
1

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Camera Ray Casting

Ravi Ramamoorthi

Outline
 Camera Ray Casting (choose ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

Image image = new Image (width, height) ;
for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
}

return image ;
}

Ray Casting

Virtual Viewpoint

Virtual Screen Objects
Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)

Finding Ray Direction
 Goal is to find ray direction for given pixel i and j

 Many ways to approach problem
 Objects in world coord, find dirn of each ray (we do this)
 Camera in canonical frame, transform objects (OpenGL)

 Basic idea
 Ray has origin (camera center) and direction
 Find direction given camera params and i and j

 Camera params as in gluLookAt
 Lookfrom[3], LookAt[3], up[3], fov

Similar to gluLookAt derivation
 gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,

upy, upz)

 Camera at eye, looking at center, with up direction being up

Eye

Up vector

CenterFrom earlier lecture on deriving gluLookAt

2

We want to associate w with a, and v with b
 But a and b are neither orthogonal nor unit norm
 And we also need to find u

Constructing a coordinate frame?

From basic math lecture - Vectors: Orthonormal Basis Frames

 We want to position camera at origin, looking down –Z dirn

 Hence, vector a is given by eye – center
 The vector b is simply the up vector

Constructing a coordinate frame

Eye

Up vector

Center

Canonical viewing geometry

-w αu

βv

Canonical viewing geometry

-w αu

βv

Canonical viewing geometry

-w αu

βv

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Ray-Object Intersections

Ravi Ramamoorthi

3

Outline
 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

Image image = new Image (width, height) ;
for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
}

return image ;
}

Ray-Sphere Intersection

C

P0

Ray-Sphere Intersection

Substitute

Ray-Sphere Intersection

Substitute

Simplify

Ray-Sphere Intersection

Substitute

Simplify

4

 2 real positive roots: pick smaller root

 Both roots same: tangent to sphere

 One positive, one negative root: ray
origin inside sphere (pick + root)

 Complex roots: no intersection (check
discriminant of equation first)

Ray-Sphere Intersection

Solve quadratic equations for t

Ray-Sphere Intersection
 Intersection point:

 Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

Ray-Triangle Intersection
 One approach: Ray-Plane intersection, then

check if inside triangle

 Plane equation:
A B

C

Ray-Triangle Intersection
 One approach: Ray-Plane intersection, then

check if inside triangle

 Plane equation:
A B

C

Ray-Triangle Intersection
 One approach: Ray-Plane intersection, then

check if inside triangle

 Plane equation:
A B

C

Ray-Triangle Intersection
 One approach: Ray-Plane intersection, then

check if inside triangle

 Plane equation:

 Combine with ray equation

A B

C

5

Ray inside Triangle
 Once intersect with plane, need to find if in triangle

 Many possibilities for triangles, general polygons

 We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A B

C

P
α β

γ

Ray inside Triangle
A B

C

Pα
β

γ

Other primitives
 Much early work in ray tracing focused on ray-primitive

intersection tests

 Cones, cylinders, ellipsoids

 Boxes (especially useful for bounding boxes)

 General planar polygons

 Many more

Ray Scene Intersection
Intersection (ray, scene) {

mindist = infinity; hitobject = NULL ;

For each object in scene { // Find closest intersection; test all objects

t = Intersect (ray, object) ;

if (t > 0 && t < mindist) // closer than previous closest object

mindist = t ; hitobject = object ;

}

return IntersectionInfo(mindist, hitobject) ; // may already be in Intersect()

}

Outline
 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Ray-Tracing Transformed Objects
We have an optimized ray-sphere test
 But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
 Apply inverse transform to ray, use ray-sphere
 Allows for instancing (traffic jam of cars)
 Same idea for other primitives

6

Transformed Objects
 Consider a general 4x4 transform M (matrix stacks)

 Apply inverse transform M-1 to ray
 Locations stored and transform in homogeneous coordinates
 Vectors (ray directions) have homogeneous coordinate set

to 0 [so there is no action because of translations]

 Do standard ray-surface intersection as modified

 Transform intersection back to actual coordinates
 Intersection point p transforms as Mp
 Normals n transform as M-tn. Do all this before lighting

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Lighting Calculations

Ravi Ramamoorthi

Outline
 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

Image image = new Image (width, height) ;
for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {
Ray ray = RayThruPixel (cam, i, j) ;
Intersection hit = Intersect (ray, scene) ;
image[i][j] = FindColor (hit) ;
}

return image ;
}

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
• Numerical inaccuracy may cause intersection to be

below surface (effect exaggerated in figure)
• Causing surface to incorrectly shadow itself
• Move a little towards light before shooting shadow ray

7

Lighting Model
 Similar to OpenGL

 Lighting model parameters (global)
 Ambient r g b
 Attenuation const linear quadratic

 Per light model parameters
 Directional light (direction, RGB parameters)
 Point light (location, RGB parameters)
 Some differences from HW 2 syntax

Material Model
 Diffuse reflectance (r g b)

 Specular reflectance (r g b)

 Shininess s

 Emission (r g b)

 All as in OpenGL

Shading Model

 Global ambient term, emission from material

 For each light, diffuse specular terms

 Note visibility/shadowing for each light (not in OpenGL)

 Evaluated per pixel per light (not per vertex)

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Recursive Ray Tracing

Ravi Ramamoorthi

Outline
 Camera Ray Casting (choosing ray directions)

 Ray-object intersections

 Ray-tracing transformed objects

 Lighting calculations

 Recursive ray tracing

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

8

Basic idea
For each pixel
 Trace Primary Eye Ray, find intersection

 Trace Secondary Shadow Ray(s) to all light(s)
 Color = Visible ? Illumination Model : 0 ;

 Trace Reflected Ray
 Color += reflectivity * Color of reflected ray

Recursive Shading Model

 Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra)

 Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

 GetColor calls RayTrace recursively (the I values in
equation above of secondary rays are obtained by
recursive calls)

Problems with Recursion
 Reflection rays may be traced forever

 Generally, set maximum recursion depth

 Same for transmitted rays (take refraction into account)

Some basic add ons
 Area light sources and soft shadows: break into

grid of n x n point lights
 Use jittering: Randomize direction of shadow ray

within small box for given light source direction
 Jittering also useful for antialiasing shadows when

shooting primary rays

 More complex reflectance models
 Simply update shading model
 But at present, we can handle only mirror global

illumination calculations

