roots of D(s) are Real & Repeated Case 3: Roots of D(s) are Complex or Imaginary

Case 1: Roots of D(s) are Real & Distinct

Compute the Inverse Laplace of

$$F(s) = \frac{1}{s^2 + 3s + 2}$$

Case 2: Roots of D(s) are Real & Repeated

Compute the Inverse Laplace of

$$F(s) = \frac{s+2}{(s+1)(s^2+6s+9)}$$

Case 3: Roots of D(s) are Complex

Compute the Inverse Laplace of

$$F(s) = \frac{3}{s(s^2 + 2s + 5)}$$

Video 5.3 Vijay Kumar and Ani Hsieh

Using Laplace Transforms

Given

$$M\ddot{x}(t) + B\dot{x}(t) + Kx(t) = \tau(t)$$

Solving for x(t)

- **1**. Convert to frequency domain
- 2. Solve algebraic equation
- 3. Convert back to time domain

Properties of Laplace Transforms

-	Property	Name	
_	Linearity	$\mathbb{L}[af_{1}(t) + bf_{2}(t)] = aF_{1}(s) + bF_{2}(s)$	
	1^{st} Derivative	$\mathbb{L}[\frac{d}{dt}f(t)] = sF(s) - f(0^{-})$	
	2^{nd} Derivative	$\mathbb{L}[\frac{d^{2}}{dt^{2}}f(t)] = s^{2}F(s) - sf(0^{-}) - \frac{df}{dt}(0^{-})$	
	n^{th} Derivative	$\mathbb{L}[\frac{d^{n}}{dt^{n}}f(t)] = s^{n}F(s) - \sum_{i=1}^{n} s^{(n-i)}f^{(i-1)}(0^{-})$	
	Integration	$\mathbb{L}[\int_0^t f(\lambda) d\lambda] = \frac{1}{s} F(s)$	
	Multiplication by time	$\mathbb{L}[tf(t)] = -\frac{dF(s)}{ds}$	
	Time Shift	$\mathbb{L}[f(t-a)\mathcal{U}(t-a)] = e^{-as}F(s)$	
	Complex Shift	$\mathbb{L}[f(t)e^{-at}] = F(s+a)$	
	Time Scaling	$\mathbb{L}[f(\frac{t}{a})] = aF(as)$	
	Convolution (*)	$\mathbb{L}[f_1(t) * f_2(t)] = F_1(s)F_2(s)$	
	Initial Value Thm	$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s)$	
nn neeri i	Final Value Thm	$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$	
	Property of Penn Engineering, Vijay Kumar and Ani Hsieh		

Robo3x-1.1 20

Summary

Laplace Transforms

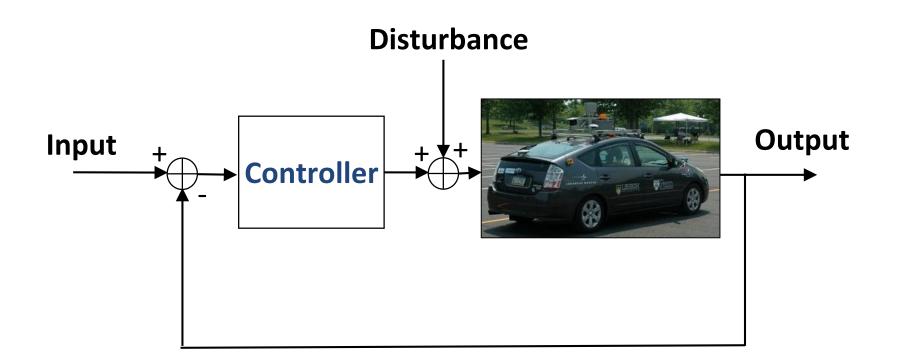
- time domain <-> frequency domain
- differential equation <-> algebraic equation
- Partial Fraction Expansion factorizes "complicated" expressions to simplify computation of inverse Laplace Transforms

Example: Solving an ODE (1)

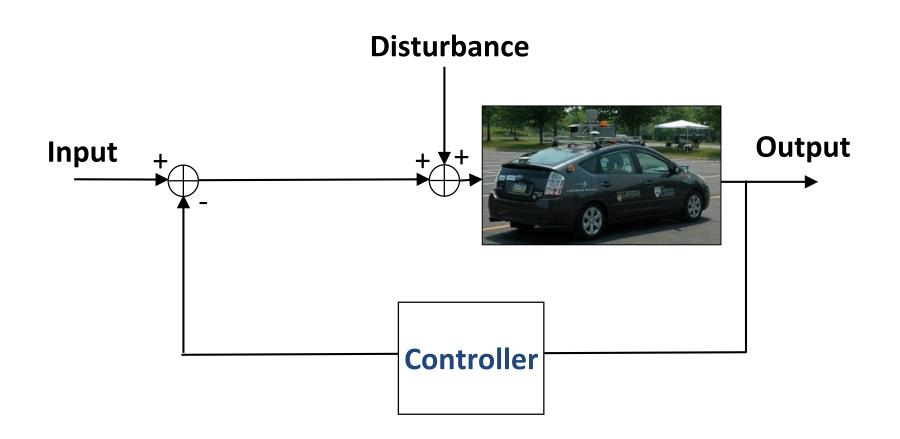
Given $\ddot{x}(t) - 10x(t) + 9x(t) = with$ $x(0) = 0, \quad \dot{x}(0) = abd \quad \tau(t) = 5t$ Solve for x(t)

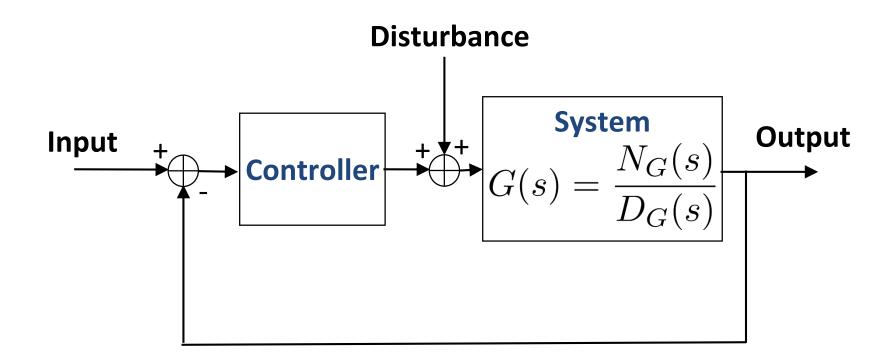
Example: Solving an ODE (2)

Video 5.4 Vijay Kumar and Ani Hsieh

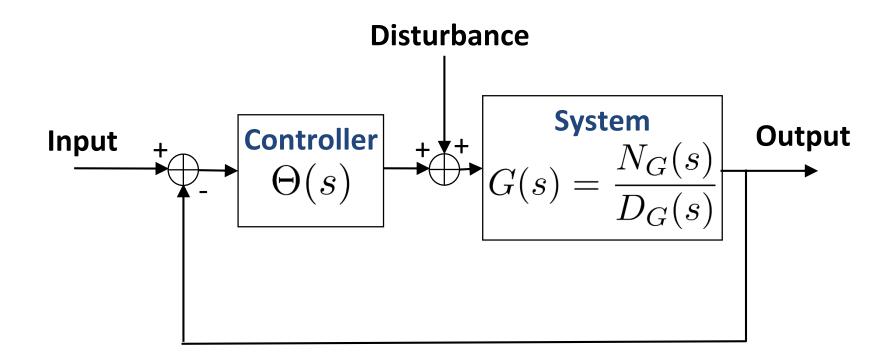


Property of Penn Engineering, Vijay Kumar and Ani Hsieh





Property of Penn Engineering, Vijay Kumar and Ani Hsieh



Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Transfer Function

Relate a system's output to its input

- **1**. Easy separation of INPUT, OUTPUT, SYSTEM (PLANT)
- 2. Algebraic relationships (vs. differential)
- **3.** Easy interconnection of subsystems in a MATHEMATICAL framework

In General

A General N-Order Linear, Time Invariant ODE

 $a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} + \dots + a_0 c(t) = b_m \frac{d^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \dots + b_0 r(t)$ **G(s) =Transter Function = output/input**

Furthermore, if we know G(s), then

output = G(s)*input

Solution given by

$$\mathcal{L}^{-1}\left[G(s)*\mathsf{input}\right]$$

General Procedure

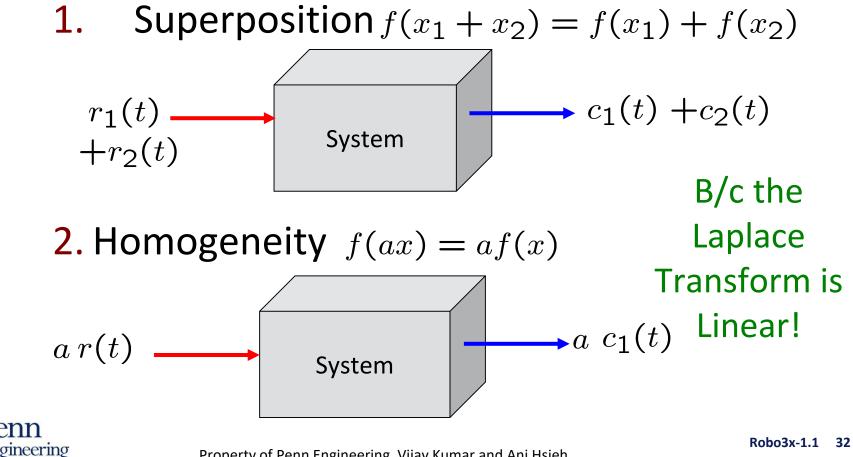
Given $f(q(t), \dot{q}(t), \ddot{q}(t), \dots, \frac{d^m q(t)}{dt}, t$ and desired performance criteria

1. Convert
$$f(\cdot) \longrightarrow F(s) = \mathbb{L}[f(\cdot)]$$

- **2.** Analyze F(s)
- **3.** Design using F(s)
- 4. Validate using $f(\cdot)$
- 5. Iterate

Underlying Assumptions

Linearity



Video 5.5 Vijay Kumar and Ani Hsieh

Characterizing System Response

Given
$$G(s) = \frac{Y(s)}{U(s)}$$

How do we characterize the performance of a system?

- Special Case 1: 1st Order Systems
- Special Case 2: 2nd Order Systems

Poles and Zeros

Given
$$G(s) = \frac{N(s)}{D(s)}$$

Poles $\{s \mid G(s) = \infty \text{ and } D(s) = 0 \text{ s.t. } N(s) = 0\}$ Zeros $\{s \mid G(s) = 0 \text{ and } N(s) = 0 \text{ s.t. } D(s) = 0\}$

Example:
$$G(s) = \frac{s+2}{s(s+5)}$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.1 35

First Order Systems

In general
$$G(s) = \frac{s+a}{s+b}$$

Let U(s) = 1/s, then $Y(s) = \frac{s+b}{s(s+a)} = \frac{A}{s} + \frac{B}{s+a}$
As such,

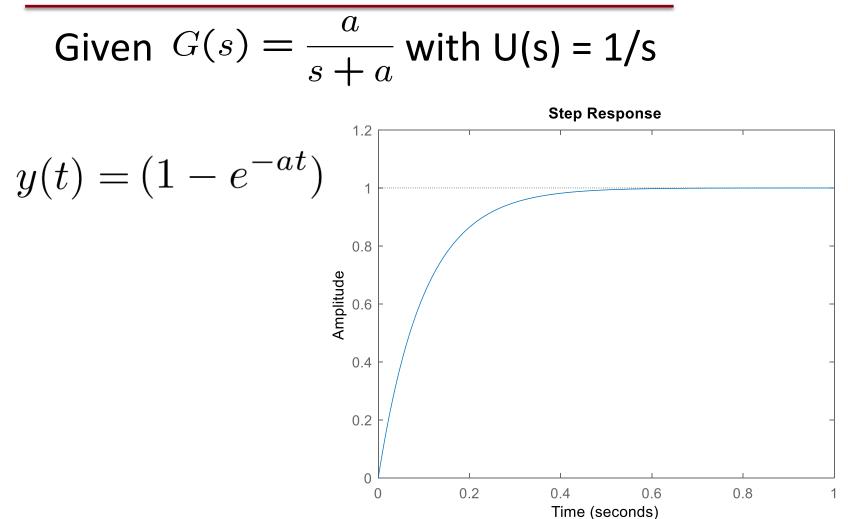
$$c(t) = A + Be^{-at}$$

$$A = \frac{b}{a} \qquad y(t) = \frac{b}{a} + (1 - \frac{b}{a})e^{-at}$$

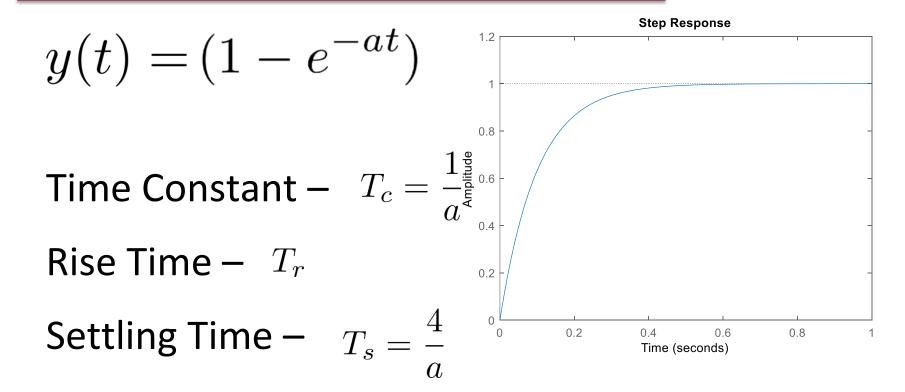
$$B = 1 - \frac{b}{a}$$

Therefore,

Characterizing First Order Systems



Characterizing First Order Systems



Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Second Order Systems

Given,
$$G(s) = \frac{c}{s^2 + bs + c}$$
 and U(s) = 1/s

$$Y(s) = \frac{1}{s(s^2 + bs + c)} = \frac{A}{s} + \frac{B}{s + r_1} + \frac{C}{s + r_2}$$

Possible Cases

- **1**. $r_1 \& r_2$ are real & distinct
- **2.** $r_1 \& r_2$ are real & repeated
- **3.** $r_1 \& r_2$ are both imaginary
- **4.** $r_1 \& r_2$ are complex conjugates

Case 1: Real & Distinct Roots

$$Y(s) = \frac{c}{s(s^2 + bs + c)} = \frac{A}{s} + \frac{B}{s + r_1} + \frac{C}{s + r_2}$$
$$y(t) = K_1 + K_2 e^{-r_1 t} + K_3 e^{-r_2 t}$$
Step Response
$$g_{0}^{12} = \frac{1}{2} \int_{0}^{12} \frac{1}{2} \int_{0}^{12}$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

8

Time (seconds)

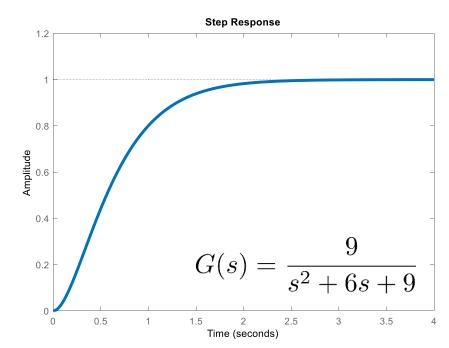
Video 5.6 Vijay Kumar and Ani Hsieh

Case 2: Real & Repeated Roots

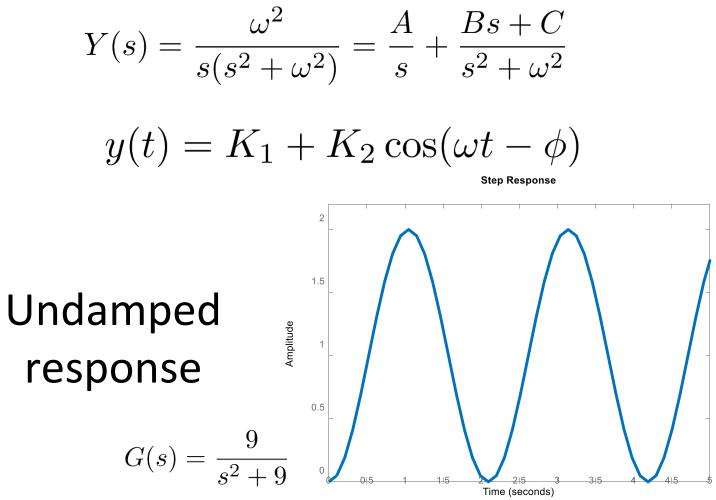
$$Y(s) = \frac{c}{s(s^2 + bs + c)} = \frac{A}{s} + \frac{B}{s + r_1} + \frac{C}{(s + r_1)^2}$$

$$y(t) = K_1 + K_2 e^{-r_1 t} + K_3 t e^{-r_1 t}$$

Critically damped response

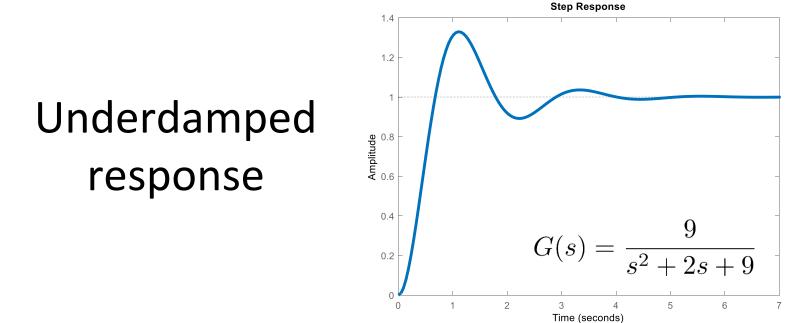


Case 3: All Imaginary Roots



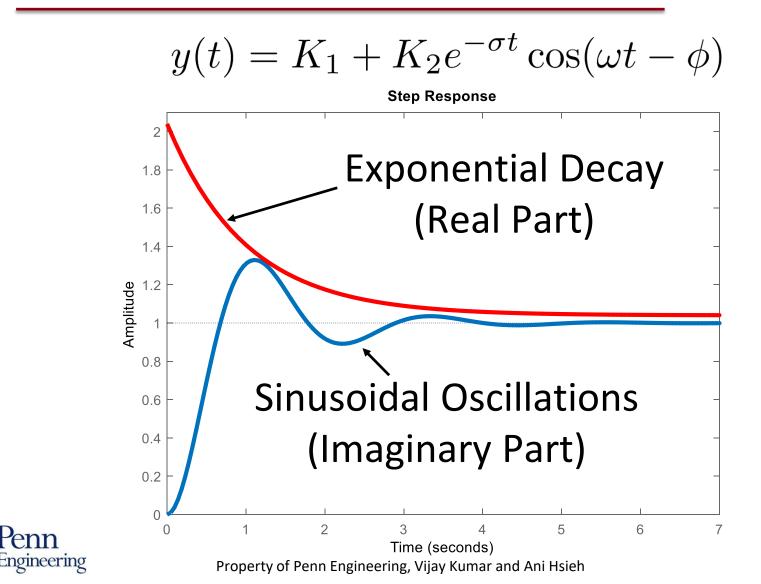
Case 4: Roots Are Complex

$$Y(s) = \frac{c}{s(s^2 + bs + c)} = \frac{A}{s} + \frac{Bs + C}{as^2 + bs + c} = \frac{A}{s} + \frac{D(s + \sigma)}{(s + \sigma)^2 + \omega^2}$$
$$y(t) = K_1 + K_2 e^{-\sigma t} \cos(\omega t - \phi)$$



Property of Penn Engineering, Vijay Kumar and Ani Hsieh

A Closer Look at Case 4



Robo3x-1.1 45

Summary of 2nd Order Systems

Given,
$$G(s) = \frac{c}{s^2 + bs + c}$$
 and U(s) = 1/s

Solution is one of the following:

- **1. Overdamped**: r₁ & r₂ are real & distinct
- **2. Critically Damped**: r₁ & r₂ are real & repeated
- **3. Undamped**: r₁ & r₂ are both imaginary
- **4. Underdamped**: r₁ & r₂ are complex conjugates

2nd Order System Parameters

Given
$$G(s) = \frac{c}{s^2 + bs + c}$$
 and U(s) = 1/s

• Natural Frequency – ω_n

System's frequency of oscillation with no damping

• Damping Ratio – ζ

 $\zeta = \frac{\text{Exponential decay frequency}}{\text{Natural frequency (rad/sec)}} = \frac{1}{2\pi} \frac{\text{Natural period (sec)}}{\text{Exponential time constant}}$

General 2nd Order System

Given
$$G(s) = \frac{c}{s^2 + bs + c}$$
 and U(s) = 1/s

• When b = 0
$$G(s) = \frac{c}{s^2 + c}$$

 $s = \pm j\sqrt{c} \Rightarrow \omega_n = \sqrt{c} \Rightarrow c = \omega_n^2$
• For an underdamped system
 $s = -\sigma \pm j\omega_n \quad w/ \quad \sigma = -\frac{b}{2}$
 $\zeta = \frac{|\sigma|}{\omega_n} = \frac{b/2}{\omega_m} \Rightarrow b = 2\zeta\omega_n$

General 2nd Order Systems

Second-order system transfer functions have the form $G(s) = \frac{\omega_n^2}{(s^2 + 2\zeta\omega_n s + \omega_n^2)}$

with poles of the form $s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$

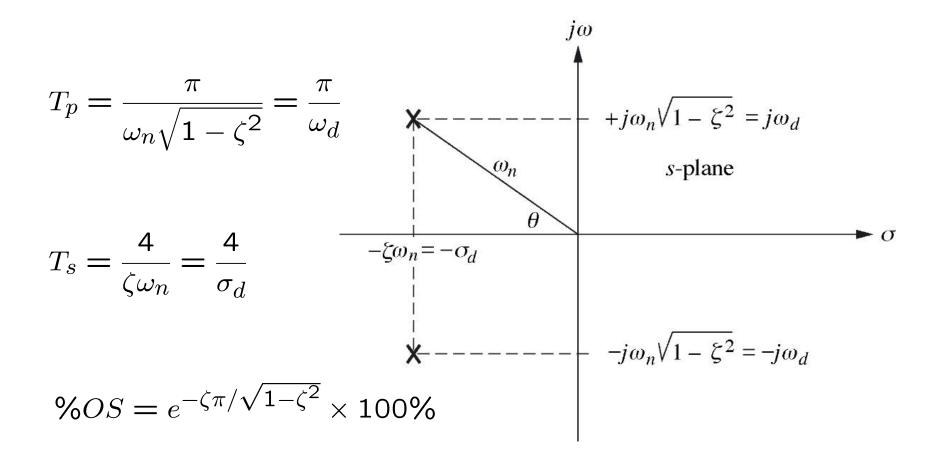
Example: For
$$G(s) = \frac{36}{(s^2 + 4.2s + 36)}$$

Compute ζ , ω_n , and $s_{1,2}$?

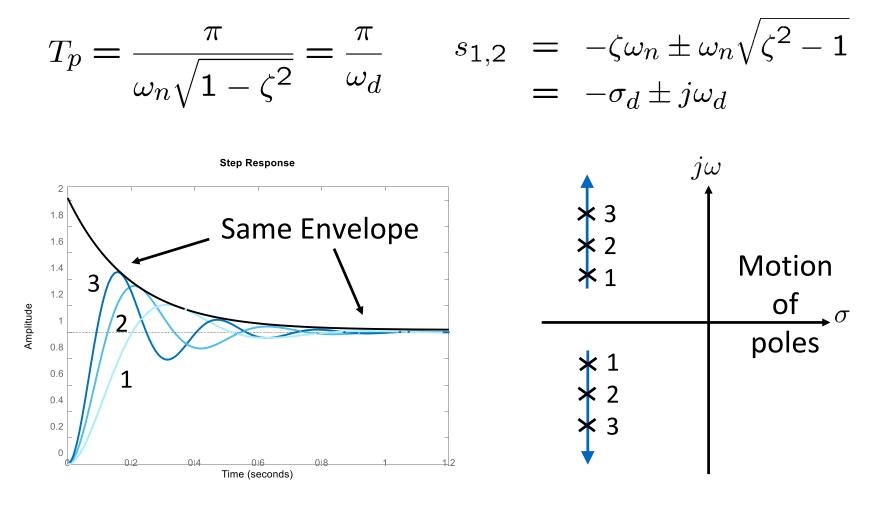
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Video 5.7 Vijay Kumar and Ani Hsieh

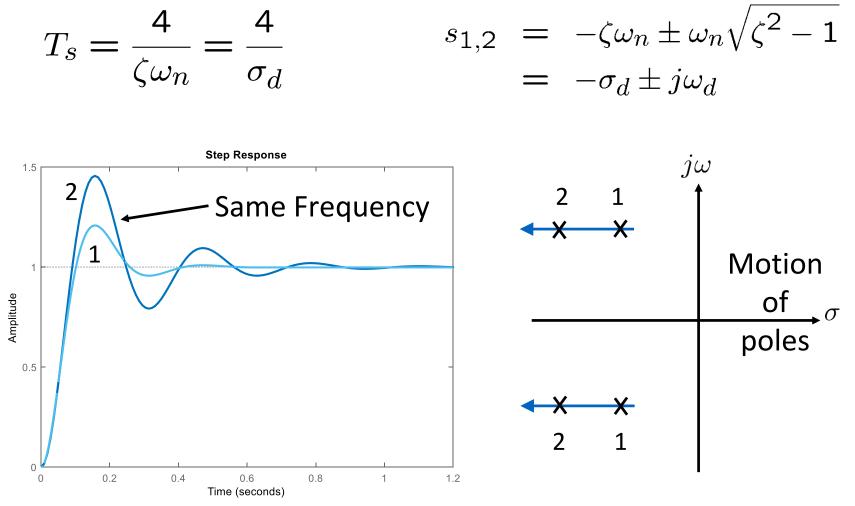
Characterizing Underdamped Systems



Peak Time



Settling Time

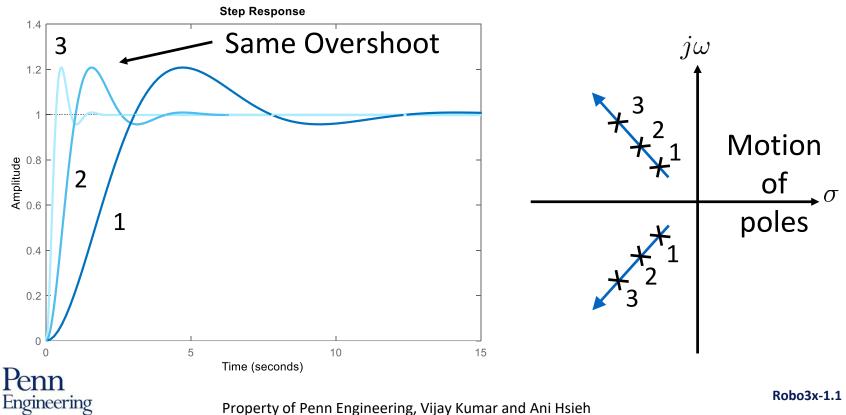


Penn Engineering

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

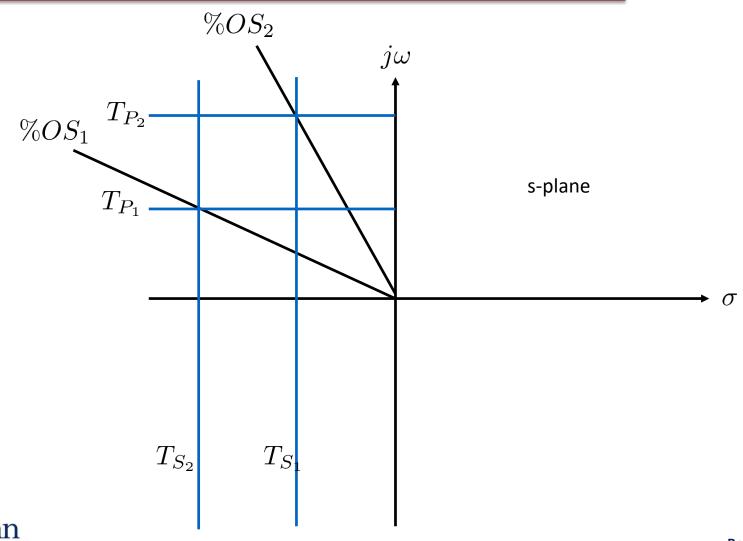
Overshoot

$$\%OS = e^{-\zeta \pi/\sqrt{1-\zeta^2}} \times 100\% \quad s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$
$$= -\sigma_d \pm j\omega_d$$



Property of Penn Engineering, Vijay Kumar and Ani Hsieh

In Summary



Penn Engineering

Video 5.8 Vijay Kumar and Ani Hsieh

Independent Joint Control

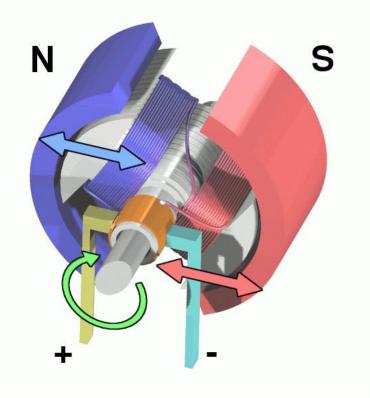
In general,

n-Link Robot Arm generally has ≥ *n* actuators

Single Input Single Output (SISO)

Single joint control

Permanent Magnet DC Motor

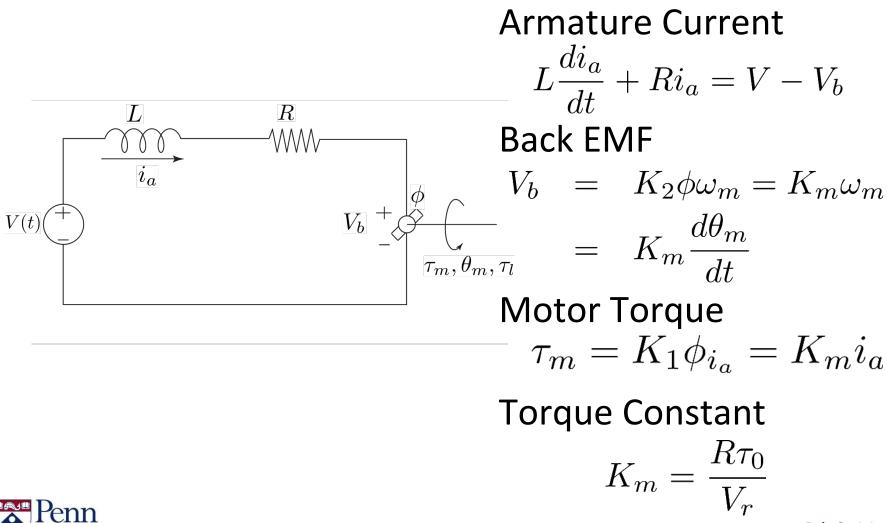


Basic Principle $\mathbf{F} = \mathbf{i} \times \phi$

Source: Wikimedia Commons

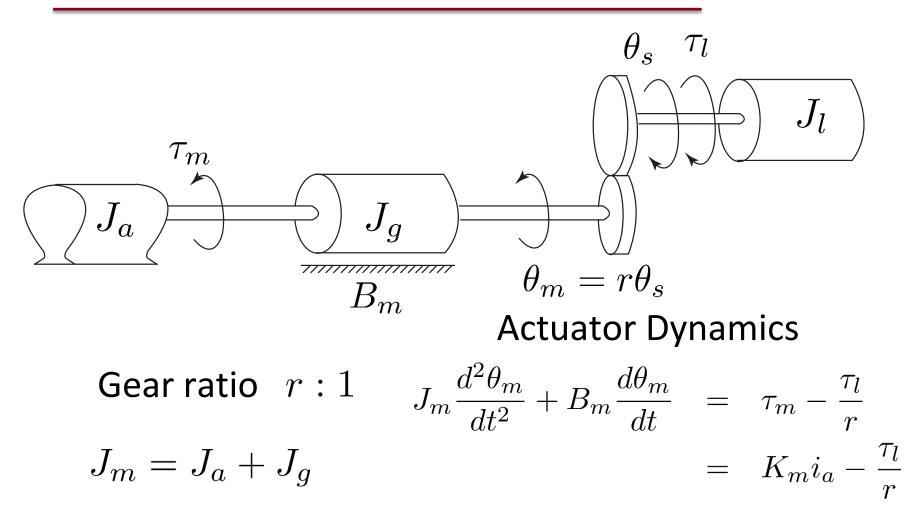
Electrical Part

gineering



Robo3x-1.1 59

Mechanical Part

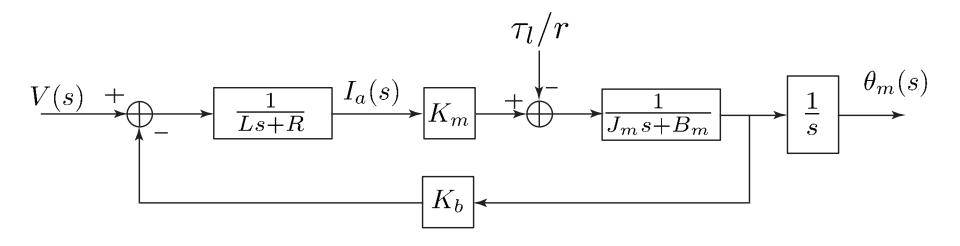


Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.1 60

Combining the Two

$$(Ls+R)I_a(s) = V(s) - K_b s \Theta_m(s)$$
$$(J_m s^2 + B_m s) \Theta_m(s) = K_m I_a(s) - \frac{T_l(s)}{r}$$



Correction: the K_b terms should be K_m

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.1 61

Two SISO Outcomes

Input Voltage – Motor Shaft Position

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m}{s\left[(Ls+R)(J_ms+B_m) + K_bK_m\right]}$$

Load Torque – Motor Shaft Position

$$\frac{\Theta_m(s)}{T(s)} = \frac{-(Ls+R)/r}{s\left[(Ls+R)(J_ms+B_m) + K_bK_m\right]}$$

Video 5.9 Vijay Kumar and Ani Hsieh

Two SISO Outcomes

Input Voltage – Motor Shaft Position

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m}{s\left[(Ls+R)(J_ms+B_m) + K_bK_m\right]}$$

Load Torque – Motor Shaft Position

$$\frac{\Theta_m(s)}{T(s)} = \frac{-(Ls+R)/r}{s\left[(Ls+R)(J_ms+B_m) + K_bK_m\right]}$$

Assumption: $L/R \ll J_m/B_m$

2nd Order Approximation

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m}{s\left[(Ls+R)(J_ms+B_m) + K_bK_m\right]}$$

Divide by R and set L/R = 0

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m/R}{s(J_m s + B_m + K_b K_m/R)}$$
$$\frac{\Theta_m(s)}{T(s)} = \frac{-1/r}{s(J_m s + B_m + K_b K_m/R)}$$

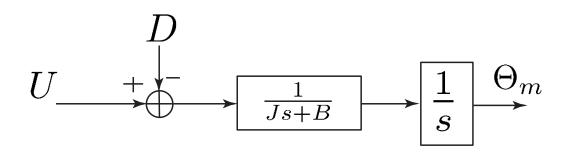
In the time domain

 $J_m \ddot{\theta}_m(t) + (B_m + K_b K_m/R) \dot{\theta}_m(t) = (K_m/R)V(t) - \tau_l(t)/r$

Open-Loop System

Actuator Dynamics

$$J\ddot{\theta}(t) + B\dot{\theta}(t) = u(t) - d(t)$$



- Set-point tracking (feedback)
- Trajectory tracking (feedforward)

Our Control Objectives

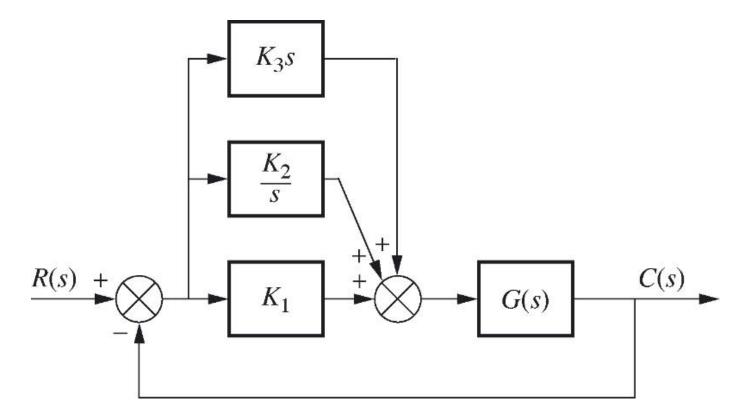
- Motion sequence of end-effector positions and orientations (EE poses)
- EE poses int Angles int Angles
 Commands
- Transfer function

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m/R}{s(J_m s + B_m + K_b K_m/R)}$$

- Three primary linear controller designs:
 - P (proportional)
 - PD (proportional-derivative)
 - PID (proportional-integral-derivative)

Set-Point Tracking

The Basic PID Controller



Proportional (P) Control

• Control input *proportional* to error

$$u(t) = K_P(\theta^d(t) - \theta(t))$$

$$U(s) = K_P(\Theta^d(s) - \Theta(s))$$

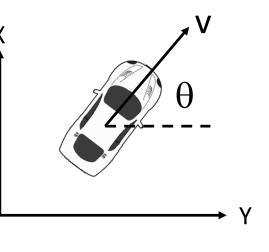
- K_P controller gain
- Error is amplified by K_P to obtain the desired output signal

P Control of Vehicle Speed

Example: Cruise Control

Desired linear speed

$$\dot{\Theta}^{d}(s) = \Omega^{d}(s) = 0$$
$$\Rightarrow \xi_{L} = \xi_{R} = \xi$$

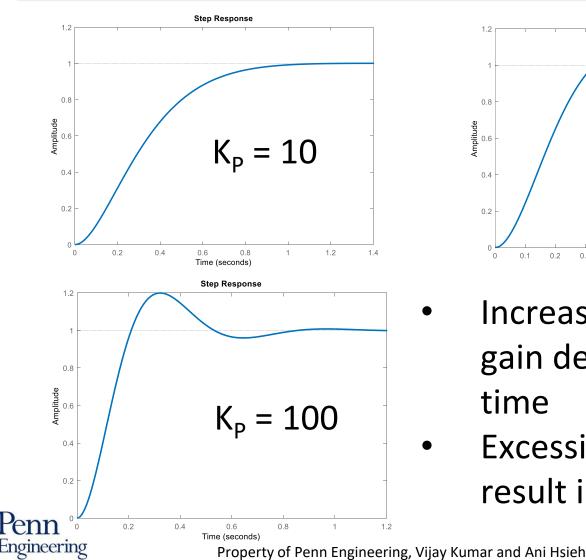


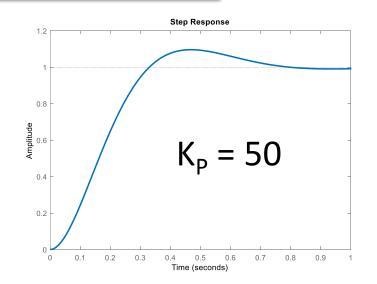
vehicle wheel speed

Control input proportional to error

$$U(s) = K_P(\xi^d - \xi)$$

Performance of P Controller





- Increases the controller gain decreases rise time
- Excessive gain can result in overshoot

Video 5.10 Vijay Kumar and Ani Hsieh

Proportional-Derivative (PD) Control

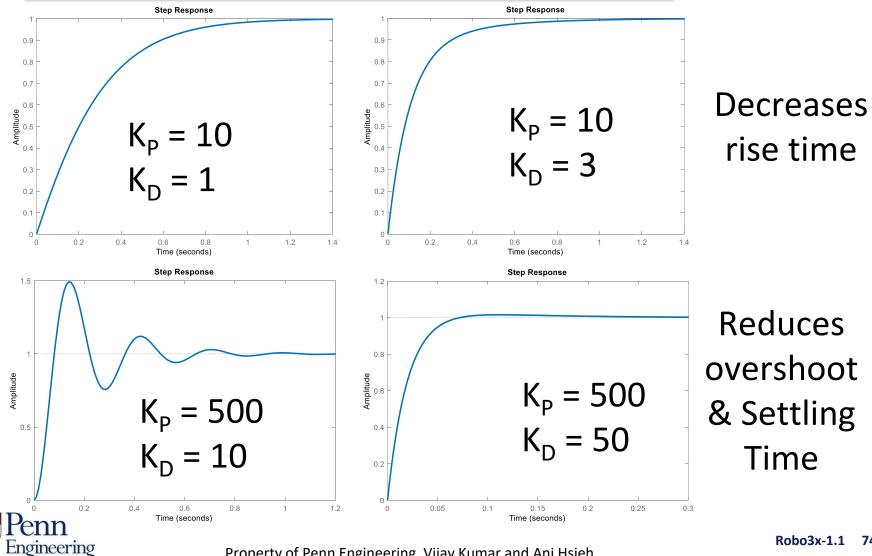
 Control input *proportional* to error AND 1st derivative of error

$$u(t) = K_P(\theta^d(t) - \theta(t)) + K_D \frac{d}{dt}(\theta^d(t) - \theta(t))$$

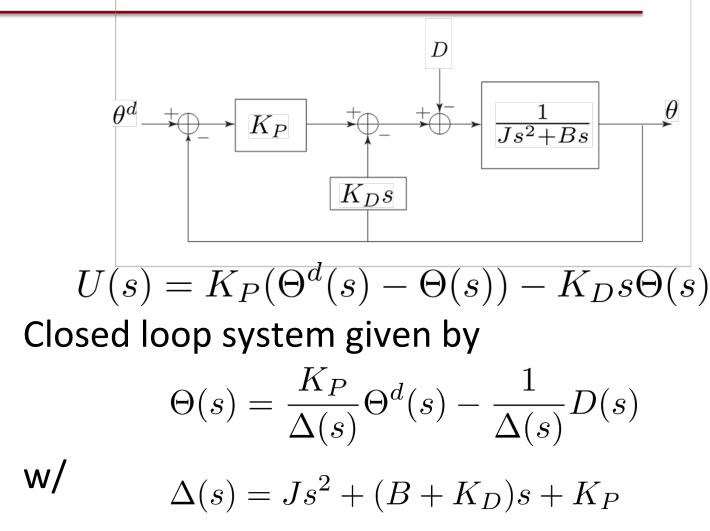
$$U(s) = K_P(\Theta^d(s) - \Theta(s)) - K_D s \Theta(s)$$

 Including rate of change of error helps mitigates oscillations

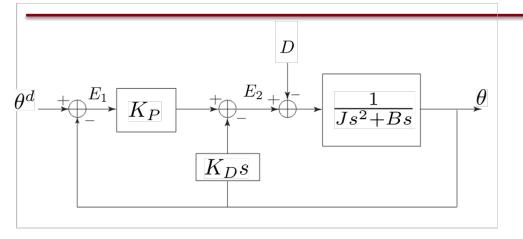
Performance of PD Controller



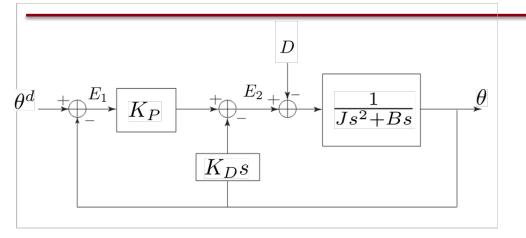
PD Control of a Joint



PD Compensated Closed Loop Response (1)



PD Compensated Closed Loop Response (2)



Picking K_P and K_D

Closed loop system
$$\Theta(s) = \frac{K_P}{\Delta(s)}\Theta^d(s) - \frac{1}{\Delta(s)}D(s)$$

w/ $\Delta(s) = Js^2 + (B + K_D)s + K_P$
 $\Delta(s) = s^2 + \frac{(B + K_D)}{J}s + \frac{K_P}{J} = s^2 + 2\zeta\omega_n s + \omega_n^2$

Design Guidelines

- Critically damped w/ $\,\zeta=1\,$

• Pick
$$K_P = \omega_n^2 J$$
 and $K_D = 2\zeta \omega_n J - B$

Performance of the PD Controller

Assuming
$$\Theta^d(s) = \frac{\Omega^d}{s}$$
 and $D(s) = \frac{D}{s}$

Tracking error is given by

$$E(s) = \Theta^{d}(s) - \Theta(s)$$

=
$$\frac{Js^{2} + (B + K_{D})s}{\Delta(s)}\Theta^{d}(s) + \frac{1}{\Delta(s)}D(s)$$

At steady-state
$$e_{ss} = \lim_{s \to 0} sE(s) = -\frac{D}{K_P}$$

Video 5.11 Vijay Kumar and Ani Hsieh

Proportional-Integral-Derivative (PID) Controller

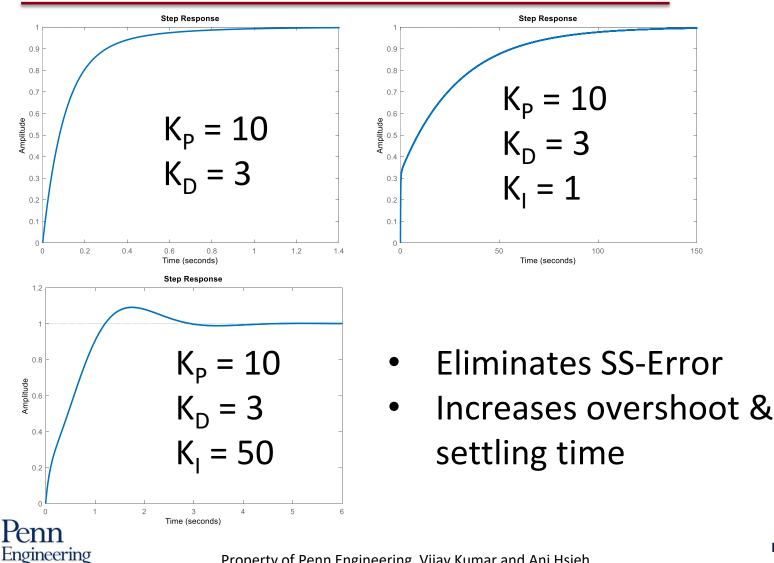
• Control input *proportional* to error, 1st derivative AND an integral of the error

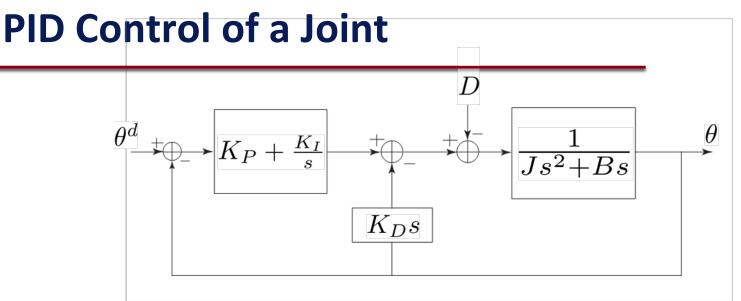
$$u(t) = K_P(\theta^d(t) - \theta(t)) + K_D \frac{d}{dt}(\theta^d(t) - \theta(t)) + K_I \int_0^t (\theta^d(\tau) - \theta(\tau)) d\tau$$
$$U(s) = K_P(\Theta^d(s) - \Theta(s)) - K_D s \Theta(s) + \frac{K_I}{s}(\Theta^d(s) - \Theta(s))$$

• The integral term offsets any steady-state errors in the system

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Performance of PID Controller



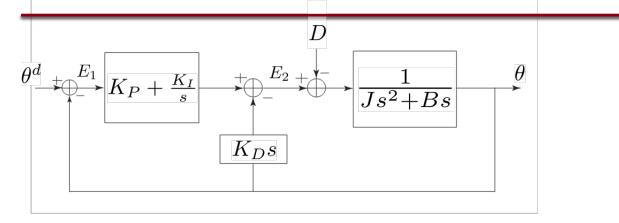


Closed-loop system is given by

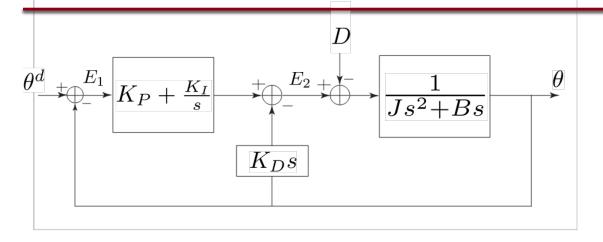
$$\Theta(s) = \frac{(K_P s + K_I)}{\Delta_2(s)} \Theta^d(s) - \frac{s}{\Delta_2(s)} D(s)$$

w/
$$\Delta_2(s) = Js^3 + (B + K_D)s^2 + K_Ps + K_I$$

PID Compensated Closed Loop Response (1)



PID Compensated Closed Loop Response (2)



Picking K_P, K_D, and K_I

Closed loop system
$$\Theta(s) = \frac{(K_P s + K_I)}{\Delta_2(s)} \Theta^d(s) - \frac{s}{\Delta_2(s)} D(s)$$

w/ $\Delta_2(s) = Js^3 + (B + K_D)s^2 + K_Ps + K_I$

Design Guidelines

gineering

• System stable if K_P , K_D , and $K_I > 0$

•
$$K_I < \frac{(B+K_D)K_P}{J}$$

• Set $K_1 = 0$ and pick K_P , K_D , then go back to pick $K_1 w/ in n in n$

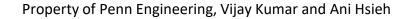
Summary of PID Characteristics

CL Response	Rise Time	% Overshoot	Settling Time	S-S Error
К _Р	Decrease	Increase	Small Change	Decrease
K _D	Small Change	Decrease	Decrease	Small Change
K	Decrease	Increase	Increase	Eliminate

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

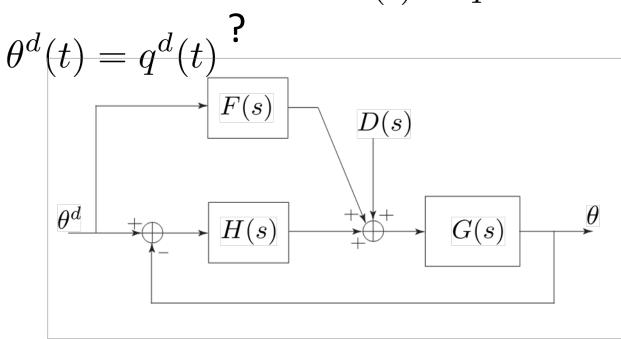
Tuning Gains

- Appropriate gain selection is crucial for optimal controller performance
 - Analytically (R-Locus, Frequency Design, Ziegler Nichols, etc)
 - Empirically
- The case for experimental validation
 - Model fidelity
 - Optimize for specific hardware
 - Saturation and flexibility



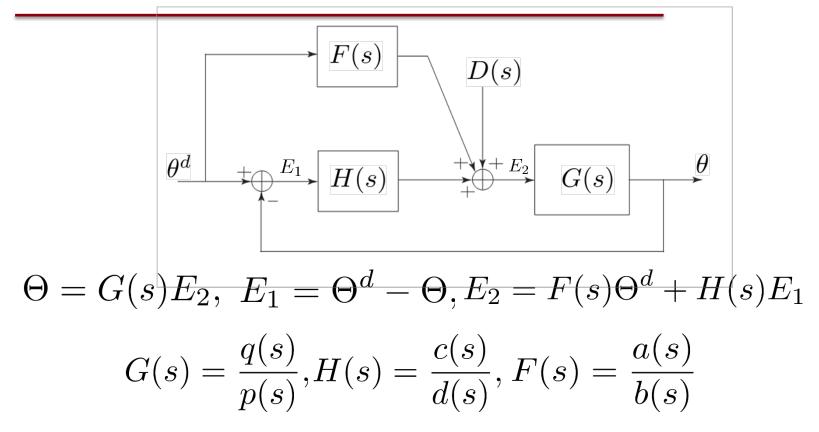
Feedforward Control

- Motion sequence of end-effector positions and orientations (EE poses)
- What if instead of $\theta^d(t) = q^d$ we want



Video 5.12 Vijay Kumar and Ani Hsieh

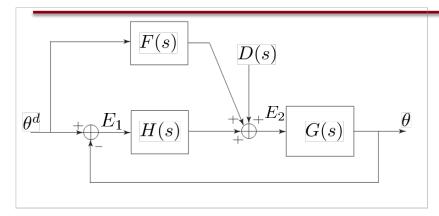
Closed Loop Transfer Function (1)



Closed Loop Transfer Function (2)



Closed Loop Transfer Function (3)

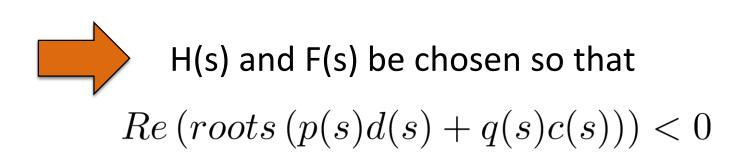


Picking F(s)

Closed loop transfer function given by q(s) (c(s)b(s) + a(s)d(s))

$$f(s) = \frac{1}{b(s)} \frac{1}{(p(s)d(s) + q(s)c(s))}$$

Behavior of closed loop response, given by roots of b(s) (p(s)d(s) + q(s)c(s))



Will This Work?

Let F(s) = 1/G(s), *i.e.*, a(s) = p(s) and b(s) = q(s), then $T(s) = \frac{q(s) (c(s)q(s) + p(s)d(s))}{q(s) (p(s)d(s) + q(s)c(s))}$

$$\frac{\Theta}{\Theta^d} = \frac{q(pd + qc)}{q(pd + qc)} \Rightarrow q(pd + qc)(\Theta^d - \Theta) = 0$$
$$q(pd + qc)E(s) = 0$$
System will track any

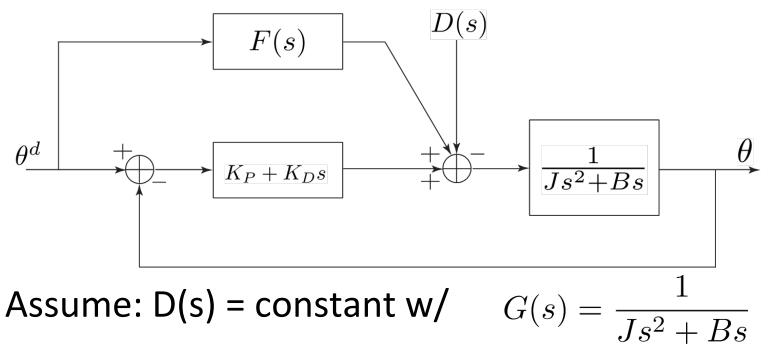
reference trajectory!

Caveats – Minimum Phase Systems

Picking F(s) = 1/G(s), leads to q(pd+qc)E(s) = 0

- Assume system w/o FF loop is stable
- By picking F(s) = 1/G(s), we require numerator of G(s) to be *Hurwitz* (or *Re* (*roots*(q(s))) < 0)
- Systems whose numerators have roots with negative real parts are called *Minimum Phase*

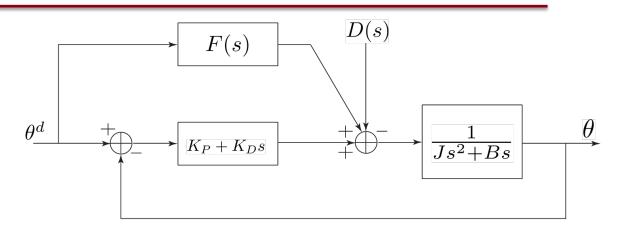
Feedforward Control w/ Disturbance



Pick F(s) =
$$1/G(s) = Js^2 + Bs$$

Note the following:

Tracking Error



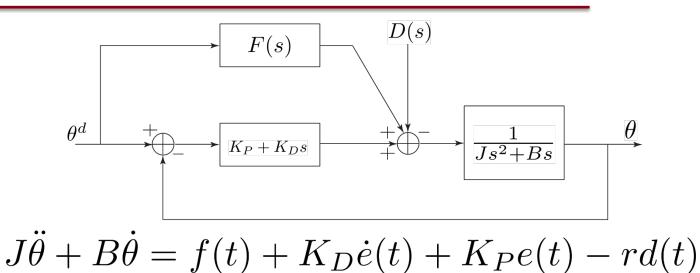
Control law in time domain

$$u(t) = J\ddot{\theta}^{d} + B\dot{\theta}^{d} + K_{D}(\dot{\theta}^{d} - \dot{\theta}) + K_{P}(\theta^{d} - \theta)$$

$$= f(t) + K_{D}\dot{e}(t) + K_{P}e(t)$$

System dynamics w/ control + disturbance
 $J\ddot{\theta} + B\dot{\theta} = V(t) - rd(t)$

Overall Performance



J(c) + I D J(c) + I D J(c) + I D J(c)

 $J(\ddot{\theta}^d - \ddot{\theta}) + B(\dot{\theta}^d - \dot{\theta}) + K_D \dot{e}(t) + K_P e(t) = rd(t)$

 $J\ddot{e} + (B + K_D)\dot{e} + K_P e = rd(t)$

