. ° .
e.c.0%0
~.o:o:ofo’
. [] []

L] (]

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 3: Introduction to Depth First Search

Maxim Buzdalov
Saint Petersburg 2016

* ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them

2/4

ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

2/4

ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

2/4

ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢

2/4

 ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢
» Just concatenate these paths!

2/4

 ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢
» Just concatenate these paths!

» If there is a path from a to every other vertex, then the graph is connected

2/4

 ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢
» Just concatenate these paths!

» If there is a path from a to every other vertex, then the graph is connected

Idea 2: Solve the one-to-all problem

2/4

 ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢
» Just concatenate these paths!

» If there is a path from a to every other vertex, then the graph is connected
Idea 2: Solve the one-to-all problem

» Traverse the graph, starting from some vertex

2/4

 ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢
» Just concatenate these paths!

» If there is a path from a to every other vertex, then the graph is connected
Idea 2: Solve the one-to-all problem

» Traverse the graph, starting from some vertex
» Required property: if you visit a vertex, you also visit all adjacent vertices

2/4

 ITMO UNIVERSITY Example problem

Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢

» Just concatenate these paths!
» If there is a path from a to every other vertex, then the graph is connected
Idea 2: Solve the one-to-all problem
» Traverse the graph, starting from some vertex

» Required property: if you visit a vertex, you also visit all adjacent vertices
» Meet Depth First Search!

2/4

TMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ > set of visited vertices

procedure DFS(v)
U+ UU{v}
for (v,u) € E do
if u¢ U then DFS(u) end if
end for
end procedure

3/4

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph

U+ 0 > set of visited vertices

procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v}

for (v,u) € E do
if u ¢ U then DFS(u) end if
end for
end procedure

3/4

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
procedure DFS(v) > recursive procedure, argument: current vertex

U+ UU{v} > marking current vertex visited

for (v,u) € E do
if u ¢ U then DFS(u) end if
end for
end procedure

3/4

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for (v,u) € E do > visiting all outgoing edges
if u ¢ U then DFS(u) end if
end for

end procedure

3/4

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for (v,u) € E do > visiting all outgoing edges
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

3/4

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for uc Vif (v,u) € E do > visiting all outgoing edges: more explicit
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

3/4

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

3/4

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U<« > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for
&

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ UU{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for
&

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for
&

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively
end for
end procedure

e"0%°”

o=

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively
end for
end procedure

e"0%°”

o=

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively
end for
end procedure

e"0%°”

o

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively
end for
end procedure

e"0%°”

o

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively
end for
end procedure

e"0%°”

ot

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively
end for
end procedure

e"0%°”

o

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

.9

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

o .9

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

o .9

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient

if v ¢ U then DFS(u) end if > if target is not visited, calling recursively
end for
end procedure

o

e"0%°”

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

, 0 0% 0 0?

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

, 0 0% 0 0?

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

.0 0,%0 0?

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

.0 0,%0 0?

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

.0 0,%0 0?

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

2060 4% %0°

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

2060 4%%0°

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > the graph
U+ 0 > set of visited vertices
A(v) ={u|(v,u) € E} > Adjacent vertex function: for free with adjacency lists
procedure DFS(v) > recursive procedure, argument: current vertex
U+ Uu{v} > marking current vertex visited
for u € A(v) do > visiting all outgoing edges: more efficient
if v ¢ U then DFS(u) end if > if target is not visited, calling recursively

end for

end procedure

0°6°%6°0 00"

TMO UNIVERSITY Depth First Search: Simple version

G =(V,E) procedure ISCONNECTED(V, E)
U+ 0 DFS(arbitrary vertex from V)
A(v) ={u|(v,u) € E} return U =V
procedure DFS(v) end procedure

U+ UU{v}

for u € A(v) do
if v ¢ U then DFS(u) end if

end for
end procedure

0°6°%6°0 00"

Depth First Search: Simple version

 ITMO UNIVERSITY

G=(V,E) > DFS tree: all traversed edges

U0
A(v) ={u | (v,u) € E}
procedure DFS(v)
U+ UU{v}
for u € A(v) do
if u¢ U then DFS(u) end if
end for

end procedure

TMO UNIVERSITY Depth First Search: Simple version

G=(V,E) > DFS tree: all traversed edges
U<« 10 > Ancestors of v: all vertices
A(v) ={u|(v,u) € E} up the DFS tree from v
procedure DFS(v)

U+ Uu{v}

for u € A(v) do
if v ¢ U then DFS(u) end if
end for

end procedure

* ITMO UNIVERSITY Depth First Search: Simple version

G = <V’ E> » DFS tree: all traversed edges
U+ 0 » Ancestors of v: all vertices
A(v) ={u|(v,u) € E} up the DFS tree from v
procedure DFS(v) » Descendants of v: all vertices
U+~ Uu{v} down the DFS tree from v

for u € A(v) do
if v ¢ U then DFS(u) end if

end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G = <V’ E> » DFS tree: all traversed edges
U+ 10 » Ancestors of v: all vertices
A(v) ={u|(v,u) € E} up the DFS tree from v
procedure DFS(v) » Descendants of v: all vertices
U+~ Uu{v} down the DFS tree from v
for u € A(v) do > Parent of v: the immediate
if u ¢ U then DFS(u) end if ancestor of v
end for

end procedure

ITMO UNIVERSITY Depth First Search: Simple version

G=(V,E) » DFS tree: all traversed edges
U<+ 10 » Ancestors of v: all vertices
A(v) = {u | (v, u) c E} up the DFS tree from v
procedure DFS(v) » Descendants of v: all vertices

U+ Uu{v} down the DFS tree from v

for u € A(v) do > Parent of v: the immediate

if u ¢ U then DFS(u) end if ancestor of v
end for » Undirected: Non-DFS-tree edges connect

vertices with ancestors or descendants

end procedure

ITMO UNIVERSITY Depth First Search: Cycle detection

G =(V,E)
U0
A(v) ={u | (v,u) € E}
procedure DFS(v)
U+ UU{v}
for u € A(v) do
if u¢ U then DFS(u) end if
end for
end procedure

4/4

Depth First Search: Cycle detection

TMO UNIVERSITY

G=(V,E)
U0, X0
A(v) ={u|(v,u) € E}
procedure DFS(v)
U+ UU{v}
for u € A(v) do
if vc Uand u ¢ X then
return true > If hitting a visited and not exited vertex, found a cycle

end if
if v ¢ U and DFS(u) then return true end if
end for
X — XU{v}
return false
end procedure
4/4

> X: the set of exited vertices

TMO UNIVERSITY Depth First Search: Cycle detection

G =(V,E)
U0, X<+10 > X: the set of exited vertices
A(v) ={u|(v,u) € E} > U and X are typically implemented as a single array
procedure DFS(v) >color[v] =0: v¢ U, vé X
U+ Uu{v} >colorlv] =1: ve U, v¢ X
for u € A(v) do >colorfv] =2: ve U, ve X
if uc Uand u¢ X then
return true > If hitting a visited and not exited vertex, found a cycle
end if
if v ¢ U and DFS(u) then return true end if
end for
X — XU{v}

return false
end procedure

4/4

