
2.1.2 Stem-and-leaf plots and dot plots

Sometimes two variables is one too many: only one variable may be of interest. In these
cases we want to focus not on the association between two variables, but on the distribution
of a single variable. The term distribution refers to the values that a variable takes and
the frequency of these values. Let’s take a closer look at the email50 data set and focus on
the number of characters in each email. To simplify the data, we will round the numbers
and record the values in thousands. Thus, 22105 is recorded as 22.

22 0 64 10 6 26 25 11 4 14
7 1 10 2 7 5 7 4 14 3
1 5 43 0 0 3 25 1 9 1
2 9 0 5 3 6 26 11 25 9

42 17 29 12 27 10 0 0 1 16

Table 2.3: The number of characters, in thousands, for the data set of 50 emails.

Rather than look at the data as a list of numbers, which makes the distribution
difficult to discern, we will organize it into a table called a stem-and-leaf plot shown in
Figure 2.4. In a stem-and-leaf plot, each number is broken into two parts. The first part
is called the stem and consists of the beginning digit(s). The second part is called the
leaf and consists of the final digits(s). The stems are written in a column in ascending
order, and the leaves that match up with those stems are written on the corresponding
row. Figure 2.4 shows a stem-and-leaf plot of the number of characters in 50 emails. The
stem represents the ten thousands place and the leaf represents the thousands place. For
example, 1 | 2 corresponds to 12 thousand. When making a stem-and-leaf plot, remember

4Consider the case where your vertical axis represents something “good” and your horizontal axis
represents something that is only good in moderation. Health and water consumption fit this description
since water becomes toxic when consumed in excessive quantities.

Chapter 2

Summarizing Data

After collecting data, the next stage in the investigative process is to summarize the data.
Graphical displays allow us to visualize and better understand the important features of a
data set.

2.1 Examining numerical data
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38 CHAPTER 2. SUMMARIZING DATA

to include a legend that describes what the stem and what the leaf represent. Without
this, there is no way of knowing if 1 | 2 represents 1.2, 12, 120, 1200, etc.

0 | 00000011111223334455566777999

1 | 0001124467

2 | 25556679

3 |

4 | 23

5 |

6 | 4

Legend: 1 | 2 = 12,000

Figure 2.4: A stem-and-leaf plot of the number of characters in 50 emails.

⊙
Guided Practice 2.6 There are a lot of numbers on the first row of the stem-and-
leaf plot. Why is this the case?5

When there are too many numbers on one row or there are only a few stems, we split
each row into two halves, with the leaves from 0-4 on the first half and the leaves from 5-9
on the second half. The resulting graph is called a split stem-and-leaf plot. Figure 2.5
shows the previous stem-and-leaf redone as a split stem-and-leaf.

0 | 000000111112233344

0 | 55566777999

1 | 00011244

1 | 67

2 | 2

2 | 5556679

3 |

3 |

4 | 23

4 |

5 |

5 |

6 | 4

Legend: 1 | 2 = 12,000

Figure 2.5: A split stem-and-leaf.

⊙
Guided Practice 2.7 What is the smallest number in this data set? What is the
largest?6

5There are a lot of numbers on the first row because there are a lot of values in the data set less than
10 thousand.

6The smallest number is less than 1 thousand, and the largest is 64 thousand. That is a big range!

Advanced High School Statistics
Preliminary Edition



2.1. EXAMINING NUMERICAL DATA 39

Another simple graph for numerical data is a dot plot. A dot plot uses dots to show
the frequency, or number of occurrences, of the values in a data set. The higher the
stack of dots, the greater the number occurrences there are of the corresponding value.
An example using the same data set, number of characters from 50 emails, is shown in
Figure 2.6.
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Figure 2.6: A dot plot of num char for the email50 data set.

⊙
Guided Practice 2.8 Imagine rotating the dot plot 90 degrees clockwise. What
do you notice?7

These graphs make it easy to observe important features of the data, such as the
location of clusters and presence of gaps.

 Example 2.9 Based on both the stem-and-leaf and dot plot, where are the values
clustered and where are the gaps for the email50 data set?

There is a large cluster in the 0 to less than 20 thousand range, with a peak around
1 thousand. There are gaps between 30 and 40 thousand and between the two values
in the 40 thousands and the largest value of approximately 64 thousand.

Additionally, we can easily identify any observations that appear to be unusually
distant from the rest of the data. Unusually distant observations are called outliers.
Later in this chapter we will provide numerical rules of thumb for identifying outliers. For
now, it is sufficient to identify them by observing gaps in the graph. In this case, it would
be reasonable to classify the emails with character counts of 42 thousand, 43 thousand, and
64 thousand as outliers since they are numerically distant from most of the data.

Outliers are extreme
An outlier is an observation that appears extreme relative to the rest of the data.

TIP: Why it is important to look for outliers
Examination of data for possible outliers serves many useful purposes, including

1. Identifying asymmetry in the distribution.

2. Identifying data collection or entry errors. For instance, we re-examined the
email purported to have 64 thousand characters to ensure this value was
accurate.

3. Providing insight into interesting properties of the data.

7It has a similar shape as the stem-and-leaf plot! The values on the horizontal axis correspond to the
stems and the number of dots in each interval correspond the number of leaves needed for each stem.
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40 CHAPTER 2. SUMMARIZING DATA

⊙
Guided Practice 2.10 The observation 64 thousand, a suspected outlier, was
found to be an accurate observation. What would such an observation suggest about
the nature of character counts in emails?8

⊙
Guided Practice 2.11 Consider a data set that consists of the following numbers:
12, 12, 12, 12, 12, 13, 13, 14, 14, 15, 19. Which graph would better illustrate the
data: a stem-and-leaf plot or a dot plot? Explain.9

2.1.3 Histograms and shape

Stem-and-leaf plots and dot plots are ideal for displaying data from small samples because
they show the exact values of the observations and how frequently they occur. However,
they are impractical for larger samples. Rather than showing the frequency of every value,
we prefer to think of the value as belonging to a bin. For example, in the email50 data set,
we create a table of counts for the number of cases with character counts between 0 and
5,000, then the number of cases between 5,000 and 10,000, and so on. Such a table, shown
in Table 2.7, is called a frequency table. Observations that fall on the boundary of a
bin (e.g. 5,000) are allocated to the lower bin.10 These binned counts are plotted as bars
in Figure 2.9 into what is called a histogram or frequency histogram, which resembles
the stacked dot plot shown in Figure 2.6.

Characters
(in thousands)

0-5 5-10 10-15 15-20 20-25 25-30 · · · 55-60 60-65

Count 19 12 6 2 3 5 · · · 0 1

Table 2.7: The counts for the binned num char data.
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Figure 2.8: A histogram of num char. This histogram is drawn over the
corresponding dot plot.

TIP: Drawing histograms
The variable is always placed on the horizontal axis. Before drawing the histogram,
label both axes and draw a scale for each.

8That occasionally there may be very long emails.
9Because all the values begin with 1, there would be only one stem (or two in a split stem-and-leaf).

This would not provide a good sense of the distribution. For example, the gap between 15 and 19 would
not be visually apparent. A dot plot would be better here.

10This is called left inclusive.
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Number of Characters (in thousands)
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Figure 2.9: A histogram of num char. This histogram uses bins or class
intervals of width 5.

Histograms provide a view of the data density. Higher bars represent where the
data are relatively more common. For instance, there are many more emails between 0 and
10,000 characters than emails between 10,000 and 20,000 in the data set. The bars make
it easy to see how the density of the data changes relative to the number of characters.

 Example 2.12 How many emails had fewer than 10 thousand characters?

The height of the bars corresponds to frequency. There were 19 cases from 0 to less
than 5 thousand and 12 cases from 5 thousand to less than 10 thousand, so there
were 19 + 12 = 31 emails with fewer than 10 thousand characters.

 Example 2.13 Approximately how many emails had fewer than 1 thousand chac-
ters?

Based just on this histogram, we cannot know the exact answer to this question. We
only know that 19 emails had between 0 and 5 thousand characters. If the number of
emails is evenly distribution on this interval, then we can estimate that approximately
19/5 ≈ 4 emails fell in the range between 0 and 1 thousand.

 Example 2.14 What percent of the emails had 10 thousand or more characters?

From the first example, we know that 31 emails had fewer than 10 thousand charac-
ters. Since there are 50 emails in total, there must be 19 emails that have 10 thousand
or more characters. 19/50 = 0.38 = 38%.

Sometimes questions such as the ones above can be answered more easily with a
cumulative frequency histogram. This type of histogram shows cumulative, or total,
frequency achieved by each bin, rather than the frequency in that particular bin.
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Characters
(in thousands)

0-5 5-10 10-15 15-20 20-25 25-30 30-35 · · · 55-60 60-65

Cumulative
Frequency

19 31 37 39 42 47 47 · · · 49 50

Table 2.10: The cumulative frequencies for the binned num char data.
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Figure 2.11: A cumulative frequency histogram of num char. This his-
togram uses bins or class intervals of width 5.

 Example 2.15 How many of the emails had fewer than 20 thousand characters?

By tracing the height of the 15-20 thousand bin over to the vertical axis, we can
see that it has a height just under 40 on the cumulative frequency scale. Therefore,
we estimate that ≈39 of the emails had fewer than 30 thousand characters. Note
that answering this question using the original frequency histogram would require
additional work.

 Example 2.16 Using the cumulative frequency histogram, how many of the emails
had 10-15 thousand characters?

To answer this question, we do a subtraction. ≈39 had fewer than 15-20 thousand
emails and ≈37 had fewer than 10-15 thousand emails, so ≈2 must have had between
10-15 thousand emails.

 Example 2.17 Approximately 25 of the emails had fewer than how many charac-
ters?

This time we are given a cumulative frequency, so we start at 25 on the vertical axis
and trace it across to see which bin it hits. It hits the 5-10 thousand bin, so 25 of the
emails had fewer than a value somewhere between 5 and 10 thousand characters.

Knowing that 25 of the emails had fewer than a value between 5 and 10 thousand
characters is useful information, but it is even more useful if we know what percent of the
total 25 represents. Knowing that that there were 50 total emails tells us that 25/50 =
0.5 = 50% of the emails had fewer than a value between 5 and 10 thousand characters.
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When we want to know what fraction or percent of the data meet a certain criteria, we use
relative frequency instead of frequency. Relative frequency is a fancy term for percent
or proportion. It tells us how large a number is relative to the total.

Just as we constructed a frequency table, frequency histogram, and cumulative fre-
quency histogram, we can construct a relative frequency table, relative frequency histogram,
and cumulative relative frequency histogram.⊙

Guided Practice 2.18 How will the shape of the relative frequency histograms
differ from the frequency histograms?11

Caution: Pay close attention to the vertical axis of a histogram
We can misinterpret a histogram if we forget to check whether the vertical axis rep-
resents frequency, relative frequency, cumulative frequency, or cumulative relative
frequency.

Frequency and relative frequency histograms are especially convenient for describing
the shape of the data distribution. Figure 2.9 shows that most emails have a relatively
small number of characters, while fewer emails have a very large number of characters.
When data trail off to the right in this way and have a longer right tail, the shape is said
to be right skewed.12

Data sets with the reverse characteristic – a long, thin tail to the left – are said to be
left skewed. We also say that such a distribution has a long left tail. Data sets that show
roughly equal trailing off in both directions are called symmetric.

Long tails to identify skew
When data trail off in one direction, the distribution has a long tail. If a distri-
bution has a long left tail, it is left skewed. If a distribution has a long right tail,
it is right skewed.

⊙
Guided Practice 2.19 Take a look at the dot plot in Figure 2.6. Can you see
the skew in the data? Is it easier to see the skew in the frequency histogram, the dot
plot, or the stem-and-leaf plot?13

⊙
Guided Practice 2.20 What can you see in the dot plot and stem-and-leaf plot
that you cannot see in the frequency histogram?14

In addition to looking at whether a distribution is skewed or symmetric, histograms
can be used to identify modes. A mode is represented by a prominent peak in the distri-
bution.15 There is only one prominent peak in the histogram of num char.

11The shape will remain exactly the same. Changing from frequency to relative frequency involves
dividing all the frequencies by the same number, so only the vertical scale (the numbers on the y-axis)
change.

12Other ways to describe data that are skewed to the right: skewed to the right, skewed to the
high end, or skewed to the positive end.

13The skew is visible in all three plots. It is not easily visible in the cumulative frequency histogram.
14Character counts for individual emails.
15Another definition of mode, which is not typically used in statistics, is the value with the most

occurrences. It is common to have no observations with the same value in a data set, which makes this
other definition useless for many real data sets.
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Figure 2.12 shows histograms that have one, two, or three prominent peaks. Such
distributions are called unimodal, bimodal, and multimodal, respectively. Any distri-
bution with more than 2 prominent peaks is called multimodal. Notice that in Figure 2.9
there was one prominent peak in the unimodal distribution with a second less prominent
peak that was not counted since it only differs from its neighboring bins by a few observa-
tions.
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Figure 2.12: Counting only prominent peaks, the distributions are (left to
right) unimodal, bimodal, and multimodal.

⊙
Guided Practice 2.21 Height measurements of young students and adult teachers
at a K-3 elementary school were taken. How many modes would you anticipate in
this height data set?16

TIP: Looking for modes
Looking for modes isn’t about finding a clear and correct answer about the number
of modes in a distribution, which is why prominent is not rigorously defined in this
book. The important part of this examination is to better understand your data
and how it might be structured.

2.2 Numerical summaries and box plots

2.2.1 Measures of center

In the previous section, we saw that modes can occur anywhere in a data set. Therefore,
mode is not a measure of center. We understand the term center intuitively, but quanti-
fying what is the center can be a little more challenging. This is because there are different
definitions of center. Here we will focus on the two most common: the mean and median.

The mean, sometimes called the average, is a common way to measure the center of a
distribution of data. To find the mean number of characters in the 50 emails, we add up all
the character counts and divide by the number of emails. For computational convenience,
the number of characters is listed in the thousands and rounded to the first decimal.

x̄ =
21.7 + 7.0 + · · ·+ 15.8

50
= 11.6 (2.22)

16There might be two height groups visible in the data set: one of the students and one of the adults.
That is, the data are probably bimodal.
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The sample mean is often labeled x̄. The letter x is being used as a generic placeholder for x̄
sample
mean

the variable of interest, num char, and the bar says it is the average number of characters
in the 50 emails was 11,600.

Mean
The sample mean of a numerical variable is computed as the sum of all of the
observations divided by the number of observations:

x̄ =
1

n

∑
xi =

x1 + x2 + · · ·+ xn
n

(2.23)

where
∑

is the capital Greek letter sigma and
∑
xi means take the sum of all the

x’s. x1, x2, . . . , xn represent the n observed values.

⊙
Guided Practice 2.24 Examine Equations (2.22) and (2.23) above. What does
x1 correspond to? And x2? What does xi represent?17

⊙
Guided Practice 2.25 What was n in this sample of emails?18

The email50 data set represents a sample from a larger population of emails that were
received in January and March. We could compute a mean for this population in the same
way as the sample mean, however, the population mean has a special label: µ. The symbol µ

population
mean

µ is the Greek letter mu and represents the average of all observations in the population.
Sometimes a subscript, such as x, is used to represent which variable the population mean
refers to, e.g. µx.

 Example 2.26 The average number of characters across all emails can be estimated
using the sample data. Based on the sample of 50 emails, what would be a reasonable
estimate of µx, the mean number of characters in all emails in the email data set?
(Recall that email50 is a sample from email.)

The sample mean, 11,600, may provide a reasonable estimate of µx. While this
number will not be perfect, it provides a point estimate of the population mean. In
Chapter 5 and beyond, we will develop tools to characterize the reliability of point
estimates, and we will find that point estimates based on larger samples tend to be
more reliable than those based on smaller samples.

17x1 corresponds to the number of characters in the first email in the sample (21.7, in thousands), x2

to the number of characters in the second email (7.0, in thousands), and xi corresponds to the number of
characters in the ith email in the data set.

18The sample size was n = 50.
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 Example 2.27 We might like to compute the average income per person in the US.
To do so, we might first think to take the mean of the per capita incomes across the
3,143 counties in the county data set. What would be a better approach?

The county data set is special in that each county actually represents many individual
people. If we were to simply average across the income variable, we would be treating
counties with 5,000 and 5,000,000 residents equally in the calculations. Instead, we
should compute the total income for each county, add up all the counties’ totals,
and then divide by the number of people in all the counties. If we completed these
steps with the county data, we would find that the per capita income for the US is
$27,348.43. Had we computed the simple mean of per capita income across counties,
the result would have been just $22,504.70!

Example 2.27 used what is called a weighted mean, which will not be a key topic
in this textbook. However, we have provided an online supplement on weighted means for
interested readers:

http://www.openintro.org/stat/down/supp/wtdmean.pdf

The median provides another measure of center. The median splits an ordered data
set in half. There are 50 character counts in the email50 data set (an even number) so the
data are perfectly split into two groups of 25. We take the median in this case to be the
average of the two middle observations: (6,768 + 7,012)/2 = 6,890. When there are an odd
number of observations, there will be exactly one observation that splits the data into two
halves, and in this case that observation is the median (no average needed).

Median: the number in the middle
In an ordered data set, the median is the observation right in the middle. If there
are an even number of observations, the median is the average of the two middle
values.

Graphically, we can think of the mean as the balancing point. The median is the value
such that 50% of the area is to the left of it and 50% of the area is to the right of it.
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Figure 2.13: A histogram of num char with its mean and median shown.
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 Example 2.28 Based on the data, why is the mean greater than the median in this
data set?

Consider the three largest values of 42 thousand, 43 thousand, and 64 thousand.
These values drag up the mean because they substantially increase the sum (the total).
However, they do not drag up the median because their magnitude does not change
the location of the middle value.

The mean follows the tail
In a right skewed distribution, the mean is greater than the median.
In a left skewed distribution, the mean is less than the median.
In a symmetric distribution, the mean and median are approximately equal.

⊙
Guided Practice 2.29 Consider the distribution of individual income in the United
States. Which is greater: the mean or median? Why? 19

2.2.2 Standard deviation as a measure of spread

The U.S. Census Bureau reported that in 2012, the median family income was $62,241 and
the mean family income was $82,743.20

Is a family income of $40,000 relatively low, or is it a somewhat typical income? In
order to answer this question, it is not enough to know the center of the data set and its
range (maximum value - minimum value). We must know about the variability of the data
set within that range. Low variability or small spread means that the values tend to be
more clustered together. High variability or large spread means that the values tend to be
far apart.

 Example 2.30 Is it possible for two data sets to have the same range but different
spread? If so, give an example. If not, explain why not.

Yes. An example is: 1, 1, 1, 1, 1, 9, 9, 9, 9, 9 and 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9.

The first data set has a larger spread because values tend to be farther away from
each other while in the second data set values are clustered together at the mean.

Here, we introduce the standard deviation as a measure of spread. Though its formula
is a bit tedious to calculate by hand, the standard deviation is very useful in data analysis
and roughly describes how far away, on average, the observations are from the mean.

We call the distance of an observation from its mean its deviation. Below are the
deviations for the 1st, 2nd, 3rd, and 50th observations in the num char variable. For com-
putational convenience, the number of characters is listed in the thousands and rounded to
the first decimal.

x1 − x̄ = 21.7− 11.6 = 10.1

x2 − x̄ = 7.0− 11.6 = −4.6

x3 − x̄ = 0.6− 11.6 = −11.0

...

x50 − x̄ = 15.8− 11.6 = 4.2

19Because a small percent of individuals earn extremely large amounts of money while the majority earn
a modest amount, the distribution is skewed to the right. Therefore, the mean is greater than the median.

20http://www.census.gov/hhes/www/income/
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If we square these deviations and then take an average, the result is about equal to the
sample variance, denoted by s2:s2

sample
variance

s2 =
10.12 + (−4.6)2 + (−11.0)2 + · · ·+ 4.22

50− 1

=
102.01 + 21.16 + 121.00 + · · ·+ 17.64

49
= 172.44

We divide by n − 1, rather than dividing by n, when computing the variance; you need
not worry about this mathematical nuance for the material in this textbook. Notice that
squaring the deviations does two things. First, it makes large values much larger, seen by
comparing 10.12, (−4.6)2, (−11.0)2, and 4.22. Second, it gets rid of any negative signs.

The standard deviation is defined as the square root of the variance:

s =
√

172.44 = 13.13

The standard deviation of the number of characters in an email is about 13.13 thousand.

s
sample
standard
deviation

A subscript of x may be added to the variance and standard deviation, i.e. s2
x and sx, as a

reminder that these are the variance and standard deviation of the observations represented
by x1, x2, ..., xn. The x subscript is usually omitted when it is clear which data the variance
or standard deviation is referencing.

Calculating the Standard Deviation
The standard deviation is the square root of the variance. It is roughly the average
distance of the observations from the mean.

s =

√
1

n− 1

∑
(xi − x̄)2 (2.31)

The variance is useful for mathematical reasons, but the standard deviation is easier
to interpret because it has the same units as the data set. The units for variance will be
the units squared (e.g. meters2). Formulas and methods used to compute the variance and
standard deviation for a population are similar to those used for a sample.21 However, like
the mean, the population values have special symbols: σ2 for the variance and σ for theσ2

population
variance

σ
population
standard
deviation

standard deviation. The symbol σ is the Greek letter sigma.

TIP: standard deviation describes variability
Focus on the conceptual meaning of the standard deviation as a descriptor of vari-
ability rather than the formulas. The empirical rule tells us that usually about 68%
of the data will be within one standard deviation of the mean and about 95% will
be within two standard deviations of the mean. However, as seen in Figures 2.14
and 2.15, these percentages are not strict rules.22

21The only difference is that the population variance has a division by n instead of n− 1.
22We will learn where these two numbers come from in Chapter 4 when we study the normal distribution.
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Number of Characters (in thousands)
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Figure 2.14: In the num char data, 40 of the 50 emails (80%) are within
1 standard deviation of the mean, and 47 of the 50 emails (94%) are within
2 standard deviations. Usually about 68% (or approximately 2/3) of the
data are within 1 standard deviation of the mean and 95% are within 2
standard deviations, though this rule of thumb is less accurate for skewed
data, as shown in this example.

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

Figure 2.15: Three very different population distributions with the same
mean µ = 0 and standard deviation σ = 1.

⊙
Guided Practice 2.32 On page 43, the concept of shape of a distribution was
introduced. A good description of the shape of a distribution should include modality
and whether the distribution is symmetric or skewed to one side. Using Figure 2.15
as an example, explain why such a description is important.23

When describing any distribution, comment on the three important characteristics of
center, spread, and shape. Also note any especially unusual cases.

23Figure 2.15 shows three distributions that look quite different, but all have the same mean, variance,
and standard deviation. Using modality, we can distinguish between the first plot (bimodal) and the
last two (unimodal). Using skewness, we can distinguish between the last plot (right skewed) and the
first two. While a picture, like a histogram, tells a more complete story, we can use modality and shape
(symmetry/skew) to characterize basic information about a distribution.
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 Example 2.33 In the data’s context (the number of characters in emails), describe
the distribution of the num char variable using the histogram in Figure 2.16.

The distribution of email character counts is unimodal and very strongly skewed to
the right. Many of the counts fall near the mean at 11,600, and most fall within one
standard deviation (13,130) of the mean. There is one exceptionally long email with
about 65,000 characters.
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Figure 2.16: A copy of Figure 2.9.

In practice, the variance and standard deviation are sometimes used as a means to
an end, where the “end” is being able to accurately estimate the uncertainty associated
with a sample statistic. For example, in Chapter 5 we will use the variance and standard
deviation to assess how close the sample mean is to the population mean.

2.2.3 Box plots and quartiles

A box plot summarizes a data set using five summary statistics while also plotting unusual
observations. Figure 2.17 provides a box plot of the num char variable from the email50

data set.
The five summary statistics used in a box plot are known as the five-number sum-

mary, which consists of the minimum, the maximum, and the three quartiles (Q1, Q2, Q3)
of the data set being studied.

Q2 represents the second quartile, which is equivalent to the 50th percentile (i.e.
the median). Previously, we saw that Q2 (the median) for the email50 data set was the
average of the two middle values: 6,768+7,012

2 = 6,890.
Q1 represents the first quartile, which is the 25th percentile, and is the median of

the smaller half of the data set. There are 25 values in the lower half of the data set, so Q1

is the middle value: 2,454 characters. Q3 represents the third quartile, or 75th percentile,
and is the median of the larger half of the data set: 15,829 characters.

To determine if there are any unusually distant observations (i.e. outliers), we first
calculate the spread of the middle 50% of the data by subtracting Q1 from Q3: Q3−Q1 =
13,375. This quantity is called the interquartile range (IQR, for short). It, like the
standard deviation, is a measure of variability or spread in data. The more variable the
data, the larger the standard deviation and IQR tend to be.
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Figure 2.17: A labeled box plot for the nuber of characters in 50 emails.
The median (6,890) splits the data into the bottom 50% and the top 50%.

Interquartile range (IQR)
The IQR is the length of the box in a box plot. It is computed as

IQR = Q3 −Q1

where Q1 and Q3 are the 25th and 75th percentiles.

To build a box plot, draw an axis (vertical or horizontal) and mark a uniform scale.
Then, draw a dark line denoting Q2. Next, draw a line at Q1 and at Q3. Connect these
two lines to form a rectangle. The width of the rectangle corresponds to the IQR and the
middle 50% of the data is in this interval.

Extending out from the rectangle, the whiskers attempt to capture the data remain-
ing outside of the box; however, their reach cannot be more than 1.5×IQR. In Figure 2.17,
the upper whisker does not extend to the last three points, which are beyond Q3+1.5×IQR,
and so it extends only to the last point below this limit. The lower whisker stops at the
lowest value, 33, since there is no additional data to reach. In a sense, the box is like the
body of the box plot and the whiskers are like its arms trying to reach the rest of the data.
We will call a value an outlier if it is more than 1.5× IQR below Q1 or above Q3.24

 Example 2.34 Compare the box plot to the graphs previously discussed: stem-
and-leaf plot, dot plot, frequency and relative frequency histogram. What can we
learn more easily from a box plot? What can we learn more easily from the other
graphs?

It is easier to immediately identify the quartiles from a box plot. The box plot also
more prominently highlights outliers. However, a box plot, unlike the other graphs,
does not show the distribution of the data. For example, we cannot generally identify
modes using a box plot.

24While the choice of exactly 1.5 is arbitrary, it is the most commonly used value for box plots.
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 Example 2.35 Is it possible to identify skew from the box plot?

Yes. Looking at the lower and upper whiskers of this box plot, we see that the lower
25% of the data is squished into a shorter distance than the upper 25% of the data,
implying that there is greater density in the low values and a tail trailing to the upper
values. This box plot is right skewed.⊙
Guided Practice 2.36 What percent of the data fall between Q1 and the median?
What percent is between the median and Q3?25

2.2.4 Calculator: summarize 1-variable statistics

TI calculator: Entering data
The first step in summarizing data or making a graph is to enter the data set into
a list. Use STAT, Edit.

1. Press STAT.

2. Choose 1:Edit.

3. Enter data into L1 or another list.

TI calculator: Calculating Summary Statistics
Use the STAT, CALC, 1-VarStats command to find summary statistics such
as mean, standard deviation, and quartiles.

1. Enter the data as described previously.

2. Press STAT.

3. Right arrow to CALC.

4. Choose 1:1-VarStats.

5. Enter L1 (i.e. 2ND 1) for List. If the data is in a list other than L1, type
the name of that list.

6. Leave FreqList blank.

7. Choose Calculate and hit ENTER.

TI-83: Do steps 1-4, then type L1 (i.e. 2nd 1) or the name of your list and hit
ENTER.

Calculating the summary statistics will return the following information. It will be
necessary to hit the down arrow to see all of the summary statistics.

x̄ (mean) n (sample size or # of data points)
Σx (sum of all the data values) minX (minimum)
Σx2 (sum of all the squared data values) Q1 (first quartile)
Sx (sample standard deviation) Med (median)
σx (population standard deviation) Q3 (third quartile)

25 Since Q1 is the 25th percentile and Q2 is the 50th percentile, 25% of the data falls between Q1 and
Q2. Similarly, 25% of the data fall between Q2 and Q3.
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TI calculator: Drawing a box plot
Occasionally, we may want just a quick sketch of the box plot. In these instances
we can use the graphing calculator to speed up the process. Use 2ND Y=.

1. Enter the data to be graphed as described previously.

2. Hit 2ND Y= (i.e. STAT PLOT).

3. Hit Enter (to choose the first plot).

4. Hit ENTER to choose ON.

5. Down arrow and then right arrow three times to select box plot with outliers.

6. Down arrow again and make Xlist: L1 and Freq: 1.

7. Choose ZOOM and then 9:ZoomStat (to get a good viewing window).

 Example 2.37 Enter the following 10 data points into list L1 on a calculator: 5,
8, 1, 19, 3, 1, 11, 18, 20, 5. Find the summary statistics and make a box plot of the
data.

The summary statistics should be x̄=9.1, Sx = 7.475, Q1 = 3, etc. The box plot
should be as follows.

TI calculator: What to do if you cannot find L1 or another list

1. Press STAT.

2. Choose 5: SetUpEditor.

3. Hit ENTER

Lists L1 - L6 will now be restored.
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2.2.5 Outliers and robust statistics

Rules of thumb for identifying outliers
There are two rules of thumb for identifying outliers:

• More than 1.5× IQR below Q1 or above Q3

• More than 2 standard deviations above or below the mean.

Both are important for the AP exam. In practice, consider these to be only rough
guidelines.

⊙
Guided Practice 2.38 For the email50 data set,Q1 = 2,536 and Q3 = 15, 411. x̄
= 11,600 and s = 13,130. What values would be considered an outlier on the low end
using each rule?26

⊙
Guided Practice 2.39 Because there are no negative values in this data set, there
can be no outliers on the low end. What does the fact that there are outliers on the
high end but not on the low end suggestion?27

How are the sample statistics of the num char data set affected by the observation,
64,401? What would have happened if this email wasn’t observed? What would happen
to these summary statistics if the observation at 64,401 had been even larger, say 150,000?
These scenarios are plotted alongside the original data in Figure 2.18, and sample statistics
are computed under each scenario in Table 2.19.
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Figure 2.18: Dot plots of the original character count data and two modified
data sets.

⊙
Guided Practice 2.40 (a) Which is more affected by extreme observations, the
mean or median? Table 2.19 may be helpful. (b) Is the standard deviation or IQR
more affected by extreme observations?28

The median and IQR are called robust estimates because extreme observations have
little effect on their values. The mean and standard deviation are much more affected by
changes in extreme observations.

26 Q1 − 1.5 × IQR = 2536 − 1.5 × (15411 − 2536) = −16, 749.5, so values less than -16,749.5 would
be considered an outlier using the first rule of thumb. Using the second rule of thumb, a value less than
x̄− 2× s = 11, 600− 2× 13, 130 = −14, 660 would be considered an outlier. Note tht these are just rules
of thumb and yield different values.

27It suggests that the distribution has a right hand tail, that is, that it is right skewed.
28(a) Mean is affected more. (b) Standard deviation is affected more. Complete explanations are

provided in the material following Guided Practice 2.40.
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robust not robust
scenario median IQR x̄ s
original num char data 6,890 12,875 11,600 13,130
drop 66,924 observation 6,768 11,702 10,521 10,798
move 66,924 to 150,000 6,890 12,875 13,310 22,434

Table 2.19: A comparison of how the median, IQR, mean (x̄), and standard
deviation (s) change when extreme observations are present.

 Example 2.41 The median and IQR do not change much under the three scenarios
in Table 2.19. Why might this be the case?

The median and IQR are only sensitive to numbers near Q1, the median, and Q3.
Since values in these regions are relatively stable – there aren’t large jumps between
observations – the median and IQR estimates are also quite stable.⊙
Guided Practice 2.42 The distribution of vehicle prices tends to be right skewed,
with a few luxury and sports cars lingering out into the right tail. If you were
searching for a new car and cared about price, should you be more interested in the
mean or median price of vehicles sold, assuming you are in the market for a regular
car?29

2.2.6 Linear transformations of data

 Example 2.43 Begin with the following list: 1, 1, 5, 5. Multiply all of the numbers
by 10. What happens to the mean? What happens to the standard deviation? How
do these compare to the mean and the standard deviation of the original list?

The original list has a mean of 3 and a standard deviation of 2. The new list: 10, 10,
50, 50 has a mean of 30 with a standard deviation of 20. Because all of the values
were multiplied by 10, both the mean and the standard deviation were multiplied
by 10. 30

 Example 2.44 Start with the following list: 1, 1, 5, 5. Multiply all of the numbers
by -0.5. What happens to the mean? What happens to the standard deviation? How
do these compare to the mean and the standard deviation of the original list?

The new list: -0.5, -0.5, -2.5, -2.5 has a mean of -1.5 with a standard deviation of 1.
Because all of the values were multiplied by -0.5, the mean was multiplied by -0.5.
Multiplying all of the values by a negative flipped the sign of numbers, which affects
the location of the center, but not the spread. Multiplying all of the values by -0.5
multiplied the standard deviation by +0.5 since the standard deviation cannot be
negative.

29Buyers of a “regular car” should be concerned about the median price. High-end car sales can drasti-
cally inflate the mean price while the median will be more robust to the influence of those sales.

30Here, the population standard deviation was used in the calculation. These properties can be proven
mathematically using properties of sigma (summation).
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 Example 2.45 Again, start with the following list: 1, 1, 5, 5. Add 100 to every
entry. How do the new mean and standard deviation compare to the original mean
and standard deviation?

The new list is: 101, 101, 105, 105. The new mean of 103 is 100 greater than the
original mean of 3. The new standard deviation of 2 is the same as the original
standard deviation of 2. Adding a constant to every entry shifted the values, but did
not stretch them.

Suppose that a researcher is looking at a list of 500 temperatures recorded in Cel-
sius (C). The mean of the temperatures listed is given as 27◦C with a standard deviation
of 3◦C. Because she is not familiar with the Celsius scale, she would like to convert these
summary statistics into Fahrenheit (F). To convert from Celsius to Fahrenheit, we use the
following conversion:

x
F

=
9

5
x

C
+ 32

Fortunately, she does not need to convert each of the 500 temperatures to Fahrenheit and
then recalculate the mean and the standard deviation. The unit conversion above is a linear
transformation of the following form, where a = 9/5 and b = 32:

aX + b

Using the examples as a guide, we can solve this temperature-conversion problem. The
mean was 27◦C and the standard deviation was 3◦C. To convert to Fahrenheit, we multiply
all of the values by 9/5, which multiplies both the mean and the standard deviation by
9/5. Then we add 32 to all of the values which adds 32 to the mean but does not change
the standard deviation further.

x̄F =
9

5
x̄C + 32 σF =

9

5
σC

=
5

9
(27) + 32 =

9

5
(3)

= 80.6 = 5.4
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Figure 2.20: 500 temperatures shown in both Celsius and Fahrenheit.
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Adding shifts the values, multiplying stretches or contracts them
Adding a constant to every value in a data set shifts the mean but does not affect
the standard deviation. Multiplying the values in a data set by a constant will
change the mean and the standard deviation by the same multiple, except that
the standard deviation will always remain positive.

 Example 2.46 Consider the temperature example. How would converting from
Celsuis to Fahrenheit affect the median? The IQR?

The median is affected in the same way as the mean and the IQR is affected in the
same way as the standard deviation. To get the new median, multiply the old median
by 9/5 and add 32. The IQR is computed by subtracting Q1 and Q3. While Q1 and
Q3 are affected in the same way as the median, the additional 32 added to each will
cancel when we take Q3 − Q1. That is, the IQR will be increase by a factor of 9/5
but will be unaffected by the addition of 32.

For a more mathematical explanation of the IQR calculation, see the footnote.31

2.2.7 Comparing numerical data across groups

Some of the more interesting investigations can be considered by examining numerical data
across groups. The methods required here aren’t really new. All that is required is to make
a numerical plot for each group. To make a direct comparison between two groups, create a
pair of dot plots or a pair of histograms drawn using the same scales. It is also common to
use back-to-back stem-and-leaf plots, parallel box plots, and hollow histograms, the three
of which are explored here.

We will take a look again at the county data set and compare the median household
income for counties that gained population from 2000 to 2010 versus counties that had
no gain. While we might like to make a causal connection here, remember that these are
observational data and so such an interpretation would be unjustified.

There were 2,041 counties where the population increased from 2000 to 2010, and
there were 1,099 counties with no gain (all but one were a loss). A random sample of
100 counties from the first group and 50 from the second group are shown in Table 2.21
to give a better sense of some of the raw data, and Figure 2.22 shows a back-to-back
stem-and-leaf plot.

The parallel box plot is a traditional tool for comparing across groups. An example
is shown in the left panel of Figure 2.23, where there are two box plots, one for each group,
placed into one plotting window and drawn on the same scale.

Another useful plotting method uses hollow histograms to compare numerical data
across groups. These are just the outlines of histograms of each group put on the same
plot, as shown in the right panel of Figure 2.23.

31new IQR =
(

9
5
Q3 + 32

)
−
(

9
5
Q1 + 32

)
= 9

5
(Q3 −Q1) = 9

5
× (old IQR).
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population gain no gain
41.2 33.1 30.4 37.3 79.1 34.5 40.3 33.5 34.8
22.9 39.9 31.4 45.1 50.6 59.4 29.5 31.8 41.3
47.9 36.4 42.2 43.2 31.8 36.9 28 39.1 42.8
50.1 27.3 37.5 53.5 26.1 57.2 38.1 39.5 22.3
57.4 42.6 40.6 48.8 28.1 29.4 43.3 37.5 47.1
43.8 26 33.8 35.7 38.5 42.3 43.7 36.7 36
41.3 40.5 68.3 31 46.7 30.5 35.8 38.7 39.8
68.3 48.3 38.7 62 37.6 32.2 46 42.3 48.2
42.6 53.6 50.7 35.1 30.6 56.8 38.6 31.9 31.1
66.4 41.4 34.3 38.9 37.3 41.7 37.6 29.3 30.1
51.9 83.3 46.3 48.4 40.8 42.6 57.5 32.6 31.1
44.5 34 48.7 45.2 34.7 32.2 46.2 26.5 40.1
39.4 38.6 40 57.3 45.2 33.1 38.4 46.7 25.9
43.8 71.7 45.1 32.2 63.3 54.7 36.4 41.5 45.7
71.3 36.3 36.4 41 37 66.7 39.7 37 37.7
50.2 45.8 45.7 60.2 53.1 21.4 29.3 50.1
35.8 40.4 51.5 66.4 36.1 43.6 39.8

Table 2.21: In this table, median household income (in $1000s) from a
random sample of 100 counties that gained population over 2000-2010 are
shown on the left. Median incomes from a random sample of 50 counties
that had no population gain are shown on the right.

Population: Gain Population: No Gain

3| 2 |12

98766| 2 |66899

444433222211100| 3 |00112234

9999888777766666655| 3 |56667788888999

44433332221111110000| 4 |0000001223344

9988876665555| 4 |666778

443221100| 5 |0

977775| 5 |8

320| 6 |

88766| 6 |

21| 7 |

Legend: 4 | 5 = 45,000 median income

Figure 2.22: Back-to-back stem-and-leaf plot for median income, split by
whether the count had a population gain or no gain.
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Figure 2.23: Side-by-side box plot (left panel) and hollow histograms (right
panel) for med income, where the counties are split by whether there was a
population gain or loss from 2000 to 2010. The income data were collected
between 2006 and 2010.

⊙
Guided Practice 2.47 Use the plots in Figure 2.23 to compare the incomes for
counties across the two groups. What do you notice about the approximate center of
each group? What do you notice about the variability between groups? Is the shape
relatively consistent between groups? How many prominent modes are there for each
group?32

TIP: Comparing distributions
When comparing distributions, compare them with respect to center, spread, and
shape as well as any unusual observations. Such descriptions should be in context.

⊙
Guided Practice 2.48 What components of each plot in Figure 2.23 do you find
most useful?33

⊙
Guided Practice 2.49 Do these graphs tell us about any association between
income for the two groups?34

32Answers may vary a little. The counties with population gains tend to have higher income (median of
about $45,000) versus counties without a gain (median of about $40,000). The variability is also slightly
larger for the population gain group. This is evident in the IQR, which is about 50% bigger in the gain
group. Both distributions show slight to moderate right skew and are unimodal. There is a secondary
small bump at about $60,000 for the no gain group, visible in the hollow histogram plot, that seems out
of place. (Looking into the data set, we would find that 8 of these 15 counties are in Alaska and Texas.)
The box plots indicate there are many observations far above the median in each group, though we should
anticipate that many observations will fall beyond the whiskers when using such a large data set.

33Answers will vary. The parallel box plots are especially useful for comparing centers and spreads,
while the hollow histograms are more useful for seeing distribution shape, skew, and groups of anomalies.

34No, to see association we require a scatterplot. Moreover, these data are not paired, so the discussion
of association does not make sense here.
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2.2.8 Mapping data (special topic)

The county data set offers many numerical variables that we could plot using dot plots,
scatterplots, or box plots, but these miss the true nature of the data. Rather, when we
encounter geographic data, we should map it using an intensity map, where colors are
used to show higher and lower values of a variable. Figures 2.24 and 2.25 shows intensity
maps for federal spending per capita (fed spend), poverty rate in percent (poverty),
homeownership rate in percent (homeownership), and median household income (med
income). The color key indicates which colors correspond to which values. Note that the
intensity maps are not generally very helpful for getting precise values in any given county,
but they are very helpful for seeing geographic trends and generating interesting research
questions.

 Example 2.50 What interesting features are evident in the fed spend and poverty

intensity maps?

The federal spending intensity map shows substantial spending in the Dakotas and
along the central-to-western part of the Canadian border, which may be related to
the oil boom in this region. There are several other patches of federal spending,
such as a vertical strip in eastern Utah and Arizona and the area where Colorado,
Nebraska, and Kansas meet. There are also seemingly random counties with very high
federal spending relative to their neighbors. If we did not cap the federal spending
range at $18 per capita, we would actually find that some counties have extremely
high federal spending while there is almost no federal spending in the neighboring
counties. These high-spending counties might contain military bases, companies with
large government contracts, or other government facilities with many employees.

Poverty rates are evidently higher in a few locations. Notably, the deep south shows
higher poverty rates, as does the southwest border of Texas. The vertical strip of
eastern Utah and Arizona, noted above for its higher federal spending, also appears
to have higher rates of poverty (though generally little correspondence is seen between
the two variables). High poverty rates are evident in the Mississippi flood plains a
little north of New Orleans and also in a large section of Kentucky and West Virginia.⊙
Guided Practice 2.51 What interesting features are evident in the med income

intensity map?35

2.3 Considering categorical data

Like numerical data, categorical data can also be organized and analyzed. In this section,
we will introduce tables and other basic tools for categorical data that are used throughout
this book. The email50 data set represents a sample from a larger email data set called
email. This larger data set contains information on 3,921 emails. In this section we will
examine whether the presence of numbers, small or large, in an email provides any useful
value in classifying email as spam or not spam.

35Note: answers will vary. There is a very strong correspondence between high earning and metropolitan
areas. You might look for large cities you are familiar with and try to spot them on the map as dark spots.
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Figure 2.24: (a) Map of federal spending (dollars per capita). (b) Intensity
map of poverty rate (percent).
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Figure 2.25: (a) Intensity map of homeownership rate (percent). (b) Inten-
sity map of median household income ($1000s).
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2.3.1 Contingency tables and bar plots

Table 2.26 summarizes two variables: spam and number. Recall that number is a categorical
variable that describes whether an email contains no numbers, only small numbers (values
under 1 million), or at least one big number (a value of 1 million or more). A table that
summarizes data for two categorical variables in this way is called a contingency table.
Each value in the table represents the number of times a particular combination of variable
outcomes occurred. For example, the value 149 corresponds to the number of emails in
the data set that are spam and had no number listed in the email. Row and column
totals are also included. The row totals provide the total counts across each row (e.g.
149 + 168 + 50 = 367), and column totals are total counts down each column.

Table 2.27 shows a frequency table for the number variable. If we replaced the counts
with percentages or proportions, the table is a relative frequency table.

number

none small big Total
spam 149 168 50 367

spam
not spam 400 2659 495 3554
Total 549 2827 545 3921

Table 2.26: A contingency table for spam and number.

none small big Total
549 2827 545 3921

Table 2.27: A frequency table for the number variable.

Because the numbers in these tables are counts, not to data points, they cannot be
graphed using the methods we applied to numerical data. Instead, another set of graphing
methods are needed that are suitable for categorical data.

A bar plot is a common way to display a single categorical variable. The left panel
of Figure 2.28 shows a bar plot for the number variable. In the right panel, the counts
are converted into proportions (e.g. 549/3921 = 0.140 for none), showing the proportion
of observations that are in each level (i.e. in each category).

2.3.2 Row and column proportions

Table 2.29 shows the row proportions for Table 2.26. The row proportions are computed
as the counts divided by their row totals. The value 149 at the intersection of spam and
none is replaced by 149/367 = 0.406, i.e. 149 divided by its row total, 367. So what does
0.406 represent? It corresponds to the proportion of spam emails in the sample that do not
have any numbers.

A contingency table of the column proportions is computed in a similar way, where
each column proportion is computed as the count divided by the corresponding column
total. Table 2.30 shows such a table, and here the value 0.271 indicates that 27.1% of emails
with no numbers were spam. This rate of spam is much higher compared to emails with
only small numbers (5.9%) or big numbers (9.2%). Because these spam rates vary between
the three levels of number (none, small, big), this provides evidence that the spam and
number variables are associated.
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Figure 2.28: Two bar plots of number. The left panel shows the counts,
and the right panel shows the proportions in each group.

none small big Total
spam 149/367 = 0.406 168/367 = 0.458 50/367 = 0.136 1.000
not spam 400/3554 = 0.113 2657/3554 = 0.748 495/3554 = 0.139 1.000
Total 549/3921 = 0.140 2827/3921 = 0.721 545/3921 = 0.139 1.000

Table 2.29: A contingency table with row proportions for the spam and
number variables.

We could also have checked for an association between spam and number in Table 2.29
using row proportions. When comparing these row proportions, we would look down
columns to see if the fraction of emails with no numbers, small numbers, and big num-
bers varied from spam to not spam.

⊙
Guided Practice 2.52 What does 0.458 represent in Table 2.29? What does 0.059
represent in Table 2.30?36

⊙
Guided Practice 2.53 What does 0.139 at the intersection of not spam and big

represent in Table 2.29? What does 0.908 represent in the Table 2.30?37

360.458 represents the proportion of spam emails that had a small number. 0.058 represents the fraction
of emails with small numbers that are spam.

370.139 represents the fraction of non-spam email that had a big number. 0.908 represents the fraction
of emails with big numbers that are non-spam emails.
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none small big Total

spam 149/549 = 0.271 168/2827 = 0.059 50/545 = 0.092 367/3921 = 0.094
not spam 400/549 = 0.729 2659/2827 = 0.941 495/545 = 0.908 3684/3921 = 0.906

Total 1.000 1.000 1.000 1.000

Table 2.30: A contingency table with column proportions for the spam and
number variables.

 Example 2.54 Data scientists use statistics to filter spam from incoming email
messages. By noting specific characteristics of an email, a data scientist may be able
to classify some emails as spam or not spam with high accuracy. One of those char-
acteristics is whether the email contains no numbers, small numbers, or big numbers.
Another characteristic is whether or not an email has any HTML content. A con-
tingency table for the spam and format variables from the email data set are shown
in Table 2.31. Recall that an HTML email is an email with the capacity for special
formatting, e.g. bold text. In Table 2.31, which would be more helpful to someone
hoping to classify email as spam or regular email: row or column proportions?

Such a person would be interested in how the proportion of spam changes within each
email format. This corresponds to column proportions: the proportion of spam in
plain text emails and the proportion of spam in HTML emails.

If we generate the column proportions, we can see that a higher fraction of plain text
emails are spam (209/1195 = 17.5%) than compared to HTML emails (158/2726 =
5.8%). This information on its own is insufficient to classify an email as spam or not
spam, as over 80% of plain text emails are not spam. Yet, when we carefully combine
this information with many other characteristics, such as number and other variables,
we stand a reasonable chance of being able to classify some email as spam or not
spam.

text HTML Total
spam 209 158 367
not spam 986 2568 3554
Total 1195 2726 3921

Table 2.31: A contingency table for spam and format.

Example 2.54 points out that row and column proportions are not equivalent. Before
settling on one form for a table, it is important to consider each to ensure that the most
useful table is constructed.

⊙
Guided Practice 2.55 Look back to Tables 2.29 and 2.30. Which would be more
useful to someone hoping to identify spam emails using the number variable?38

38The column proportions in Table 2.30 will probably be most useful, which makes it easier to see that
emails with small numbers are spam about 5.9% of the time (relatively rare). We would also see that about
27.1% of emails with no numbers are spam, and 9.2% of emails with big numbers are spam.
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Figure 2.32: (a) Segmented bar plot for numbers found in emails, where the
counts have been further broken down by spam. (b) Standardized version
of Figure (a).

2.3.3 Segmented bar plots

Contingency tables using row or column proportions are especially useful for examining
how two categorical variables are related. Segmented bar plots provide a way to visualize
the information in these tables.

A segmented bar plot is a graphical display of contingency table information. For
example, a segmented bar plot representing Table 2.30 is shown in Figure 2.32(a), where
we have first created a bar plot using the number variable and then divided each group
by the levels of spam. The column proportions of Table 2.30 have been translated into a
standardized segmented bar plot in Figure 2.32(b), which is a helpful visualization of the
fraction of spam emails in each level of number.

 Example 2.56 Examine both of the segmented bar plots. Which is more useful?

Figure 2.32(a) contains more information, but Figure 2.32(b) presents the information
more clearly. This second plot makes it clear that emails with no number have a
relatively high rate of spam email – about 27%! On the other hand, less than 10% of
email with small or big numbers are spam.

Since the proportion of spam changes across the groups in Figure 2.32(b), we can
conclude the variables are dependent, which is something we were also able to discern using
table proportions. Because both the none and big groups have relatively few observations
compared to the small group, the association is more difficult to see in Figure 2.32(a).

In some other cases, a segmented bar plot that is not standardized will be more useful
in communicating important information. Before settling on a particular segmented bar
plot, create standardized and non-standardized forms and decide which is more effective at
communicating features of the data.
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Figure 2.33: A pie chart and bar plot of number for the email data set.

2.3.4 The only pie chart you will see in this book

While pie charts are well known, they are not typically as useful as other charts in a data
analysis. A pie chart is shown in Figure 2.33 alongside a bar plot. It is generally more
difficult to compare group sizes in a pie chart than in a bar plot, especially when categories
have nearly identical counts or proportions. In the case of the none and big categories,
the difference is so slight you may be unable to distinguish any difference in group sizes for
either plot!
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Appendix A

End of chapter exercise
solutions

2 Summarizing data

2.1 (a) Positive association: mammals with longer gestation periods tend to live longer as well. (b)
Association would still be positive. (c) No, they are not independent. See part (a).

2.3 (a) 1/linear and 3/nonlinear. (b) 4/some curvature (nonlinearity) may be present on the right
side. “Linear” would also be acceptable for the type of relationship for plot 4. (c) 2.
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