
How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 3: Introduction to Depth First Search

Maxim Buzdalov
Saint Petersburg 2016



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them

How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

I If there is a path from a and b, and between b and c ,
then there is a path between a and c

I Just concatenate these paths!

I If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

I Traverse the graph, starting from some vertex

I Required property: if you visit a vertex, you also visit all adjacent vertices

I Meet Depth First Search!

2 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices

procedure DFS(v)
U ← U ∪ {v}
for (v , u) ∈ E do

if u /∈ U then DFS(u) end if
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices

procedure DFS(v) . recursive procedure, argument: current vertex
U ← U ∪ {v}
for (v , u) ∈ E do

if u /∈ U then DFS(u) end if
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices

procedure DFS(v) . recursive procedure, argument: current vertex
U ← U ∪ {v} . marking current vertex visited
for (v , u) ∈ E do

if u /∈ U then DFS(u) end if
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices

procedure DFS(v) . recursive procedure, argument: current vertex
U ← U ∪ {v} . marking current vertex visited
for (v , u) ∈ E do . visiting all outgoing edges

if u /∈ U then DFS(u) end if
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices

procedure DFS(v) . recursive procedure, argument: current vertex
U ← U ∪ {v} . marking current vertex visited
for (v , u) ∈ E do . visiting all outgoing edges

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices

procedure DFS(v) . recursive procedure, argument: current vertex
U ← U ∪ {v} . marking current vertex visited
for u ∈ V if (v , u) ∈ E do . visiting all outgoing edges: more explicit

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉 . the graph
U ← ∅ . set of visited vertices
A(v) = {u | (v , u) ∈ E} . Adjacent vertex function: for free with adjacency lists
procedure DFS(v) . recursive procedure, argument: current vertex

U ← U ∪ {v} . marking current vertex visited
for u ∈ A(v) do . visiting all outgoing edges: more efficient

if u /∈ U then DFS(u) end if . if target is not visited, calling recursively
end for

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉
U ← ∅
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u /∈ U then DFS(u) end if
end for

end procedure

procedure IsConnected(V , E )
DFS(arbitrary vertex from V )
return U = V

end procedure

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉
U ← ∅
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u /∈ U then DFS(u) end if
end for

end procedure

I DFS tree: all traversed edges

I Ancestors of v : all vertices
up the DFS tree from v

I Descendants of v : all vertices
down the DFS tree from v

I Parent of v : the immediate
ancestor of v

I Undirected: Non-DFS-tree edges connect
vertices with ancestors or descendants

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉
U ← ∅
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u /∈ U then DFS(u) end if
end for

end procedure

I DFS tree: all traversed edges

I Ancestors of v : all vertices
up the DFS tree from v

I Descendants of v : all vertices
down the DFS tree from v

I Parent of v : the immediate
ancestor of v

I Undirected: Non-DFS-tree edges connect
vertices with ancestors or descendants

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉
U ← ∅
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u /∈ U then DFS(u) end if
end for

end procedure

I DFS tree: all traversed edges

I Ancestors of v : all vertices
up the DFS tree from v

I Descendants of v : all vertices
down the DFS tree from v

I Parent of v : the immediate
ancestor of v

I Undirected: Non-DFS-tree edges connect
vertices with ancestors or descendants

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉
U ← ∅
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u /∈ U then DFS(u) end if
end for

end procedure

I DFS tree: all traversed edges

I Ancestors of v : all vertices
up the DFS tree from v

I Descendants of v : all vertices
down the DFS tree from v

I Parent of v : the immediate
ancestor of v

I Undirected: Non-DFS-tree edges connect
vertices with ancestors or descendants

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Simple version

G = 〈V ,E 〉
U ← ∅
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u /∈ U then DFS(u) end if
end for

end procedure

I DFS tree: all traversed edges

I Ancestors of v : all vertices
up the DFS tree from v

I Descendants of v : all vertices
down the DFS tree from v

I Parent of v : the immediate
ancestor of v

I Undirected: Non-DFS-tree edges connect
vertices with ancestors or descendants

A

B

C

D

E

F

G

H

I

J

K

L

M

3 / 4



Depth First Search: Cycle detection

G = 〈V ,E 〉
U ← ∅
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u /∈ U then DFS(u) end if
end for

end procedure

4 / 4



Depth First Search: Cycle detection

G = 〈V ,E 〉
U ← ∅, X ← ∅ . X : the set of exited vertices
A(v) = {u | (v , u) ∈ E}
procedure DFS(v)

U ← U ∪ {v}
for u ∈ A(v) do

if u ∈ U and u /∈ X then
return true . If hitting a visited and not exited vertex, found a cycle

end if
if u /∈ U and DFS(u) then return true end if

end for
X ← X ∪ {v}
return false

end procedure

4 / 4



Depth First Search: Cycle detection

G = 〈V ,E 〉
U ← ∅, X ← ∅ . X : the set of exited vertices
A(v) = {u | (v , u) ∈ E} . U and X are typically implemented as a single array
procedure DFS(v) . color[v] = 0: v /∈ U, v /∈ X

U ← U ∪ {v} . color[v] = 1: v ∈ U, v /∈ X
for u ∈ A(v) do . color[v] = 2: v ∈ U, v ∈ X

if u ∈ U and u /∈ X then
return true . If hitting a visited and not exited vertex, found a cycle

end if
if u /∈ U and DFS(u) then return true end if

end for
X ← X ∪ {v}
return false

end procedure

4 / 4


