

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs Lecture 3: Introduction to Depth First Search

Maxim Buzdalov Saint Petersburg 2016

Recall: an undirected graph is connected if for every pair of vertices a and b there is a path between them

Idea 1: Reduce the all-to-all problem to one-to-all problem

Idea 1: Reduce the all-to-all problem to one-to-all problem

► If there is a path from a and b, and between b and c, then there is a path between a and c

Idea 1: Reduce the all-to-all problem to one-to-all problem

- ► If there is a path from a and b, and between b and c, then there is a path between a and c
 - Just concatenate these paths!

Idea 1: Reduce the all-to-all problem to one-to-all problem

- ► If there is a path from a and b, and between b and c, then there is a path between a and c
 - Just concatenate these paths!
- ▶ If there is a path from *a* to every other vertex, then the graph is connected

Idea 1: Reduce the all-to-all problem to one-to-all problem

- ► If there is a path from a and b, and between b and c, then there is a path between a and c
 - Just concatenate these paths!
- ▶ If there is a path from *a* to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

Idea 1: Reduce the all-to-all problem to one-to-all problem

- ► If there is a path from a and b, and between b and c, then there is a path between a and c
 - Just concatenate these paths!
- ▶ If there is a path from *a* to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

Traverse the graph, starting from some vertex

Idea 1: Reduce the all-to-all problem to one-to-all problem

- ► If there is a path from a and b, and between b and c, then there is a path between a and c
 - Just concatenate these paths!
- ▶ If there is a path from *a* to every other vertex, then the graph is connected
- Idea 2: Solve the one-to-all problem
 - ► Traverse the graph, starting from some vertex
 - ▶ Required property: if you visit a vertex, you also visit all adjacent vertices

Idea 1: Reduce the all-to-all problem to one-to-all problem

- ► If there is a path from a and b, and between b and c, then there is a path between a and c
 - Just concatenate these paths!
- ▶ If there is a path from *a* to every other vertex, then the graph is connected
- Idea 2: Solve the one-to-all problem
 - ► Traverse the graph, starting from some vertex
 - ▶ Required property: if you visit a vertex, you also visit all adjacent vertices
 - Meet Depth First Search!

Depth First Search: Simple version

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$

```
procedure DFS(v)

U \leftarrow U \cup \{v\}

for (v, u) \in E do

if u \notin U then DFS(u) end if

end for

end procedure
```

▷ the graph▷ set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$

 \triangleright the graph \triangleright set of visited vertices

procedure DFS(v) $U \leftarrow U \cup \{v\}$ for $(v, u) \in E$ do if $u \notin U$ then DFS(u) end if end for end procedure

▷ recursive procedure, argument: current vertex

 $G = \langle V, E \rangle \qquad \qquad \triangleright \text{ the graph} \\ U \leftarrow \emptyset \qquad \qquad \triangleright \text{ set of visited vertices} \\ procedure DFS(v) \qquad \qquad \triangleright \text{ recursive procedure, argument: current vertex} \\ U \leftarrow U \cup \{v\} \qquad \qquad \triangleright \text{ marking current vertex visited} \\ for (v, u) \in E \text{ do} \\ \quad \text{ if } u \notin U \text{ then } DFS(u) \text{ end if} \\ end for \\ end procedure \\ \end{cases}$

 $G = \langle V, E \rangle \qquad \qquad \triangleright \text{ the graph} \\ U \leftarrow \emptyset \qquad \qquad \triangleright \text{ set of visited vertices} \\ procedure DFS(v) \qquad \qquad \triangleright \text{ recursive procedure, argument: current vertex} \\ U \leftarrow U \cup \{v\} \qquad \qquad \triangleright \text{ marking current vertex visited} \\ for (v, u) \in E \text{ do} \qquad \qquad \triangleright \text{ visiting all outgoing edges} \\ if u \notin U \text{ then } DFS(u) \text{ end if} \\ end for \\ end procedure \\ \end{cases}$

 $\begin{array}{cccc} G = \langle V, E \rangle & \triangleright \mbox{ the graph} \\ U \leftarrow \emptyset & \triangleright \mbox{ set of visited vertices} \end{array}$ $\begin{array}{cccc} procedure \mbox{ DFS}(v) & \triangleright \mbox{ recursive procedure, argument: current vertex} \\ U \leftarrow U \cup \{v\} & \triangleright \mbox{ marking current vertex visited} \\ for \ (v, u) \in E \ do & \triangleright \ visiting \ all \ outgoing \ edges \\ if \ u \notin U \ then \ \mathrm{DFS}(u) \ end \ if & \triangleright \ if \ target \ is \ not \ visited, \ calling \ recursively \\ end \ for \ end \ procedure \end{array}$

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$

▷ the graph▷ set of visited vertices

```
procedure DFS(v) 

U \leftarrow U \cup \{v\}

for u \in V if (v, u) \in E do

if u \notin U then DFS(u) end if

end for

end procedure
```

▷ recursive procedure, argument: current vertex
 ▷ marking current vertex visited
 ▷ visiting all outgoing edges: more explicit
 f ▷ if target is not visited, calling recursively

TMO UNIVERSITY

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

Μ Η

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\} \qquad \triangleright \text{ Adjacent vertex function}$ $procedure DFS(v) \qquad \triangleright \text{ recursive procedure}$ $U \leftarrow U \cup \{v\} \qquad \qquad \square$ $for \ u \in A(v) \text{ do} \qquad \triangleright \text{ visiting all}$ $if \ u \notin U \text{ then } DFS(u) \text{ end if} \qquad \triangleright \text{ if target if}$ end for end procedure

> the graph
> set of visited vertices
> Adjacent vertex function: for free with adjacency lists
> recursive procedure, argument: current vertex
> marking current vertex visited
> visiting all outgoing edges: more efficient
u) end if
> if target is not visited, calling recursively

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\} \qquad \triangleright \text{ Adjacent vertex function}$ $procedure DFS(v) \qquad \triangleright \text{ recursive procedure}$ $U \leftarrow U \cup \{v\} \qquad \qquad \square$ $for \ u \in A(v) \text{ do} \qquad \triangleright \text{ visiting all}$ $if \ u \notin U \text{ then } DFS(u) \text{ end if} \qquad \triangleright \text{ if target if}$ end for end procedure

> the graph
> set of visited vertices
> Adjacent vertex function: for free with adjacency lists
> recursive procedure, argument: current vertex
> marking current vertex visited
> visiting all outgoing edges: more efficient
u) end if
> if target is not visited, calling recursively

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\} \qquad \triangleright \text{ Adjacent vertex function}$ $procedure DFS(v) \qquad \triangleright \text{ recursive procedure}$ $U \leftarrow U \cup \{v\} \qquad \qquad \square$ $for \ u \in A(v) \text{ do} \qquad \triangleright \text{ visiting all}$ $if \ u \notin U \text{ then } DFS(u) \text{ end if} \qquad \triangleright \text{ if target if}$ end for end procedure

> the graph
> set of visited vertices
> Adjacent vertex function: for free with adjacency lists
> recursive procedure, argument: current vertex
> marking current vertex visited
> visiting all outgoing edges: more efficient
u) end if
> if target is not visited, calling recursively

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ D marking current vertex visited for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

Н

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\} \qquad \triangleright \text{ Adjacent vertex functions}$ $procedure DFS(v) \qquad \triangleright \text{ recursive procections}$ $U \leftarrow U \cup \{v\}$ $for \ u \in A(v) \text{ do} \qquad \triangleright \text{ visiting all if } u \notin U \text{ then } DFS(u) \text{ end if } b \text{ if target } end \text{ for } end \text{ procedure}$

D marking current vertex visited

 \triangleright the graph

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

D marking current vertex visited

 \triangleright the graph

 \triangleright set of visited vertices

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\}$ ▷ Adjacent vertex function: for free with adjacency lists procedure DFS(v)▷ recursive procedure, argument: current vertex $U \leftarrow U \cup \{v\}$ for $u \in A(v)$ do ▷ visiting all outgoing edges: more efficient if $u \notin U$ then DFS(*u*) end if \triangleright if target is not visited, calling recursively end for end procedure

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\} \quad \triangleright \text{ Adjacent vertex fu}$ $procedure \text{ DFS}(v) \quad \triangleright \text{ recursive p}$ $U \leftarrow U \cup \{v\}$ $for \ u \in A(v) \text{ do} \quad \triangleright \text{ visitin}$ $if \ u \notin U \text{ then } \text{ DFS}(u) \text{ end if} \quad \triangleright \text{ if } \text{ targent for}$ end for end procedure

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\} \quad \triangleright \text{ Adjacent vertex fu}$ $procedure \text{ DFS}(v) \quad \triangleright \text{ recursive p}$ $U \leftarrow U \cup \{v\}$ $for \ u \in A(v) \text{ do} \quad \triangleright \text{ visitin}$ $if \ u \notin U \text{ then } \text{ DFS}(u) \text{ end if} \quad \triangleright \text{ if } \text{ targent for } end \text{ for } end \text{ procedure}}$

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset$ $A(v) = \{u \mid (v, u) \in E\} \quad \triangleright \text{ Adjacent vertex fu}$ $procedure \text{ DFS}(v) \quad \triangleright \text{ recursive p}$ $U \leftarrow U \cup \{v\}$ $for \ u \in A(v) \text{ do} \quad \triangleright \text{ visitin}$ $if \ u \notin U \text{ then } \text{ DFS}(u) \text{ end if} \quad \triangleright \text{ if } \text{ targent for } end \text{ for } end \text{ procedure}}$

procedure ISCONNECTED(V, E) DFS(arbitrary vertex from V) return U = Vend procedure

DFS tree: all traversed edges

- DFS tree: all traversed edges
- Ancestors of v: all vertices up the DFS tree from v

$$G = \langle V, E \rangle$$

$$U \leftarrow \emptyset$$

$$A(v) = \{u \mid (v, u) \in E\}$$

procedure DFS(v)

$$U \leftarrow U \cup \{v\}$$

for $u \in A(v)$ do
if $u \notin U$ then DFS(u) end if
end for
end procedure

- ► DFS tree: all traversed edges
- Ancestors of v: all vertices up the DFS tree from v
- Descendants of v: all vertices down the DFS tree from v

$$G = \langle V, E \rangle$$

$$U \leftarrow \emptyset$$

$$A(v) = \{u \mid (v, u) \in E\}$$

procedure DFS(v)

$$U \leftarrow U \cup \{v\}$$

for $u \in A(v)$ do
if $u \notin U$ then DFS(u) end if
end for
end procedure

- ► DFS tree: all traversed edges
- Ancestors of v: all vertices up the DFS tree from v
- Descendants of v: all vertices down the DFS tree from v
- Parent of v: the immediate ancestor of v

$$G = \langle V, E \rangle$$

$$U \leftarrow \emptyset$$

$$A(v) = \{u \mid (v, u) \in E\}$$
procedure DFS(v)

$$U \leftarrow U \cup \{v\}$$
for $u \in A(v)$ do
if $u \notin U$ then DFS(u) end if
end for
end procedure

- DFS tree: all traversed edges
- Ancestors of v: all vertices up the DFS tree from v
- Descendants of v: all vertices down the DFS tree from v
- Parent of v: the immediate ancestor of v
- Undirected: Non-DFS-tree edges connect vertices with ancestors or descendants

 $G = \langle V, E \rangle$ $U \leftarrow \emptyset, X \leftarrow \emptyset$ \triangleright X: the set of exited vertices $A(v) = \{u \mid (v, u) \in E\}$ procedure DFS(v) $U \leftarrow U \cup \{v\}$ for $u \in A(v)$ do if $u \in U$ and $u \notin X$ then **return** true If hitting a visited and not exited vertex, found a cycle end if if $u \notin U$ and DFS(u) then return true end if end for $X \leftarrow X \cup \{v\}$ return false end procedure

 $G = \langle V, E \rangle$ $II \leftarrow \emptyset X \leftarrow \emptyset$ \triangleright X: the set of exited vertices $A(v) = \{u \mid (v, u) \in E\}$ \triangleright U and X are typically implemented as a single array procedure DFS(v) \triangleright color[v] = 0: $v \notin U$. $v \notin X$ $U \leftarrow U \cup \{v\}$ \triangleright color[v] = 1: $v \in U, v \notin X$ for $u \in A(v)$ do \triangleright color[v] = 2: $v \in U$. $v \in X$ if $u \in U$ and $u \notin X$ then **return** true If hitting a visited and not exited vertex, found a cycle end if if $u \notin U$ and DFS(u) then return true end if end for $X \leftarrow X \cup \{v\}$ return false end procedure