
6.3 Testing for goodness of fit using chi-square

In this section, we develop a method for assessing a null model when the data are binned.
This technique is commonly used in two circumstances:

• Given a sample of cases that can be classified into several groups, determine if the
sample is representative of the general population.

• Evaluate whether data resemble a particular distribution, such as a normal distribu-
tion or a geometric distribution.

Each of these scenarios can be addressed using the same statistical test: a chi-square test.
In the first case, we consider data from a random sample of 275 jurors in a small county.

Jurors identified their racial group, as shown in Table 6.5, and we would like to determine
if these jurors are racially representative of the population. If the jury is representative of
the population, then the proportions in the sample should roughly reflect the population
of eligible jurors, i.e. registered voters.

Chapter 6

Inference for categorical data

Race White Black Hispanic Other Total
205 26 25 19 275Representation in juries

Registered voters 0.72 0.07 0.12 0.09 1.00

Table 6.5: Representation by race in a city’s juries and population.

While the proportions in the juries do not precisely represent the population propor-
tions, it is unclear whether these data provide convincing evidence that the sample is not
representative. If the jurors really were randomly sampled from the registered voters, we
might expect small differences due to chance. However, unusually large differences may
provide convincing evidence that the juries were not representative.

A second application, assessing the fit of a distribution, is presented at the end of this
section. Daily stock returns from the S&P500 for the years 1990-2011 are used to assess
whether stock activity each day is independent of the stock’s behavior on previous days.

In these problems, we would like to examine all bins simultaneously, not simply com-
pare one or two bins at a time, which will require us to develop a new test statistic.
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6.3.1 Creating a test statistic for one-way tables

 Example 6.20 Of the people in the city, 275 served on a jury. If the individuals
are randomly selected to serve on a jury, about how many of the 275 people would
we expect to be white? How many would we expect to be black?

About 72% of the population is white, so we would expect about 72% of the jurors
to be white: 0.72× 275 = 198.

Similarly, we would expect about 7% of the jurors to be black, which would correspond
to about 0.07× 275 = 19.25 black jurors.⊙
Guided Practice 6.21 Twelve percent of the population is Hispanic and 9%
represent other races. How many of the 275 jurors would we expect to be Hispanic
or from another race? Answers can be found in Table 6.6.

Race White Black Hispanic Other Total
Observed data 205 26 25 19 275
Expected counts 198 19.25 33 24.75 275

Table 6.6: Actual and expected make-up of the jurors.

The sample proportion represented from each race among the 275 jurors was not a
precise match for any ethnic group. While some sampling variation is expected, we would
expect the sample proportions to be fairly similar to the population proportions if there
is no bias on juries. We need to test whether the differences are strong enough to provide
convincing evidence that the jurors are not a random sample. These ideas can be organized
into hypotheses:

H0: The jurors are a random sample, i.e. there is no racial bias in who serves on a jury,
and the observed counts reflect natural sampling fluctuation.

HA: The jurors are not randomly sampled, i.e. there is racial bias in juror selection.

To evaluate these hypotheses, we quantify how different the observed counts are from the
expected counts. Strong evidence for the alternative hypothesis would come in the form of
unusually large deviations in the groups from what would be expected based on sampling
variation alone.
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6.3.2 The chi-square test statistic

In previous hypothesis tests, we constructed a test statistic of the following form:

Z =
point estimate− null value

SE of point estimate

This construction was based on (1) identifying the difference between a point estimate
and an expected value if the null hypothesis was true, and (2) standardizing that difference
using the standard error of the point estimate. These two ideas will help in the construction
of an appropriate test statistic for count data.

In this example we have four categories: white, black, hispanic, and other. Because
we have four values rather than just one or two, we need a new tool to analyze the data.
Our strategy will be to find a test statistic that measures the overall deviation between the
observed and the expected counts. We first find the difference between the observed and
expected counts for the four groups:

White Black Hispanic Other

observed - expected 205− 198 26− 19.25 25− 33 19− 24.75

Next, we square the differences:

White Black Hispanic Other

(observed - expected)
2

(205− 198)2 (26− 19.25)2 (25− 33)2 (19− 24.75)2

We must standardize each term. To know whether the squared difference is large, we
compare it to what was expected. If the expected count was 5, a squared difference of 25
is very large. However, if the expected count was 1,000, a squared difference of 25 is very
small. We will divide each of the squared differences by the corresponding expected count.

White Black Hispanic Other

(observed - expected)
2

expected

(205− 198)2

198

(26− 19.25)2

19.25

(25− 33)2

33

(19− 24.75)2

24.75

Finally, to arrive at the overall measure of deviation between the observed counts and the
expected counts, we add up the terms.

X2 =
∑ (observed - expected)

2

expected

=
(205− 198)2

198
+

(26− 19.25)2

19.25
+

(25− 33)2

33
+

(19− 24.75)2

24.75

The test statistic X2 is generally used for these reasons. We can write an equation for X2

X2

chi-square
test statistic

using the observed counts and expected counts:

X2 =
(observed count1 − expected count1)2

expected count1

+ · · ·+ (observed count4 − expected count4)2

expected count4
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The final number X2 summarizes how strongly the observed counts tend to deviate from
the null counts.

In Section 6.3.4, we will see that if the null hypothesis is true, then X2 follows a new
distribution called a chi-square distribution. Using this distribution, we will be able to
obtain a p-value to evaluate whether there appears to be racial bias in the juries for the
city we are considering.

6.3.3 The chi-square distribution and finding areas

The chi-square distribution is sometimes used to characterize data sets and statistics
that are always positive and typically right skewed. Recall the normal distribution had
two parameters – mean and standard deviation – that could be used to describe its exact
characteristics. The chi-square distribution has just one parameter called degrees of
freedom (df), which influences the shape, center, and spread of the distribution.⊙

Guided Practice 6.22 Figure 6.7 shows three chi-square distributions. (a) How
does the center of the distribution change when the degrees of freedom is larger? (b)
What about the variability (spread)? (c) How does the shape change?12

0 5 10 15 20 25

Degrees of Freedom

2
4
9

Figure 6.7: Three chi-square distributions with varying degrees of freedom.

Figure 6.7 and Guided Practice 6.22 demonstrate three general properties of chi-square
distributions as the degrees of freedom increases: the distribution becomes more symmetric,
the center moves to the right, and the variability inflates.

Our principal interest in the chi-square distribution is the calculation of p-values, which
(as we have seen before) is related to finding the relevant area in the tail of a distribution.
To do so, a new table is needed: the chi-square table, partially shown in Table 6.8. A
more complete table is presented in Appendix B.3 on page 392. This table is very similar
to the t table from Sections 7.1 and 7.3: we identify a range for the area, and we examine a

12(a) The center becomes larger. If we look carefully, we can see that the center of each distribution
is equal to the distribution’s degrees of freedom. (b) The variability increases as the degrees of freedom
increases. (c) The distribution is very strongly skewed for df = 2, and then the distributions become more
symmetric for the larger degrees of freedom df = 4 and df = 9. In fact, as the degrees of freedom increase,
the X2 distribution approaches a normal distribution.
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particular row for distributions with different degrees of freedom. One important difference
from the t table is that the chi-square table only provides upper tail values.

Upper tail 0.3 0.2 0.1 0.05 0.02 0.01 0.005 0.001
df 2 2.41 3.22 4.61 5.99 7.82 9.21 10.60 13.82

3 3.66 4.64 6.25 7.81 9.84 11.34 12.84 16.27

4 4.88 5.99 7.78 9.49 11.67 13.28 14.86 18.47

5 6.06 7.29 9.24 11.07 13.39 15.09 16.75 20.52

6 7.23 8.56 10.64 12.59 15.03 16.81 18.55 22.46

7 8.38 9.80 12.02 14.07 16.62 18.48 20.28 24.32

Table 6.8: A section of the chi-square table. A complete table is in Ap-
pendix B.3 on page 392.

 Example 6.23 Figure 6.9(a) shows a chi-square distribution with 3 degrees of free-
dom and an upper shaded tail starting at 6.25. Use Table 6.8 to estimate the shaded
area.

This distribution has three degrees of freedom, so only the row with 3 degrees of
freedom (df) is relevant. This row has been italicized in the table. Next, we see that
the value – 6.25 – falls in the column with upper tail area 0.1. That is, the shaded
upper tail of Figure 6.9(a) has area 0.1.

 Example 6.24 We rarely observe the exact value in the table. For instance, Fig-
ure 6.9(b) shows the upper tail of a chi-square distribution with 2 degrees of freedom.
The lower bound for this upper tail is at 4.3, which does not fall in Table 6.8. Find
the approximate tail area.

The cutoff 4.3 falls between the second and third columns in the 2 degrees of freedom
row. Because these columns correspond to tail areas of 0.2 and 0.1, we can be certain
that the area shaded in Figure 6.9(b) is between 0.1 and 0.2.

Using a calculator or statistical software allows us to get more precise areas under the
chi-square curve than we can get from the table alone.

TI Calculator: finding areas under the chi-square curve
Use the X2cdf command to find areas under the chi-square curve.

1. Hit 2ND VARS (i.e. DISTR).

2. Choose 8: X2cdf.

3. Enter the lower bound (generally the chi-square value).

4. Enter the upper bound (use a large number, such as 1000).

5. Enter the degrees of freedom.

6. Choose Paste and hit ENTER.

TI-83: Do steps 1 - 2, then type the lower bound, upper bound, and degrees of
freedom separated by commas. e.g. X2cdf(5, 1000, 3), and hit ENTER.
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(a) Chi-square with 3 df, area above 6.25 shaded.
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(b) Chi-square with 2 df, area above 4.3 shaded.
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(c) Chi-square with 5 df, area above 5.1 shaded.
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(d) Chi-square with 7 df, area above 11.7 shaded.
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(e) Chi-square with 4 df, area above 10 shaded.
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(f) Chi-square with 3 df, area above 9.21 shaded.

Figure 6.9: (a) Six chi-square distributions with different right tail areas
shaded.
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⊙
Guided Practice 6.25 Figure 6.9(c) shows an upper tail for a chi-square distri-
bution with 5 degrees of freedom and a cutoff of 5.1. Find the tail area using a
calculator.13

⊙
Guided Practice 6.26 Figure 6.9(d) shows a cutoff of 11.7 on a chi-square distri-
bution with 7 degrees of freedom. Find the area of the upper tail.14

⊙
Guided Practice 6.27 Figure 6.9(e) shows a cutoff of 10 on a chi-square distri-
bution with 4 degrees of freedom. Find the area of the upper tail.15

⊙
Guided Practice 6.28 Figure 6.9(f) shows a cutoff of 9.21 with a chi-square
distribution with 3 df. Find the area of the upper tail.16

6.3.4 Finding a p-value for a chi-square distribution

In Section 6.3.2, we identified a new test statistic (X2) within the context of assessing
whether there was evidence of racial bias in how jurors were sampled. The null hypothesis
represented the claim that jurors were randomly sampled and there was no racial bias. The
alternative hypothesis was that there was racial bias in how the jurors were sampled.

We determined that a large X2 value would suggest strong evidence favoring the
alternative hypothesis: that there was racial bias. However, we could not quantify what the
chance was of observing such a large test statistic (X2 = 5.89) if the null hypothesis actually
was true. This is where the chi-square distribution becomes useful. If the null hypothesis
was true and there was no racial bias, then X2 would follow a chi-square distribution, with
three degrees of freedom in this case. Under certain conditions, the statistic X2 follows
a chi-square distribution with k − 1 degrees of freedom, where k is the number of bins or
categories of the variable.

 Example 6.29 How many categories were there in the juror example? How many
degrees of freedom should be associated with the chi-square distribution used for X2?

In the jurors example, there were k = 4 categories: white, black, Hispanic, and other.
According to the rule above, the test statistic X2 should then follow a chi-square
distribution with k − 1 = 3 degrees of freedom if H0 is true.

Just like we checked sample size conditions to use the normal model in earlier sections,
we must also check a sample size condition to safely apply the chi-square distribution for
X2. Each expected count must be at least 5. In the juror example, the expected counts
were 198, 19.25, 33, and 24.75, all easily above 5, so we can apply the chi-square model to
the test statistic, X2 = 5.89.

 Example 6.30 If the null hypothesis is true, the test statistic X2 = 5.89 would be
closely associated with a chi-square distribution with three degrees of freedom. Using
this distribution and test statistic, identify the p-value and state whether or not there
is evidence of racial bias in the juror selection.

13Using X2cdf(5.1, 1000, 5) gives 0.4038.
14The area is 0.1109.
15The area is 0.4043.
16The area is 0.0266.
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The chi-square distribution and p-value are shown in Figure 6.10. Because larger chi-
square values correspond to stronger evidence against the null hypothesis, we shade
the upper tail to represent the p-value. Using the chi-square table in Appendix B.3
or the short table on page 238, we can determine that the area is between 0.1 and
0.2. That is, the p-value is larger than 0.1 but smaller than 0.2. Generally we do not
reject the null hypothesis with such a large p-value. In other words, the data do not
provide convincing evidence of racial bias in the juror selection.

0 5 10 15

Figure 6.10: The p-value for the juror hypothesis test is shaded in the
chi-square distribution with df = 3.

The test that we just carried out regarding jury selection is known as the X2 goodness
of fit test. It is called “goodness of fit” because we test whether or not the proposed or
expected distribution is a good fit for the observed data.

Chi-square goodness of fit test for one-way table
Suppose we are to evaluate whether there is convincing evidence that a set of
observed counts O1, O2, ..., Ok in k categories are unusually different from what
might be expected under a null hypothesis. Call the expected counts that are
based on the null hypothesis E1, E2, ..., Ek. If each expected count is at least 5
and the null hypothesis is true, then the test statistic below follows a chi-square
distribution with k − 1 degrees of freedom:

X2 =
(O1 − E1)2

E1
+

(O2 − E2)2

E2
+ · · ·+ (Ok − Ek)2

Ek

The p-value for this test statistic is found by looking at the upper tail of this chi-
square distribution. We consider the upper tail because larger values of X2 would
provide greater evidence against the null hypothesis.

TIP: Conditions for the chi-square goodness of fit test
There are two conditions that must be checked before performing a chi-square
goodness of fit test. If these conditions are not met, this test should not be used.

Simple random sample. The data must be arrived at by taking a simple random
sample from the population of interest. The observed counts can then be
organized into a list or one-way table.

All Expected Counts at least 5 Each particular scenario (i.e. cell count) must
have at least 5 expected cases.
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6.3.5 Evaluating goodness of fit for a distribution

Goodness of fit test for a one-way table

1. State the name of the test being used: X2 goodness of fit test.

2. Verify conditions.

• a random sample

• all expected counts ≥ 5 (calculate and record expected counts)

3. Write the hypotheses in plain language. No mathematical notation is needed
for this test.

• H0: The distribution of [...] matches [the expected distribution].

• HA: The distribution of [....] does not match [the expected distribution]

4. Identify the significance level α.

5. Calculate the test statistic and degrees of freedom.

X2 =
∑ (observed counts - expected counts)

2

expected counts

df = (# of categories− 1)

6. Find the p-value and compare it to α to determine whether to reject or not
reject H0.

7. Write the conclusion in the context of the question.

Section 4.3 would be useful background reading for this example, but it is not a
prerequisite.

We can apply our new chi-square testing framework to the second problem in this
section: evaluating whether a certain statistical model fits a data set. Daily stock returns
from the S&P500 for 1990-2011 can be used to assess whether stock activity each day is
independent of the stock’s behavior on previous days. This sounds like a very complex
question, and it is, but a chi-square test can be used to study the problem. We will label
each day as Up or Down (D) depending on whether the market was up or down that day.
For example, consider the following changes in price, their new labels of up and down, and
then the number of days that must be observed before each Up day:

Change in price 2.52 -1.46 0.51 -4.07 3.36 1.10 -5.46 -1.03 -2.99 1.71
Outcome Up D Up D Up Up D D D Up
Days to Up 1 - 2 - 2 1 - - - 4

If the days really are independent, then the number of days until a positive trading day
should follow a geometric distribution. The geometric distribution describes the probability
of waiting for the kth trial to observe the first success. Here each up day (Up) represents
a success, and down (D) days represent failures. In the data above, it took only one day
until the market was up, so the first wait time was 1 day. It took two more days before
we observed our next Up trading day, and two more for the third Up day. We would like
to determine if these counts (1, 2, 2, 1, 4, and so on) follow the geometric distribution.
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Table 6.11 shows the number of waiting days for a positive trading day during 1990-2011
for the S&P500.

Days 1 2 3 4 5 6 7+ Total
Observed 1532 760 338 194 74 33 17 2948

Table 6.11: Observed distribution of the waiting time until a positive trad-
ing day for the S&P500, 1990-2011.

We consider how many days one must wait until observing an Up day on the S&P500
stock exchange. If the stock activity was independent from one day to the next and the
probability of a positive trading day was constant, then we would expect this waiting time
to follow a geometric distribution. We can organize this into a hypothesis framework:

H0: The stock market being up or down on a given day is independent from all other
days. We will consider the number of days that pass until an Up day is observed.
Under this hypothesis, the number of days until an Up day should follow a geometric
distribution.

HA: The stock market being up or down on a given day is not independent from all other
days. Since we know the number of days until an Up day would follow a geometric
distribution under the null, we look for deviations from the geometric distribution,
which would support the alternative hypothesis.

There are important implications in our result for stock traders: if information from past
trading days is useful in telling what will happen today, that information may provide an
advantage over other traders.

We consider data for the S&P500 from 1990 to 2011 and summarize the waiting times
in Table 6.12 and Figure 6.13. The S&P500 was positive on 53.2% of those days.

Because applying the chi-square framework requires expected counts to be at least 5,
we have binned together all the cases where the waiting time was at least 7 days to ensure
each expected count is well above this minimum. The actual data, shown in the Observed
row in Table 6.12, can be compared to the expected counts from the Geometric Model
row. The method for computing expected counts is discussed in Table 6.12. In general, the
expected counts are determined by (1) identifying the null proportion associated with each
bin, then (2) multiplying each null proportion by the total count to obtain the expected
counts. That is, this strategy identifies what proportion of the total count we would expect
to be in each bin.

Days 1 2 3 4 5 6 7+ Total
Observed 1532 760 338 194 74 33 17 2948
Geometric Model 1569 734 343 161 75 35 31 2948

Table 6.12: Distribution of the waiting time until a positive trading day.
The expected counts based on the geometric model are shown in the last
row. To find each expected count, we identify the probability of waiting D
days based on the geometric model (P (D) = (1 − 0.532)D−1(0.532)) and
multiply by the total number of streaks, 2948. For example, waiting for
three days occurs under the geometric model about 0.4682×0.532 = 11.65%
of the time, which corresponds to 0.1165× 2948 = 343 streaks.
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Figure 6.13: Side-by-side bar plot of the observed and expected counts for
each waiting time.

 Example 6.31 Do you notice any unusually large deviations in the graph? Can
you tell if these deviations are due to chance just by looking?

It is not obvious whether differences in the observed counts and the expected counts
from the geometric distribution are significantly different. That is, it is not clear
whether these deviations might be due to chance or whether they are so strong that
the data provide convincing evidence against the null hypothesis. However, we can
perform a chi-square test using the counts in Table 6.12.⊙
Guided Practice 6.32 Table 6.12 provides a set of count data for waiting times
(O1 = 1532, O2 = 760, ...) and expected counts under the geometric distribution
(E1 = 1569, E2 = 734, ...). Compute the chi-square test statistic, X2.17

⊙
Guided Practice 6.33 Because the expected counts are all at least 5, we can safely
apply the chi-square distribution to X2. However, how many degrees of freedom
should we use?18

 Example 6.34 If the observed counts follow the geometric model, then the chi-
square test statistic X2 = 15.08 would closely follow a chi-square distribution with
df = 6. Using this information, compute a p-value.

Figure 6.14 shows the chi-square distribution, cutoff, and the shaded p-value. If we
look up the statistic X2 = 15.08 in Appendix B.3, we find that the p-value is between
0.01 and 0.02. In other words, we have sufficient evidence to reject the notion that
the wait times follow a geometric distribution, i.e. trading days are not independent
and past days may help predict what the stock market will do today.

17X2 =
(1532−1569)2

1569
+

(760−734)2

734
+ · · ·+ (17−31)2

31
= 15.08

18There are k = 7 groups, so we use df = k − 1 = 6.
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Figure 6.14: Chi-square distribution with 6 degrees of freedom. The p-value
for the stock analysis is shaded.

 Example 6.35 In Example 6.34, we rejected the null hypothesis that the trading
days are independent. Why is this so important?

Because the data provided strong evidence that the geometric distribution is not
appropriate, we reject the claim that trading days are independent. While it is not
obvious how to exploit this information, it suggests there are some hidden patterns
in the data that could be interesting and possibly useful to a stock trader.

6.3.6 Calculator: chi-square goodness of fit test

TI calculator: Carrying out the chi-square goodness of fit test

Use STAT, TESTS, X2GOF-Test.

1. Enter the observed counts into list L1 and the expected counts into list L2.

2. Choose STAT.

3. Right arrow to TESTS.

4. Down arrow and choose D: X2GOF-Test.

5. Leave Observed: L1 and Expected: L2.

6. Enter the degrees of freedom after df:

7. Choose Calculate and hit ENTER, which returns:
X2 chi-square value
p p-value
df degrees of freedom

TI-83: Unfortunately the TI-83 does not have this test built in. To carry out
the test manually, make list L3 = (L1 - L2)2 / L2 and do 1-Var-Stats
on L3. The sum of L3 will correspond to the value of X2 for this test.

⊙
Guided Practice 6.36 Use the data above and a calculator to find the X2 statistic,
df, and p-value for chi-square goodness of fit test.19

19First enter the observed values into L1 and the expected values into L2. Use STAT, TESTS, X2GOF-
Test. X2 = 15.08, df = 6, p-value= 0.0196.
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Days 1 2 3 4 5 6 7+ Total
Observed 1532 760 338 194 74 33 17 2948
Geometric Model 1569 734 343 161 75 35 31 2948

Table 6.15: Distribution of the waiting time until a positive trading day.
The expected counts based on the geometric model are shown in the last
row.

6.4 Homogeneity and independence in two-way tables

Google is constantly running experiments to test new search algorithms. For example,
Google might test three algorithms using a sample of 10,000 google.com search queries.
Table 6.16 shows an example of 10,000 queries split into three algorithm groups.20 The
group sizes were specified before the start of the experiment to be 5000 for the current
algorithm and 2500 for each test algorithm.

Search algorithm current test 1 test 2 Total
Counts 5000 2500 2500 10000

Table 6.16: Google experiment breakdown of test subjects into three search
groups.

 Example 6.37 What is the ultimate goal of the Google experiment? What are the
null and alternative hypotheses, in regular words?

The ultimate goal is to see whether there is a difference in the performance of the
algorithms. The hypotheses can be described as the following:

H0: The algorithms each perform equally well.

HA: The algorithms do not perform equally well.

In this experiment, the explanatory variable is the search algorithm. However, an
outcome variable is also needed. This outcome variable should somehow reflect whether
the search results align with the user’s interests. One possible way to quantify this is to
determine whether (1) there was no new, related search, and the user clicked one of the links
provided, or (2) there was a new, related search performed by the user. Under scenario (1),
we might think that the user was satisfied with the search results. Under scenario (2), the
search results probably were not relevant, so the user tried a second search.

Table 6.17 provides the results from the experiment. These data are very similar to
the count data in Section 6.3. However, now the different combinations of two variables
are binned in a two-way table. In examining these data, we want to evaluate whether there
is strong evidence that at least one algorithm is performing better than the others. To do
so, we apply a chi-square test to this two-way table. The ideas of this test are similar to
those ideas in the one-way table case. However, degrees of freedom and expected counts
are computed a little differently than before.

20Google regularly runs experiments in this manner to help improve their search engine. It is entirely
possible that if you perform a search and so does your friend, that you will have different search results.
While the data presented in this section resemble what might be encountered in a real experiment, these
data are simulated.



6.4. HOMOGENEITY AND INDEPENDENCE IN TWO-WAY TABLES 247

Search algorithm
current test 1 test 2 Total

No new search 3511 1749 1818 7078
New search 1489 751 682 2922
Total 5000 2500 2500 10000

Table 6.17: Results of the Google search algorithm experiment.

TIP: What is so different about one-way tables and two-way tables?
A one-way table describes counts for each outcome in a single variable. A two-way
table describes counts for combinations of outcomes for two variables. When we
consider a two-way table, we often would like to know, are these variables related
in any way?

The hypothesis test for this Google experiment is really about assessing whether there
is statistically significant evidence that the choice of the algorithm affects whether a user
performs a second search. In other words, the goal is to check whether the the three search
algorithms perform differently.

6.4.1 Expected counts in two-way tables

 Example 6.38 From the experiment, we estimate the proportion of users who were
satisfied with their initial search (no new search) as 7078/10000 = 0.7078. If there
really is no difference among the algorithms and 70.78% of people are satisfied with
the search results, how many of the 5000 people in the “current algorithm” group
would be expected to not perform a new search?

About 70.78% of the 5000 would be satisfied with the initial search:

0.7078× 5000 = 3539 users

That is, if there was no difference between the three groups, then we would expect
3539 of the current algorithm users not to perform a new search.

⊙
Guided Practice 6.39 Using the same rationale described in Example 6.38, about
how many users in each test group would not perform a new search if the algorithms
were equally helpful?21

We can compute the expected number of users who would perform a new search for
each group using the same strategy employed in Example 6.38 and Guided Practice 6.39.
These expected counts were used to construct Table 6.18, which is the same as Table 6.17,
except now the expected counts have been added in parentheses.

The examples and exercises above provided some help in computing expected counts.
In general, expected counts for a two-way table may be computed using the row totals,
column totals, and the table total. For instance, if there was no difference between the

21We would expect 0.7078 ∗ 2500 = 1769.5. It is okay that this is a fraction.



248 CHAPTER 6. INFERENCE FOR CATEGORICAL DATA

Search algorithm current test 1 test 2 Total
No new search 3511 (3539) 1749 (1769.5) 1818 (1769.5) 7078
New search 1489 (1461) 751 (730.5) 682 (730.5) 2922
Total 5000 2500 2500 10000

Table 6.18: The observed counts and the (expected counts).

groups, then about 70.78% of each column should be in the first row:

0.7078× (column 1 total) = 3539

0.7078× (column 2 total) = 1769.5

0.7078× (column 3 total) = 1769.5

Looking back to how the fraction 0.7078 was computed – as the fraction of users who did
not perform a new search (7078/10000) – these three expected counts could have been
computed as (

row 1 total

table total

)
(column 1 total) = 3539(

row 1 total

table total

)
(column 2 total) = 1769.5(

row 1 total

table total

)
(column 3 total) = 1769.5

This leads us to a general formula for computing expected counts in a two-way table when
we would like to test whether there is strong evidence of an association between the column
variable and row variable.

Computing expected counts in a two-way table
To identify the expected count for the ith row and jth column, compute

Expected Countrow i, col j =
(row i total)× (column j total)

table total

6.4.2 The chi-square test of homogeneity for two-way tables

The chi-square test statistic for a two-way table is found the same way it is found for a
one-way table. For each table count, compute

General formula
(observed count − expected count)2

expected count

Row 1, Col 1
(3511− 3539)2

3539
= 0.222

Row 1, Col 2
(1749− 1769.5)2

1769.5
= 0.237

...
...

Row 2, Col 3
(682− 730.5)2

730.5
= 3.220
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Adding the computed value for each cell gives the chi-square test statistic X2:

X2 = 0.222 + 0.237 + · · ·+ 3.220 = 6.120

Just like before, this test statistic follows a chi-square distribution. However, the degrees
of freedom are computed a little differently for a two-way table.22 For two way tables, the
degrees of freedom is equal to

df = (number of rows - 1)× (number of columns - 1)

In our example, the degrees of freedom parameter is

df = (2− 1)× (3− 1) = 2

If the null hypothesis is true (i.e. the algorithms are equally useful), then the test statistic
X2 = 6.12 closely follows a chi-square distribution with 2 degrees of freedom. Using this
information, we can compute the p-value for the test, which is depicted in Figure 6.19.

Computing degrees of freedom for a two-way table
When applying the chi-square test to a two-way table, we use

df = (R− 1)× (C − 1)

where R is the number of rows in the table and C is the number of columns.

TIP: Use two-proportion methods for 2-by-2 contingency tables
When analyzing 2-by-2 contingency tables, use the two-proportion methods intro-
duced in Section 6.2.

0 5 10 15

Figure 6.19: Computing the p-value for the Google hypothesis test.

22Recall: in the one-way table, the degrees of freedom was the number of cells minus 1.
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Congress
Obama Democrats Republicans Total

Approve 842 736 541 2119
Disapprove 616 646 842 2104
Total 1458 1382 1383 4223

Table 6.20: Pew Research poll results of a March 2012 poll.

TIP: Conditions for the chi-square test of homeneity
There are two conditions that must be checked before performing a chi-square test
of homogeneity. If these conditions are not met, this test should not be used.

Mutliple random samples or randomly allocated treatments. Data col-
lected by multiple independent random samples or multiple randomlly al-
located treatments. Data can then be organized into a two-way table.

All Expected Counts at least 5. All of the expected counts must be at least 5.

 Example 6.40 Compute the p-value and draw a conclusion about whether the
search algorithms have different performances.

Looking in Appendix B.3 on page 392, we examine the row corresponding to 2 degrees
of freedom. The test statistic, X2 = 6.120, falls between the fourth and fifth columns,
which means the p-value is between 0.02 and 0.05. Because we typically test at a
significance level of α = 0.05 and the p-value is less than 0.05, the null hypothesis is
rejected. That is, the data provide convincing evidence that there is some difference
in performance among the algorithms.

6.4.3 The chi-square test of independence for two-way tables

The chi-square test of Independence proceeds exactly like the chi-square test of homogene-
ity, except that it applies when there is only one random sample (versus multiple random
samples or an experiment with multiple randomly allocated treatments). The null claim is
always that two variables are independent, while the alternate claim is that the variables
are dependent.

 Example 6.41 Table 6.20 summarizes the results of a Pew Research poll.23 We
would like to determine if three groups and approval ratings are associated. What
are appropriate hypotheses for such a test?

H0: The ratings are independent of the group. (There is no difference in approval
ratings between the three groups.)

HA: The ratings are dependent on the group. (There is some difference in approval
ratings between the three groups, e.g. perhaps Obama’s approval differs from
Democrats in Congress.)

23See the Pew Research website: www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-

matchup-with-obama. The counts in Table 6.20 are approximate.

http://www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-matchup-with-obama/
http://www.people-press.org/2012/03/14/romney-leads-gop-contest-trails-in-matchup-with-obama/
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⊙
Guided Practice 6.42 A chi-square test for a two-way table may be used to test
the hypotheses in Example 6.41. As a first step, compute the expected values for
each of the six table cells.24

⊙
Guided Practice 6.43 Compute the chi-square test statistic.25

⊙
Guided Practice 6.44 Because there are 2 rows and 3 columns, the degrees of
freedom for the test is df = (2 − 1) × (3 − 1) = 2. Use X2 = 106.4, df = 2, and the
chi-square table on page 392 to evaluate whether to reject the null hypothesis.26

TIP: Conditions for the chi-square test of independence
There are two conditions that must be checked before performing a chi-square test
of independence. If these conditions are not met, this test should not be used.

One simple random sample with two variables/questions. The data must
be arrived at by taking a simple random sample. After the data is collected,
it is separated and categorized according to two variables and can be organized
into a two-way table.

All Expected Counts at least 5 All of the expected counts must be at least 5.

24The expected count for row one / column one is found by multiplying the row one total (2119) and
column one total (1458), then dividing by the table total (4223): 2119×1458

3902
= 731.6. Similarly for the first

column and the second row: 2104×1458
4223

= 726.4. Column 2: 693.5 and 688.5. Column 3: 694.0 and 689.0

25For each cell, compute
(obs−exp)2

exp
. For instance, the first row and first column:

(842−731.6)2

731.6
= 16.7.

Adding the results of each cell gives the chi-square test statistic: X2 = 16.7 + · · ·+ 34.0 = 106.4.
26The test statistic is larger than the right-most column of the df = 2 row of the chi-square table,

meaning the p-value is less than 0.001. That is, we reject the null hypothesis because the p-value is
less than 0.05, and we conclude that Americans’ approval has differences among Democrats in Congress,
Republicans in Congress, and the president.
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6.4.4 Summarizing the chi-square tests for two-way tables

X2 test of homogeneity

1. State the name of the test being used: X2 test of homogeneity.

2. Verify conditions: multiple random samples or treatments and all expected
counts ≥ 5 (calculate and recorded expected counts).

3. Write the hypotheses in plain language. No mathematical notation is needed
for this test.

• H0: distribution of [variable 1] matches the distribution of [variable 2].

• HA: distribution of [variable 1] does not match the distribution of [vari-
able 2].

4. Identify the significance level α.

5. Calculate the test statistic and degrees of freedom.

X2 =
∑ (observed counts - expected counts)2

expected counts

df = (# of categories− 1)

6. Find the p-value and compare it to α to determine whether to reject or not
reject H0.

7. Write the conclusion in the context of the question.

X2 test of independence

1. State the name of the test being used: X2 test of independence.

2. Verify conditions: a random sample and all expected counts ≥ 5 (calculate
and record expected counts).

3. Write the hypotheses in plain language. No mathematical notation is needed
for this test.

• H0: [variable 1] and [variable 2] are independent.

• HA: [variable 1] and [variable 2] are dependent.

4. Identify the significance level α.

5. Calculate the test statistic and degrees of freedom.

X2 =
∑ (observed counts - expected counts)2

expected counts

df = (# of categories− 1)

6. Find the p-value and compare it to α to determine whether to reject or not
reject H0.

7. Write the conclusion in the context of the question.
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 Example 6.45 A 2011 survey asked 806 randomly sampled adult Facebook users
about their Facebook privacy settings. One of the questions on the survey was, “Do
you know how to adjust your Facebook privacy settings to control what people can
and cannot see?” The responses are cross-tabulated based on gender.27

Gender
Male Female Total

Yes 288 378 666
Response No 61 62 123

Not sure 10 7 17
Total 359 447 806

Carry out an appropriate test at the 0.10 significance level to see if there is an as-
sociation between gender and knowing how to adjust Facebook privacy settings to
control what people can and cannot see.

According to the problem, there was one random sample taken. Two variables were
recorded on the respondents: gender and response to the question regarding privacy
settings. Because there was one random sample rather than two independent random
samples, we carry out a X2 test of independence.
H0: Gender and knowing how to adjust Facebook privacy settings are independent.
HA: Gender and knowing how to adjust Facebook privacy settings are dependent.
α = 0.1

Table of expected counts:
296.64 369.36
54.785 68.215
7.572 9.428

All expected counts are ≥ 5. X2 = 3.13; df = 2 p-value= 0.209 > α We do not
reject H0. We do not have evidence that gender and knowing how to adjust Facebook
privacy settings are dependent.

http://www.surveyusa.com/client/PollPrint.aspx?g=2ef98776-a34d-419f-bb2e-466ef4098289&d=0
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End of chapter exercise
solutions

6.21 The margin of error, which is computed
as z?SE, must be smaller than 0.01 for a
90% confidence level. We use z? = 1.65 for
a 90% confidence level, and we can use the
point estimate p̂ = 0.52 in the formula for SE.
1.65

√
0.52(1− 0.52)/n ≤ 0.01. Therefore, the

sample size n must be at least 6,796.

6.23 This is not a randomized experiment, and
it is unclear whether people would be affected
by the behavior of their peers. That is, indepen-
dence may not hold. Additionally, there are only
5 interventions under the provocative scenario,
so the success-failure condition does not hold.
Even if we consider a hypothesis test where we
pool the proportions, the success-failure condi-
tion will not be satisfied. Since one condition is
questionable and the other is not satisfied, the
difference in sample proportions will not follow
a nearly normal distribution.

6.25 (a) False. The entire confidence interval is
above 0. (b) True. (c) True. (d) True. (e) False.
It is simply the negated and reordered values: (-
0.06,-0.02).

6.27 (a) (0.23, 0.33). We are 95% confident
that the proportion of Democrats who support

the plan is 23% to 33% higher than the propor-
tion of Independents who do. (b) True.

6.29 (a) College grads: 23.7%. Non-college
grads: 33.7%. (b) Let pCG and pNCG represent
the proportion of college graduates and non-
college graduates who responded “do not know”.
H0 : pCG = pNCG. HA : pCG 6= pNCG. Inde-
pendence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p̂ = 235/827 = 0.284), is also satis-
fied. Z = −3.18 → p-value = 0.0014. Since the
p-value is very small, we reject H0. The data
provide strong evidence that the proportion of
college graduates who do not have an opinion
on this issue is different than that of non-college
graduates. The data also indicate that fewer
college grads say they “do not know” than non-
college grads (i.e. the data indicate the direction
after we reject H0).

6.31 (a) College grads: 35.2%. Non-college
grads: 33.9%. (b) Let pCG and pNCG rep-
resent the proportion of college graduates and
non-college grads who support offshore drilling.
H0 : pCG = pNCG. HA : pCG 6= pNCG. In-
dependence is satisfied (random sample, < 10%
of the population), and the success-failure con-
dition, which we would check using the pooled
proportion (p̂ = 286/827 = 0.346), is also satis-
fied. Z = 0.39 → p-value = 0.6966. Since the
p-value > α (0.05), we fail to reject H0. The
data do not provide strong evidence of a differ-
ence between the proportions of college gradu-
ates and non-college graduates who support off-
shore drilling in California.



6.33 Subscript C means control group. Sub-
script T means truck drivers. (a) H0 : pC =
pT . HA : pC 6= pT . Independence is satis-
fied (random samples, < 10% of the popula-
tion), as is the success-failure condition, which
we would check using the pooled proportion
(p̂ = 70/495 = 0.141). Z = −1.58 → p-value
= 0.1164. Since the p-value is high, we fail to
reject H0. The data do not provide strong evi-
dence that the rates of sleep deprivation are dif-
ferent for non-transportation workers and truck
drivers.

6.35 (a) Summary of the study:

Virol. failure
Yes No Total

Treatment
Nevaripine 26 94 120
Lopinavir 10 110 120
Total 36 204 240

(b) H0 : pN = pL. There is no difference in vi-
rologic failure rates between the Nevaripine and
Lopinavir groups. HA : pN 6= pL. There is
some difference in virologic failure rates between
the Nevaripine and Lopinavir groups. (c) Ran-
dom assignment was used, so the observations in
each group are independent. If the patients in
the study are representative of those in the gen-
eral population (something impossible to check
with the given information), then we can also
confidently generalize the findings to the pop-
ulation. The success-failure condition, which
we would check using the pooled proportion
(p̂ = 36/240 = 0.15), is satisfied. Z = 3.04→ p-
value = 0.0024. Since the p-value is low, we re-
ject H0. There is strong evidence of a difference
in virologic failure rates between the Nevarip-
ine and Lopinavir groups do not appear to be
independent.

6.37 (a) False. The chi-square distribution
has one parameter called degrees of freedom.
(b) True. (c) True. (d) False. As the degrees
of freedom increases, the shape of the chi-square
distribution becomes more symmetric.

6.39 (a) H0: The distribution of the format
of the book used by the students follows the
professor’s predictions. HA: The distribution
of the format of the book used by the stu-
dents does not follow the professor’s predictions.
(b) Ehard copy = 126 × 0.60 = 75.6. Eprint =
126× 0.25 = 31.5. Eonline = 126× 0.15 = 18.9.
(c) Independence: The sample is not random.
However, if the professor has reason to believe
that the proportions are stable from one term
to the next and students are not affecting each
other’s study habits, independence is probably
reasonable. Sample size: All expected counts
are at least 5. Degrees of freedom: df = k−1 =
3−1 = 2 is more than 1. (d) X2 = 2.32, df = 2,
p-value > 0.3. (e) Since the p-value is large,
we fail to reject H0. The data do not provide
strong evidence indicating the professor’s pre-
dictions were statistically inaccurate.

6.41 (a). Two-way table:

Quit
Treatment Yes No Total
Patch + support group 40 110 150
Only patch 30 120 150
Total 70 230 300

(b-i) Erow1,col1 = (row 1 total)×(col 1 total)
table total

=
150×70

300
= 35. This is lower than

the observed value. (b-ii) Erow2,col2 =
(row 2 total)×(col 2 total)

table total
= 150×230

300
= 115. This
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is lower than the observed value.

6.43 H0: The opinion of college grads and non-
grads is not different on the topic of drilling for
oil and natural gas off the coast of California.
HA: Opinions regarding the drilling for oil and
natural gas off the coast of California has an
association with earning a college degree.

Erow 1,col 1 = 151.5 Erow 1,col 2 = 134.5

Erow 2,col 1 = 162.1 Erow 2,col 2 = 143.9

Erow 3,col 1 = 124.5 Erow 3,col 2 = 110.5

Independence: The samples are both random,
unrelated, and from less than 10% of the popu-
lation, so independence between observations is
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reasonable. Sample size: All expected counts
are at least 5. Degrees of freedom: df =
(R − 1) × (C − 1) = (3 − 1) × (2 − 1) = 2,
which is greater than 1. X2 = 11.47, df = 2
→ 0.001 < p-value < 0.005. Since the p-value
< α, we reject H0. There is strong evidence
that there is an association between support for
off-shore drilling and having a college degree.

6.45 (a) H0: The age of Los Angeles residents is
independent of shipping carrier preference vari-
able. HA: The age of Los Angeles residents is
associated with the shipping carrier preference
variable. (b) The conditions are not satisfied
since some expected counts are below 5.
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