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Recall: an undirected graph is connected if for every pair of vertices a and b
there is a path between them
How to check if the given graph is connected?

Idea 1: Reduce the all-to-all problem to one-to-all problem

> If there is a path from a and b, and between b and c,
then there is a path between a and ¢

» Just concatenate these paths!
» If there is a path from a to every other vertex, then the graph is connected
Idea 2: Solve the one-to-all problem
» Traverse the graph, starting from some vertex

» Required property: if you visit a vertex, you also visit all adjacent vertices
» Meet Depth First Search!
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G =(V,E) procedure ISCONNECTED(V, E)
U+ 0 DFS(arbitrary vertex from V)
A(v) ={u|(v,u) € E} return U =V
procedure DFS(v) end procedure

U+ UU{v}

for u € A(v) do
if v ¢ U then DFS(u) end if

end for
end procedure
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A(v) ={u | (v,u) € E}
procedure DFS(v)
U+ UU{v}
for u € A(v) do
if u¢ U then DFS(u) end if
end for
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G=(V,E) » DFS tree: all traversed edges
U<+ 10 » Ancestors of v: all vertices
A(v) = {u | (v, u) c E} up the DFS tree from v
procedure DFS(v) » Descendants of v: all vertices

U+ Uu{v} down the DFS tree from v

for u € A(v) do > Parent of v: the immediate

if u ¢ U then DFS(u) end if ancestor of v
end for » Undirected: Non-DFS-tree edges connect

vertices with ancestors or descendants

end procedure
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G =(V,E)
U0
A(v) ={u | (v,u) € E}
procedure DFS(v)
U+ UU{v}
for u € A(v) do
if u¢ U then DFS(u) end if
end for
end procedure

4/4



Depth First Search: Cycle detection

TMO UNIVERSITY

G=(V,E)
U0, X0
A(v) ={u|(v,u) € E}
procedure DFS(v)
U+ UU{v}
for u € A(v) do
if vc Uand u ¢ X then
return true > If hitting a visited and not exited vertex, found a cycle

end if
if v ¢ U and DFS(u) then return true end if
end for
X — XU{v}
return false
end procedure
4/4

> X: the set of exited vertices
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G =(V,E)
U0, X<+10 > X: the set of exited vertices
A(v) ={u|(v,u) € E} > U and X are typically implemented as a single array
procedure DFS(v) >color[v] =0: v¢ U, vé X
U+ Uu{v} >colorlv] =1: ve U, v¢ X
for u € A(v) do >colorfv] =2: ve U, ve X
if uc Uand u¢ X then
return true > If hitting a visited and not exited vertex, found a cycle
end if
if v ¢ U and DFS(u) then return true end if
end for
X — XU{v}

return false
end procedure
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