CS 188: Artificial Intelligence

Constraint Satisfaction Problems

Dan Klein, Pieter Abbeel
University of California, Berkeley

What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed
state, discrete state space

Planning: sequences of actions
= The path to the goal is the important thing
= Paths have various costs, depths
= Heuristics give problem-specific guidance

Identification: assignments to variables
= The goal itself is important, not the path
= All paths at the same depth (for some formulations)
= CSPsare falized for i

Constraint Satisfaction Problems

Example: Map Coloring

Standard search problems:
= Stateisa “black box”: arbitrary data structure
= Goal test can be any function over states
» Successor function can also be anything

Constraint satisfaction problems (CSPs):
» Aspecial subset of search problems
= Stateis defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

Variables: WA, NT, Q, NSW, V, SA, T .

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

igh
Implicit: WA = NT

Explicit: (WA, NT) € {(red, green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Map coloring examples: Stuart Russell

Example: N-Queens

Example: N-Queens

= Formulation 1:

* Variables: X;;
= Domains: {0,1}

= Constraints

&

y& |

-

i, 3,k (X5, Xix) € {(0,0),(0,1),(1,0)}

Viyj.k (Xij, Xij) € {(0,0),(0,1),(1,0)} S Xy=N
Vi, g,k (Xij, Xigr,j+1) € {(0,0),(0,1),(1,0)} i

Vi, gk (Xij Xiprj—k) € {(0,0),(0,1),(1,0)}

= Formulation 2:

Q1

= Variables: Q. Qs
Q3

= Domains: {1,2,3,...N} Qa

= Constraints:
Implicit: Vi, non-threatening(Q;, Q;)

Explicit: (Q1,Q2) € {(1,3),(1,4),...}

Constraint Graphs

Example: Cryptarithmetic

= Binary CSP: each constraint relates (at most) two @
variables

A

]

M

Binary constraint graph: nodes are variables, arcs @
show constraints

General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

©)

[demo: n-queens]

= Variables: TWO
FTUW RO X1 Xo X3 + T WO
= Domains: FOUR

{0,1,2,3,4,5,6,7,8,9}
= Constraints:

alldiff(F, T, U, W, R, O)

O04+0=R+10-X;

Example: Stuart Russell

Example: Sudoku

Example: The Waltz Algorithm

‘7__| = Variables:

= Each (open) square

= Domains:
= {12,.9}
= Constraints:

\ 9-way alldiff for each column

9-way alldiff for each row

o b=
w L

o
NN w

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

= The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects

= An early example of an Al computation
posed as a CSP

)\ ?
= Approach:

Each intersection is a variable
= Adjacentintersections impose constraints
on each other
Solutions are physically realizable 3D
interpretations

Varieties of CSPs

Varieties of Constraints

Discrete Variables
= Finite domains
= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

= Infinite domains (integers, strings, etc.)
= E.g.,job scheduling, variables are start/end times for each job
= Linear constraints solvable, nonlinear undecidable

Continuous variables
= E.g., start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

= Varieties of Constraints

= Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA # green
= Binary constraints involve pairs of variables, e.g.:

SA #= WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g. redis better than green
» Oftenrepresentable by a cost for each variable assignment
= Gives constrained optimization problems
= (We'llignore these until we get to Bayes’ nets)

Real-World CSPs

Solving CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...

I||[RI ’

|l

Standard Search Formulation

Search Methods

= Standard search formulation of CSPs

= States defined by the values assigned
so far (partial assignments)
= Initial state: the empty assignment, {}
= Successor function: assign a value to an
unassigned variable
= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

= What would BFS do? @

c Vs

= What would DFS do? @‘@

= What problems does naive search have? @

[demo: dfs]

Backtracking Search

Backtracking Example

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
® le. [WA=redthen NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
= le. consider only values which do not conflict previous assignments
= Might have to do some ion to check the i
® “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

RD

—

o ¢ ¢

—
©“ "=
T

L = =

Backtracking Search

Improving Backtracking

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)
function RECURSIVE-BACKTRACKING assignment, csp) returns soln/failure
if assignment is complete then return assignment
SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = valuc} from assignment
return failurr

= Backtracking = DFS + variable-ordering + fail-on-violation
= What are the choice points?

Code: Russell and Norvig

= General-purpose ideas give huge gains in speed
= Ordering:

= Which variable should be assigned next?

= In what order should its values be tried?

= Filtering: Can we detect inevitable failure early?

= Structure: Can we exploit the problem structure?

Filtering

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
F bl

[demo: forward checking]

Filtering: Constraint Propagation

Consistency of A Single Arc

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q Nsw v SA
‘ T ‘ CE I IT T T I 1
2 [osw (] FTEErEESE[ESE] Sn]
v (mem] w[Ewe sEse] =]

= NTand SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation method reason from constraint to constraint

= AnarcX — Yis consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

N Mg WA NT Q NSW v SA

o &

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT * WA NT Q NSW v SA
Z — =—=

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking

= Can be run as a preprocessor or after each assignment Remember:
= What's the downside of enforcing arc consistency? DEIetefr.om
the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X;. Xa. ... X,
icue, a queue of arcs, initially all the arcs in s

¢ s not empty do
(X, X,) — REMOVE-FIRST(qucuc)
if REMOVE-INCONSISTENT-VALUES(X,. X,) then

for each X in NEIGHBORS[Y,] do
add (X;. X)) to quen
- INCONSISTENT-VALUES(X, X,) returns true iff succeeds

function I

b in DoMAINLY] do

if no value y in DOMAIN[X] allows (1,4) to satisfy the constraint X, — X
then delete 1 from DOMAIN[X]; removed « truc

return removed

= Runtime: O(n2d?), can be reduced to O(n%d?)
= . but detecting all possible future problems is NP-hard - why?

Code: Russell and Norvig

Limitations of Arc Consistency

Ordering

= After enforcing arc
consistency:
= Can have one solution left
= Can have multiple solutions left

= Can have no solutions left (and <! !>
not know it) . T e
@ o (=
= Arc consistency still runs What went
inside a backtracking search! wrong here?

[demo: arc consistency

Ordering: Minimum Remaining Values

Ordering: Least Constraining Value

= Variable Ordering: Minimum remaining values (MRV):
= Choose the variable with the fewest legal left values in its domain

53

= Why min rather than max?
= Also called “most constrained variable”
= “Fail-fast” ordering

= Value Ordering: Least Constraining Value .
= Given a choice of variable, choose the least ‘_L,%
constraining value .
= |.e., the one that rules out the fewest values in “—l’:\\
the remaining variables ‘%

= Note that it may take some computation to
determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

CS 188: Artificial Intelligence

Constraint Satisfaction Problems Il

Dan Klein, Pieter Abbeel

University of California, Berkeley D

/Q \
@%ﬁgf

Today

= Efficient Solution of CSPs

= Local Search

Reminder: CSPs

Backtracking Search

= CSPs:

= Variables

= Domains

= Constraints
= Implicit (provide code to compute)
= Explicit (provide a list of the legal tuples)
= Unary/ Binary / N-ary

Goals:
= Here: find any solution
= Also: find all, find best, etc.

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }. ¢sp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
7 SELECT-UNASSIGNED- VARIABLE(VARIABLES[esp], assignment, esp)
for each valuc in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[cs7] then
add {var = valuc} to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = valuc} from assignment
veturn failur

Code: Russell and Norvig

Improving Backtracking

Arc Consistency of an Entire CSP

General-purpose ideas give huge gains in speed
= ... butit’s all still NP-hard

Ordering:
= Which variable should be assigned next? (MRV)

= In what order should its values be tried? (LCV)

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

= Asimple form of propagation makes sure all arcs are simultaneously consistent:

= WA NT Q Nsw v SA
‘ = [(w] w[Ee e w[e o]

oW
Y '\y

= Arcconsistency detects failure earlier than forward checking Remember:
= Important: If X loses a value, neighbors of X need to be rechecked! Delete from
= Must rerun after each assignment! the tail!

Limitations of Arc Consistency

K-Consistency

= After enforcing arc Q->
consistency: /F/_

~

\
L]

= Can have one solution left
= Can have multiple solutions left

= Can have no solutions left (and
not know it)

= Arc consistency still runs What went
inside a backtracking search! wrong here?
K-Consistency Strong K-Consistency
® Increasing degrees of consistency = Strong k-consistency: also k-1, k-2, ... 1 consistent
* L-Consistency (Node Consistency): Each single node’s domain has a O = Claim: strong n-consistency means we can solve without backtracking!

value which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

O0=0

P

(®)

= K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the k' node.

Higher k more expensive to compute

(You need to know the k=2 case: arc consistency)

Why?
= Choose any assignment to any variable
= Choose a new variable
= By 2-consistency, there is a choice consistent with the first
= Choose a new variable
= By 3-consistency, there is a choice consistent with the first 2

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

Structure

Problem Structure

Extreme case: independent subproblems @

= Example: Tasmania and mainland do not interact "
Independent subproblems are identifiable as @‘@
connected components of constraint graph ‘
Suppose a graph of n variables can be broken into
subproblems of only c variables: @

= Worst-case solution cost is O((n/c)(d9)), linear in n

Eg,n=80,d=2,c=20

= 280=4pillion years at 10 million nodes/sec
= (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

Tree-Structured CSPs

(A) ()
80
© ()

= Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

= This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

e

= Remove backward: For i = n : 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: Fori =1 : n, assign X; consistently with Parent(X;)

= Runtime: O(n d?) (why?)

Tree-Structured CSPs

Improving Structure

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X — Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we'll see this basic idea again with Bayes’ nets

Nearly Tree-Structured CSPs

Cutset Conditioning

® ®
© @"o@ - o@
o &
® ®

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O((d) (n-c) d?), very fast for small ¢

Choose a cutset
Instantiate the cutset
(all possible ways)
@
Compute residual CSP
for each assignment

O—@ O—@
Solve the residual CSPs @ g @ . @
(tree structured) = N =
o} 7

Tree Decomposition*

Iterative Improvement

* Idea: create a tree-structured graph of mega-variables
* Each mega-variable encodes part of the original CSP
* Subproblems overlap to ensure consistent solutions

M3
0,0,
10
Agree: (M1,M2) 0

{((wa=g,sa=g NT=g), (NT=g,54=0,0=0)), ..}

=

sien paseys | uosaiby
sien paseys | uosaity

g.NT=b),

}

=

Iterative Algorithms for CSPs

Example: 4-Queens

= Local search methods typically work with “complete” states, i.e., all variables assigned

= Toapply to CSPs:
= Take an assignment with unsatisfied constraints
= Operators reassign variable values
= Nofringe! Live on the edge.

oo 00

= Algorithm: While not solved,
= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:
= Choose a value that violates the fewest constraints
= |.e., hill climb with h(n) = total number of violated constraints

R

= States: 4 queens in 4 columns (4% = 256 states)
= Operators: move queen in column

= Goal test: no attacks

= Evaluation: ¢(n) = number of attacks

h=0

demos: iterative n-queens, map coloring

Performance of Min-Conflicts

Summary: CSPs

Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R= number of constraints
" number of variables

CPU}
time

critical
ratio

CSPs are a special kind of search problem:
= States are partial assignments
= Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
= Ordering
= Filtering
= Structure

M‘.M

Iterative min-conflicts is often effective in practice

Local Search

Local Search

Tree search keeps unexplored alternatives on the fringe (ensures completeness)
Local search: improve a single option until you can’t make it better (no fringe!)

New successor function: local changes

oo

cees

Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

Hill Climbing Diagram

= Simple, general idea:
= Start wherever
= Repeat: move to the best neighboring state
= If no neighbors better than current, quit

= What's bad about this approach?
= Complete?
= Optimal?

= What's good about it?

objective function lobal maximum

shoulder
local maximum
"flat" local maximum

tate space
current P!
state
Diagram: Stuart Russell

Simulated Annealing

Simulated Annealing

= |dea: Escape local maxima by allowing downhill moves
= But make them rarer as time goes on

fumction SNULATED- ANNEALING(problem. schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
next, anode
7, a “temperature” controlling prob. of downward steps /

current — MAKE-NODE(INITIAL-STATE[problen])
for to 1 to o do
T scheduld]l)
if
neat—a randomly selected successor of current
AE— VALUE[newf] - VALUE[currend]
i AE > 0 then current — neat
else current — neat only with probability ¢

= 0 then return current

A BT

Code: Russell and Norvig

= Theoretical guarantee:

= |s this an interesting guarantee?

(x)

E(
= Stationary distribution: p(z) oc € kT

= |f T decreased slowly enough,
will converge to optimal state!

= Sounds like magic, but reality is reality: 4

= The more downhill steps you need to escape a local
optimum, the less likely you are to ever make them all in a
row

= People think hard about ridge operators which let you
jump around the space in better ways

10

Genetic Algorithms Example: N-Queens
[24748552 [32752411 [327148552] 3274412
[32752411 [24748552 [24752410 [24752411 | B
[24415124] 20 26%~[32753411 32752124 3Eb2124
[32543213] 11 14% 22415124 [zaa15810 [2441521]
Fitness Selection Pairs. Cross-Over I

= Genetic algorithms use a natural selection metaphor
= Keep best N hypotheses at each step (selection) based on a fitness function
= Also have pairwise crossover operators, with optional mutation to give variety

= Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: Stuart Russell

= Why does crossover make sense here?
= When wouldn’t it make sense?

= What would mutation be?

= What would a good fitness function be?

11

