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CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Dan Klein, Pieter Abbeel

University of California, Berkeley

What is Search For?

� Assumptions about the world: a single agent, deterministic actions, fully observed 

state, discrete state space

� Planning: sequences of actions

� The path to the goal is the important thing

� Paths have various costs, depths

� Heuristics give problem-specific guidance

� Identification: assignments to variables

� The goal itself is important, not the path

� All paths at the same depth (for some formulations)

� CSPs are specialized for identification problems

Constraint Satisfaction Problems

� Standard search problems:

� State is a “black box”: arbitrary data structure

� Goal test can be any function over states

� Successor function can also be anything

� Constraint satisfaction problems (CSPs):

� A special subset of search problems

� State is defined by variables Xi with values from a 
domain D (sometimes D depends on i)

� Goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables

� Simple example of a formal representation language

� Allows useful general-purpose algorithms with more 
power than standard search algorithms

Example: Map Coloring

� Variables:

� Domains:

� Constraints: adjacent regions must have different 
colors

� Solutions are assignments satisfying all 
constraints, e.g.:

Implicit:

Explicit:

Map coloring examples: Stuart Russell

Example: N-Queens

� Formulation 1:

� Variables:

� Domains:

� Constraints

Example: N-Queens

� Formulation 2:

� Variables:

� Domains:

� Constraints:

Implicit:

Explicit:
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Constraint Graphs

� Binary CSP: each constraint relates (at most) two 
variables

� Binary constraint graph: nodes are variables, arcs 
show constraints

� General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!

[demo: n-queens]

Example: Cryptarithmetic

� Variables:

� Domains:

� Constraints:

Example: Stuart Russell

Example: Sudoku

� Variables:

� Each (open) square

� Domains:

� {1,2,…,9}

� Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 

pairwise inequality 

constraints)

Example: The Waltz Algorithm

� The Waltz algorithm is for interpreting 
line drawings of solid polyhedra as 3D 
objects

� An early example of an AI computation 
posed as a CSP 

?
� Approach:

� Each intersection is a variable

� Adjacent intersections impose constraints 
on each other

� Solutions are physically realizable 3D 
interpretations

Varieties of CSPs

� Discrete Variables

� Finite domains

� Size d means O(dn) complete assignments

� E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

� Infinite domains (integers, strings, etc.)

� E.g., job scheduling, variables are start/end times for each job

� Linear constraints solvable, nonlinear undecidable

� Continuous variables

� E.g., start/end times for Hubble Telescope observations

� Linear constraints solvable in polynomial time by LP methods 
(see cs170 for a bit of this theory)

Varieties of Constraints

� Varieties of Constraints

� Unary constraints involve a single variable (equivalent to 
reducing domains), e.g.:

� Binary constraints involve pairs of variables, e.g.:

� Higher-order constraints involve 3 or more variables:

e.g., cryptarithmetic column constraints

� Preferences (soft constraints):

� E.g., red is better than green

� Often representable by a cost for each variable assignment

� Gives constrained optimization problems

� (We’ll ignore these until we get to Bayes’ nets)
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Real-World CSPs

� Assignment problems: e.g., who teaches what class

� Timetabling problems: e.g., which class is offered when and where?

� Hardware configuration

� Transportation scheduling

� Factory scheduling

� Circuit layout

� Fault diagnosis

� … lots more!

� Many real-world problems involve real-valued variables…

Solving CSPs

Standard Search Formulation

� Standard search formulation of CSPs

� States defined by the values assigned 
so far (partial assignments)
� Initial state: the empty assignment, {}

� Successor function: assign a value to an 
unassigned variable

� Goal test: the current assignment is 
complete and satisfies all constraints

� We’ll start with the straightforward, 
naïve approach, then improve it

Search Methods

� What would BFS do?

� What would DFS do?

� What problems does naïve search have?

[demo: dfs]

Backtracking Search

� Backtracking search is the basic uninformed algorithm for solving CSPs

� Idea 1: One variable at a time
� Variable assignments are commutative, so fix ordering

� I.e., [WA = red then NT = green] same as [NT = green then WA = red]

� Only need to consider assignments to a single variable at each step

� Idea 2: Check constraints as you go
� I.e. consider only values which do not conflict previous assignments

� Might have to do some computation to check the constraints

� “Incremental goal test”

� Depth-first search with these two improvements

is called backtracking search (not the best name)

� Can solve n-queens for n ≈ 25

Backtracking Example
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Backtracking Search

� Backtracking = DFS + variable-ordering + fail-on-violation

� What are the choice points?

Code: Russell and Norvig

Improving Backtracking

� General-purpose ideas give huge gains in speed

� Ordering:

� Which variable should be assigned next?

� In what order should its values be tried?

� Filtering: Can we detect inevitable failure early?

� Structure: Can we exploit the problem structure?

Filtering

� Filtering: Keep track of domains for unassigned variables and cross off bad options

� Forward checking: Cross off values that violate a constraint when added to the existing 

assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

[demo: forward checking]

Filtering: Constraint Propagation

� Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures:

� NT and SA cannot both be blue!

� Why didn’t we detect this yet?

� Constraint propagation method reason from constraint to constraint

WA
SA

NT Q

NSW

V

Consistency of A Single Arc

� An arc X → Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint

� Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA
SA

NT Q

NSW

V
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Arc Consistency of an Entire CSP

� A simple form of propagation makes sure all arcs are consistent:

� Important: If X loses a value, neighbors of X need to be rechecked!

� Arc consistency detects failure earlier than forward checking

� Can be run as a preprocessor or after each assignment 

� What’s the downside of enforcing arc consistency?

Remember: 

Delete from 

the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

� Runtime: O(n2d3), can be reduced to O(n2d2)

� … but detecting all possible future problems is NP-hard – why?

Code: Russell and Norvig

Limitations of Arc Consistency

� After enforcing arc 

consistency:

� Can have one solution left

� Can have multiple solutions left

� Can have no solutions left (and 

not know it)

� Arc consistency still runs 

inside a backtracking search!
What went 

wrong here?

[demo: arc consistency]

Ordering

Ordering: Minimum Remaining Values

� Variable Ordering: Minimum remaining values (MRV):

� Choose the variable with the fewest legal left values in its domain

� Why min rather than max?

� Also called “most constrained variable”

� “Fail-fast” ordering

Ordering: Least Constraining Value

� Value Ordering: Least Constraining Value

� Given a choice of variable, choose the least 

constraining value

� I.e., the one that rules out the fewest values in 
the remaining variables

� Note that it may take some computation to 
determine this!  (E.g., rerunning filtering)

� Why least rather than most?

� Combining these ordering ideas makes

1000 queens feasible
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CS 188: Artificial Intelligence

Constraint Satisfaction Problems II

Dan Klein, Pieter Abbeel

University of California, Berkeley

Today

� Efficient Solution of CSPs

� Local Search

Reminder: CSPs

� CSPs:
� Variables

� Domains

� Constraints
� Implicit (provide code to compute)

� Explicit (provide a list of the legal tuples)

� Unary / Binary / N-ary

� Goals:
� Here: find any solution

� Also: find all, find best, etc.

Backtracking Search

Code: Russell and Norvig

Improving Backtracking

� General-purpose ideas give huge gains in speed

� … but it’s all still NP-hard

� Ordering:

� Which variable should be assigned next?  (MRV)

� In what order should its values be tried?  (LCV)

� Filtering: Can we detect inevitable failure early?

� Structure: Can we exploit the problem structure?

Arc Consistency of an Entire CSP

� A simple form of propagation makes sure all arcs are simultaneously consistent:

� Arc consistency detects failure earlier than forward checking

� Important: If X loses a value, neighbors of X need to be rechecked!

� Must rerun after each assignment!

Remember: 

Delete from 

the tail!

WA SA

NT Q

NSW

V
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Limitations of Arc Consistency

� After enforcing arc 

consistency:

� Can have one solution left

� Can have multiple solutions left

� Can have no solutions left (and 

not know it)

� Arc consistency still runs 

inside a backtracking search!
What went 

wrong here?

K-Consistency

K-Consistency

� Increasing degrees of consistency

� 1-Consistency (Node Consistency): Each single node’s domain has a 
value which meets that node’s unary constraints

� 2-Consistency (Arc Consistency): For each pair of nodes, any 
consistent assignment to one can be extended to the other

� K-Consistency: For each k nodes, any consistent assignment to k-1 
can be extended to the kth node.

� Higher k more expensive to compute

� (You need to know the k=2 case: arc consistency)

Strong K-Consistency

� Strong k-consistency: also k-1, k-2, … 1 consistent

� Claim: strong n-consistency means we can solve without backtracking!

� Why?

� Choose any assignment to any variable

� Choose a new variable

� By 2-consistency, there is a choice consistent with the first

� Choose a new variable

� By 3-consistency, there is a choice consistent with the first 2

� …

� Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, called 
path consistency)

Structure Problem Structure

� Extreme case: independent subproblems
� Example: Tasmania and mainland do not interact

� Independent subproblems are identifiable as 
connected components of constraint graph

� Suppose a graph of n variables can be broken into 
subproblems of only c variables:
� Worst-case solution cost is O((n/c)(dc)), linear in n

� E.g., n = 80, d = 2, c =20

� 280 = 4 billion years at 10 million nodes/sec

� (4)(220) = 0.4 seconds at 10 million nodes/sec
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Tree-Structured CSPs

� Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
� Compare to general CSPs, where worst-case time is O(dn)

� This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

� Algorithm for tree-structured CSPs:
� Order: Choose a root variable, order variables so that parents precede children

� Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)

� Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

� Runtime: O(n d2)  (why?)

Tree-Structured CSPs

� Claim 1: After backward pass, all root-to-leaf arcs are consistent

� Proof: Each X→Y was made consistent at one point and Y’s domain could not have 
been reduced thereafter (because Y’s children were processed before Y)

� Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

� Proof: Induction on position

� Why doesn’t this algorithm work with cycles in the constraint graph?

� Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

� Conditioning: instantiate a variable, prune its neighbors' domains

� Cutset conditioning: instantiate (in all ways) a set of variables such that 
the remaining constraint graph is a tree

� Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset

(all possible ways)

Compute residual CSP 

for each assignment

Solve the residual CSPs 

(tree structured)

Choose a cutset
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Tree Decomposition*

� Idea: create a tree-structured graph of mega-variables

� Each mega-variable encodes part of the original CSP

� Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),      
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) ∈
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}

A
g

ree on    sh
ared

 vars

NT

SA

≠≠≠≠
WA

≠≠≠≠ ≠≠≠≠

Q

SA

≠≠≠≠
NT

≠≠≠≠ ≠≠≠≠

A
g

ree on    sh
ared

 vars

NS

W

SA

≠≠≠≠
Q

≠≠≠≠ ≠≠≠≠

A
g

ree on    sh
ared

 vars

V

SA

≠≠≠≠
NS

W

≠≠≠≠ ≠≠≠≠

Iterative Improvement

Iterative Algorithms for CSPs

� Local search methods typically work with “complete” states, i.e., all variables assigned

� To apply to CSPs:
� Take an assignment with unsatisfied constraints

� Operators reassign variable values

� No fringe!  Live on the edge.

� Algorithm: While not solved,

� Variable selection: randomly select any conflicted variable

� Value selection: min-conflicts heuristic:
� Choose a value that violates the fewest constraints

� I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

� States: 4 queens in 4 columns (44 = 256 states)

� Operators: move queen in column

� Goal test: no attacks

� Evaluation: c(n) = number of attacks

[demos: iterative n-queens, map coloring]

Performance of Min-Conflicts

� Given random initial state, can solve n-queens in almost constant time for arbitrary 
n with high probability (e.g., n = 10,000,000)!

� The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio

Summary: CSPs

� CSPs are a special kind of search problem:

� States are partial assignments

� Goal test defined by constraints

� Basic solution: backtracking search

� Speed-ups:

� Ordering

� Filtering

� Structure

� Iterative min-conflicts is often effective in practice
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Local Search Local Search

� Tree search keeps unexplored alternatives on the fringe (ensures completeness)

� Local search: improve a single option until you can’t make it better (no fringe!)

� New successor function: local changes

� Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

� Simple, general idea:

� Start wherever

� Repeat: move to the best neighboring state

� If no neighbors better than current, quit

� What’s bad about this approach?

� Complete?

� Optimal?

� What’s good about it?

Hill Climbing Diagram

Diagram: Stuart Russell

Simulated Annealing

� Idea:  Escape local maxima by allowing downhill moves

� But make them rarer as time goes on

59
Code: Russell and Norvig

Simulated Annealing

� Theoretical guarantee:
� Stationary distribution:

� If T decreased slowly enough,

will converge to optimal state!

� Is this an interesting guarantee?

� Sounds like magic, but reality is reality:
� The more downhill steps you need to escape a local 

optimum, the less likely you are to ever make them all in a 
row

� People think hard about ridge operators which let you 
jump around the space in better ways
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Genetic Algorithms

� Genetic algorithms use a natural selection metaphor

� Keep best N hypotheses at each step (selection) based on a fitness function

� Also have pairwise crossover operators, with optional mutation to give variety

� Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: Stuart Russell

Example: N-Queens

� Why does crossover make sense here?

� When wouldn’t it make sense?

� What would mutation be?

� What would a good fitness function be?


