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Probability

Probability models and axioms

Definition (Sample space) A sample space Ω is the set of all
possible outcomes. The set’s elements must be mutually exclusive,
collectively exhaustive and at the right granularity.

Definition (Event) An event is a subset of the sample space.
Probability is assigned to events.

Definition (Probability axioms) A probability law P assigns
probabilities to events and satisfies the following axioms:

Nonnegativity P(A) ≥ 0 for all events A.

Normalization P(Ω) = 1.

(Countable) additivity For every sequence of events A1,A2, . . .

such that Ai ∩Aj = ∅: P(⋃
i
Ai) = ∑

i
P(Ai).

Corollaries (Consequences of the axioms)

• P(∅) = 0.

• For any finite collection of disjoint events A1, . . . ,An,

P(
n
⋃
i=1

Ai) =
n

∑
i=1
P(Ai).

• P(A) +P(Ac) = 1.

• P(A) ≤ 1.

• If A ⊂ B, then P(A) ≤ P(B).
• P(A ∪B) = P(A) +P(B) −P(A ∩B).
• P(A ∪B) ≤ P(A) +P(B).

Example (Discrete uniform law) Assume Ω is finite and consists
of n equally likely elements. Also, assume that A ⊂ Ω with k
elements. Then P(A) = k

n
.

Conditioning and Bayes’ rule

Definition (Conditional probability) Given that event B has
occurred and that P (B) > 0, the probability that A occurs is

P(A∣B) △=
P(A ∩B)
P(B)

.

Remark (Conditional probabilities properties) They are the same
as ordinary probabilities. Assuming P(B) > 0:

• P(A∣B) ≥ 0.

• P(Ω∣B) = 1

• P(B∣B) = 1.

• If A ∩C = ∅, P(A ∪C∣B) = P(A∣B) +P(C∣B).
Proposition (Multiplication rule)

P(A1∩A2∩⋯∩An) = P(A1) ⋅P(A2∣A1)⋯P(An∣A1∩A2∩⋯∩An−1).

Theorem (Total probability theorem) Given a partition
{A1,A2, . . .} of the sample space, meaning that ⋃

i
Ai = Ω and the

events are disjoint, and for every event B, we have

P(B) =∑
i

P(Ai)P(B∣Ai).

Theorem (Bayes’ rule) Given a partition {A1,A2, . . .} of the
sample space, meaning that ⋃

i
Ai = Ω and the events are disjoint,

and if P(Ai) > 0 for all i, then for every event B, the conditional
probabilities P(Ai∣B) can be obtained from the conditional
probabilities P(B∣Ai) and the initial probabilities P(Ai) as follows:

P(Ai∣B) =
P(Ai)P(B∣Ai)

∑j P(Aj)P(B∣Aj)
.

Independence

Definition (Independence of events) Two events are independent
if occurrence of one provides no information about the other. We
say that A and B are independent if

P(A ∩B) = P(A)P(B).

Equivalently, as long as P(A) > 0 and P(B) > 0,

P(B∣A) = P(B) P(A∣B) = P(A).

Remarks

• The definition of independence is symmetric with respect to
A and B.

• The product definition applies even if P(A) = 0 or P(B) = 0.

Corollary If A and B are independent, then A and Bc are
independent. Similarly for Ac and B, or for Ac and Bc.

Definition (Conditional independence) We say that A and B are
independent conditioned on C, where P(C) > 0, if

P(A ∩B∣C) = P(A∣C)P(B∣C).

Definition (Independence of a collection of events) We say that
events A1,A2, . . . ,An are independent if for every collection of
distinct indices i1, i2, . . . , ik, we have

P(Ai1 ∩ . . . ∩Aik) = P(Ai1) ⋅P(Ai2)⋯P(Aik).

Counting

This section deals with finite sets with uniform probability law. In
this case, to calculate P(A), we need to count the number of
elements in A and in Ω.
Remark (Basic counting principle) For a selection that can be
done in r stages, with ni choices at each stage i, the number of
possible selections is n1 ⋅ n2⋯nr.
Definition (Permutations) The number of permutations
(orderings) of n different elements is

n! = 1 ⋅ 2 ⋅ 3⋯n.

Definition (Combinations) Given a set of n elements, the number
of subsets with exactly k elements is

(
n

k
) =

n!

k!(n − k)!
.

Definition (Partitions) We are given an n−element set and
nonnegative integers n1, n2, . . . , nr, whose sum is equal to n. The
number of partitions of the set into r disjoint subsets, with the ith

subset containing exactly ni elements, is equal to

(
n

n1, . . . , nr
) =

n!

n1!n2!⋯nr!
.

Remark This is the same as counting how to assign n distinct
elements to r people, giving each person i exactly ni elements.

Discrete random variables

Probability mass function and expectation

Definition (Random variable) A random variable X is a function
of the sample space Ω into the real numbers (or Rn). Its range can
be discrete or continuous.

Definition (Probability mass funtion (PMF)) The probability law
of a discrete random variable X is called its PMF. It is defined as

pX(x) = P(X = x) = P ({ω ∈ Ω ∶ X(ω) = x}) .

Properties

pX(x) ≥ 0, ∀x.

∑x pX(x) = 1.

Example (Bernoulli random variable) A Bernoulli random
variable X with parameter 0 ≤ p ≤ 1 (X ∼ Ber(p)) takes the
following values:

X =
⎧⎪⎪⎨⎪⎪⎩

1 w.p. p,

0 w.p. 1 − p.

An indicator random variable of an event (IA = 1 if A occurs) is an
example of a Bernoulli random variable.

Example (Discrete uniform random variable) A Discrete uniform
random variable X between a and b with a ≤ b (X ∼ Uni[a, b])
takes any of the values in {a, a + 1, . . . , b} with probability 1

b−a+1
.

Example (Binomial random variable) A Binomial random
variable X with parameters n (natural number) and 0 ≤ p ≤ 1
(X ∼ Bin(n, p)) takes values in the set {0,1, . . . , n} with
probabilities pX(i) = (n

i
)pi(1 − p)n−i.

It represents the number of successes in n independent trials where
each trial has a probability of success p. Therefore, it can also be
seen as the sum of n independent Bernoulli random variables, each
with parameter p.

Example (Geometric random variable) A Geometric random
variable X with parameter 0 ≤ p ≤ 1 (X ∼ Geo(p)) takes values in
the set {1,2, . . .} with probabilities pX(i) = (1 − p)i−1p.
It represents the number of independent trials until (and including)
the first success, when the probability of success in each trial is p.

Definition (Expectation/mean of a random variable) The
expectation of a discrete random variable is defined as

E[X] △=∑
x

xpX(x).

assuming ∑x ∣x∣pX(x) <∞.

Properties (Properties of expectation)

• If X ≥ 0 then E[X] ≥ 0.

• If a ≤ X ≤ b then a ≤ E[X] ≤ b.

• If X = c then E[X] = c.
Example Expected value of know r.v.

• If X ∼ Ber(p) then E[X] = p.

• If X = IA then E[X] = P(A).

• If X ∼ Uni[a, b] then E[X] = a+b
2

.

• If X ∼ Bin(n, p) then E[X] = np.

• If X ∼ Geo(p) then E[X] = 1
p

.



Theorem (Expected value rule) Given a random variable X and a
function g ∶ R→ R, we construct the random variable Y = g(X).
Then

∑
y

ypY (y) = E[Y ] = E [g(X)] =∑
x

g(x)pX(x).

Remark (PMF of Y = g(X)) The PMF of Y = g(X) is
pY (y) = ∑

x∶g(x)=y
pX(x).

Remark In general g (E[X]) ≠ E [g(X)]. They are equal if
g(x) = ax + b.

Variance, conditioning on an event, multiple r.v.

Definition (Variance of a random variable) Given a random
variable X with µ = E[X], its variance is a measure of the spread
of the random variable and is defined as

Var(X) △= E [(X − µ)2] =∑
x

(x − µ)2pX(x).

Definition (Standard deviation)

σX =
√

Var(X).

Properties (Properties of the variance)

• Var(aX) = a2 Var(X), for all a ∈ R.

• Var(X + b) = Var(X), for all b ∈ R.

• Var(aX + b) = a2 Var(X).

• Var(X) = E[X2] − (E[X])2.

Example (Variance of known r.v.)

• If X ∼ Ber(p), then Var(X) = p(1 − p).

• If X ∼ Uni[a, b], then Var(X) = (b−a)(b−a+2)
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.

• If X ∼ Bin(n, p), then Var(X) = np(1 − p).

• If X ∼ Geo(p), then Var(X) = 1−p
p2

Proposition (Conditional PMF and expectation, given an event)
Given the event A, with P(A) > 0, we have the following

• pX∣A(x) = P(X = x∣A).
• If A is a subset of the range of X, then:

pX∣A(x) △= pX∣{X∈A}(x) =
⎧⎪⎪⎨⎪⎪⎩

1
P(A)

pX(x), if x ∈ A,
0, otherwise.

• ∑x pX∣A(x) = 1.

• E[X ∣A] = ∑x xpX∣A(x).
• E [g(X)∣A] = ∑x g(x)pX∣A(x).

Proposition (Total expectation rule) Given a partition of disjoint
events A1, . . . ,An such that ∑iP(Ai) = 1, and P(Ai) > 0,

E[X] = P(A1)E[X ∣A1] +⋯ +P(An)E[X ∣An].

Definition (Memorylessness of the geometric random variable)
When we condition a geometric random variable X on the event
X > n we have memorylessness, meaning that the “remaining time”
X −n, given that X > n, is also geometric with the same parameter.
Formally,

pX−n∣X>n(i) = pX(i).
Definition (Joint PMF) The joint PMF of random variables
X1,X2, . . . ,Xn is
pX1,X2,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . ,Xn = xn).

Properties (Properties of joint PMF)

• ∑
x1

⋯ ∑
xn
pX1,...,Xn(x1, . . . , xn) = 1.

• pX1
(x1) = ∑

x2

⋯ ∑
xn
pX1,...,Xn(x1, x2, . . . , xn).

• pX2,...,Xn(x2, . . . , xn) = ∑
x1

pX1,X2,...,Xn(x1, x2, . . . , xn).

Definition (Functions of multiple r.v.) If Z = g(X1, . . . ,Xn),
where g ∶ Rn → R, then pZ(z) = P (g(X1, . . . ,Xn) = z).
Proposition (Expected value rule for multiple r.v.) Given
g ∶ Rn → R,

E [g(X1, . . . ,Xn)] = ∑
x1,...,xn

g(x1, . . . , xn)pX1,...,Xn(x1, . . . , xn).

Properties (Linearity of expectations)

• E[aX + b] = aE[X] + b.
• E[X1 +⋯ +Xn] = E[X1] +⋯ +E[Xn].

Conditioning on a random variable, independence

Definition (Conditional PMF given another random variable)
Given discrete random variables X,Y and y such that pY (y) > 0
we define

pX∣Y (x∣y) △=
pX,Y (x, y)
pY (y)

.

Proposition (Multiplication rule) Given jointly discrete random
variables X,Y , and whenever the conditional probabilities are
defined,

pX,Y (x, y) = pX(x)pY ∣X(y∣x) = pY (y)pX∣Y (x∣y).

Definition (Conditional expectation) Given discrete random
variables X,Y and y such that pY (y) > 0 we define

E[X ∣Y = y] =∑
x

xpX∣Y (x∣y).

Additionally we have

E [g(X)∣Y = y] =∑
x

g(x)pX∣Y (x∣y).

Theorem (Total probability and expectation theorems)
If pY (y) > 0, then

pX(x) =∑
y

pY (y)pX∣Y (x∣y),

E[X] =∑
y

pY (y)E[X ∣Y = y].

Definition (Independence of a random variable and an event) A
discrete random variable X and an event A are independent if
P(X = x and A) = pX(x)P(A), for all x.

Definition (Independence of two random variables) Two discrete
random variables X and Y are independent if
pX,Y (x, y) = pX(x)pY (y) for all x, y.

Remark (Independence of a collection of random variables) A
collection X1,X2, . . . ,Xn of random variables are independent if

pX1,...,Xn(x1, . . . , xn) = pX1
(x1)⋯pXn(xn), ∀x1, . . . , xn.

Remark (Independence and expectation) In general,
E [g(X,Y )] ≠ g (E[X],E[Y ]). An exception is for linear functions:
E[aX + bY ] = aE[X] + bE[Y ].

Proposition (Expectation of product of independent r.v.) If X
and Y are discrete independent random variables,

E[XY ] = E[X]E[Y ].

Remark If X and Y are independent,
E [g(X)h(Y )] = E [g(X)]E [h(Y )].
Proposition (Variance of sum of independent random variables)
IF X and Y are discrete independent random variables,

Var(X + Y ) = Var(X) +Var(Y ).

Continuous random variables

PDF, Expectation, Variance, CDF

Definition (Probability density function (PDF)) A probability
density function of a r.v. X is a non-negative real valued function
fX that satisfies the following

•
∞

∫
−∞

fX(x)dx = 1.

• P(a ≤ X ≤ b) =
b

∫
a
fX(x)dx for some random variable X.

Definition (Continuous random variable) A random variable X is
continuous if its probability law can be described by a PDF fX .

Remark Continuous random variables satisfy:

• For small δ > 0, P(a ≤ X ≤ a + δ) ≈ fX(a)δ.

• P(X = a) = 0, ∀a ∈ R.

Definition (Expectation of a continuous random variable) The
expectation of a continuous random variable is

E[X] △= ∫
∞

−∞
xfX(x)dx.

assuming
∞

∫
−∞

∣x∣fX(x)dx <∞.

Properties (Properties of expectation)

• If X ≥ 0 then E[X] ≥ 0.

• If a ≤ X ≤ b then a ≤ E[X] ≤ b.

• E [g(X)] =
∞

∫
−∞

g(x)fX(x)dx.

• E[aX + b] = aE[X] + b.
Definition (Variance of a continuous random variable) Given a
continuous random variable X with µ = E[X], its variance is

Var(X) = E [(X − µ)2] = ∫
∞

−∞
(x − µ)2fX(x)dx.

It has the same properties as the variance of a discrete random
variable.

Example (Uniform continuous random variable) A Uniform
continuous random variable X between a and b, with a < b,
(X ∼ Uni(a, b)) has PDF

fX(x) =
⎧⎪⎪⎨⎪⎪⎩

1
b−a

, if a < x < b,
0, otherwise.

We have E[X] = a+b
2

and Var(X) = (b−a)
2

12
.



Example (Exponential random variable) An Exponential random
variable X with parameter λ > 0 (X ∼ Exp(λ)) has PDF

fX(x) =
⎧⎪⎪⎨⎪⎪⎩

λe−λx, if x ≥ 0,

0, otherwise.

We have E[X] = 1
λ

and Var(X) = 1
λ2 .

Definition (Cumulative Distribution Function (CDF)) The CDF
of a random variable X is FX(x) = P(X ≤ x).
In particular, for a continuous random variable, we have

FX(x) =
x

∫
−∞

fX(x)dx,

fX(x) =
dFX(x)

dx
.

Properties (Properties of CDF)

• If y ≥ x, then FX(y) ≥ FX(x).

• lim
x→−∞

FX(x) = 0.

• lim
x→∞

FX(x) = 1.

Definition (Normal/Gaussian random variable) A Normal random
variable X with mean µ and variance σ2 > 0 (X ∼ N (µ,σ2)) has
PDF

fX(x) =
1

√
2πσ2

e
− 1

2σ2 (x−µ)
2

.

We have E[X] = µ and Var(X) = σ2.

Remark (Standard Normal) The standard Normal is N (0,1).
Proposition (Linearity of Gaussians) Given X ∼ N (µ,σ2), and if
a ≠ 0, then aX + b ∼ N (aµ + b, a2σ2).
Using this Y = X−µ

σ
is a standard gaussian.

Conditioning on an event, and multiple continuous r.v.

Definition (Conditional PDF given an event) Given a continuous
random variable X and event A with P (A) > 0, we define the
conditional PDF as the function that satisfies

P(X ∈ B∣A) = ∫
B
fX∣A(x)dx.

Definition (Conditional PDF given X ∈ A) Given a continuous
random variable X and an A ⊂ R, with P (A) > 0:

fX∣X∈A(x) =
⎧⎪⎪⎨⎪⎪⎩

1
P(A)

fX(x), x ∈ A,
0, x /∈ A.

Definition (Conditional expectation) Given a continuous random
variable X and an event A, with P (A) > 0:

E[X ∣A] = ∫
∞

−∞
fX∣A(x)dx.

Definition (Memorylessness of the exponential random variable)
When we condition an exponential random variable X on the event
X > t we have memorylessness, meaning that the “remaining time”
X − t given that X > t is also geometric with the same parameter
i.e.,

P(X − t > x∣X > t) = P(X > x).

Theorem (Total probability and expectation theorems) Given a
partition of the space into disjoint events A1,A2, . . . ,An such that

∑iP(Ai) = 1 we have the following:

FX(x) = P(A1)FX∣A1
(x) +⋯ +P(An)FX∣An(x),

fX(x) = P(A1)fX∣A1
(x) +⋯ +P(An)fX∣An(x),

E[X] = P(A1)E[X ∣A1] +⋯ +P(An)E[X ∣An].

Definition (Jointly continuous random variables) A pair
(collection) of random variables is jointly continuous if there exists
a joint PDF fX,Y that describes them, that is, for every set B ⊂ Rn

P ((X,Y ) ∈ B) =∬
B
fX,Y (x, y)dxdy.

Properties (Properties of joint PDFs)

• fX(x) =
∞

∫
−∞

fX,Y (x, y)dy.

• FX,Y (x, y) = P(X ≤ x,Y ≤ y) =
x

∫
−∞

[
y

∫
−∞

fX,Y (u, v)dv]du.

• fX,Y (x) = ∂2FX,Y (x,y)

∂x ∂y
.

Example (Uniform joint PDF on a set S) Let S ⊂ R2 with area
s > 0, then the random variable (X,Y ) is uniform over S if it has
PDF

fX,Y (x, y) =
⎧⎪⎪⎨⎪⎪⎩

1
s
, (x, y) ∈ S,

0, (x, y) /∈ S.

Conditioning on a random variable, independence, Bayes’ rule

Definition (Conditional PDF given another random variable)
Given jointly continuous random variables X,Y and a value y such
that fY (y) > 0, we define the conditional PDF as

fX∣Y (x∣y) △=
fX,Y (x, y)
fY (y)

.

Additionally we define P(X ∈ A∣Y = y) ∫A fX∣Y (x∣y)dx.

Proposition (Multiplication rule) Given jointly continuous
random variables X,Y , whenever possible we have

fX,Y (x, y) = fX(x)fY ∣X(y∣x) = fY (y)fX∣Y (x∣y).

Definition (Conditional expectation) Given jointly continuous
random variables X,Y , and y such that fY (y) > 0, we define the
conditional expected value as

E[X ∣Y = y] = ∫
∞

−∞
xfX∣Y (x∣y)dx.

Additionally we have

E [g(X)∣Y = y] = ∫
∞

−∞
g(x)fX∣Y (x∣y)dx.

Theorem (Total probability and total expectation theorems)

fX(x) = ∫
∞

−∞
fY (y)fX∣Y (x∣y)dy,

E[X] = ∫
∞

−∞
fY (y)E[X ∣Y = y]dy.

Definition (Independence) Jointly continuous random variables
X,Y are independent if fX,Y (x, y) = fX(x)fY (y) for all x, y.

Proposition (Expectation of product of independent r.v.) If X
and Y are independent continuous random variables,

E[XY ] = E[X]E[Y ].

Remark If X and Y are independent,
E [g(X)h(Y )] = E [g(X)]E [h(Y )].

Proposition (Variance of sum of independent random variables)
If X and Y are independent continuous random variables,

Var(X + Y ) = Var(X) +Var(Y ).

Proposition (Bayes’ rule summary)

• For X,Y discrete: pX∣Y (x∣y) =
pX(x)pY ∣X(y∣x)

pY (y)
.

• For X,Y continuous: fX∣Y (x∣y) =
fX(x)fY ∣X(y∣x)

fY (y)
.

• For X discrete, Y continuous: pX∣Y (x∣y) =
pX(x)fY ∣X(y∣x)

fY (y)
.

• For X continuous, Y discrete: fX∣Y (x∣y) =
fX(x)pY ∣X(y∣x)

pY (y)
.

Derived distributions

Proposition (Discrete case) Given a discrete random variable X
and a function g, the r.v. Y = g(X) has PMF

pY (y) = ∑
x∶g(x)=y

pX(x).

Remark (Linear function of discrete random variable) If

g(x) = ax + b, then pY (y) = pX ( y−b
a

).

Proposition (Linear function of continuous r.v.) Given a
continuous random variable X and Y = aX + b, with a ≠ 0, we have

fY (y) =
1

∣a∣
fX (

y − b
a

) .

Corollary (Linear function of normal r.v.) If X ∼ N (µ,σ2) and
Y = aX + b, with a ≠ 0, then Y ∼ N (aµ + b, a2σ2).

Example (General function of a continuous r.v.) If X is a
continuous random variable and g is any function, to obtain the
pdf of Y = g(X) we follow the two-step procedure:

1. Find the CDF of Y : FY (y) = P(Y ≤ y) = P (g(X) ≤ y).

2. Differentiate the CDF of Y to obtain the PDF:
fY (y) = dFY (y)

dy
.

Proposition (General formula for monotonic g) Let X be a
continuous random variable and g a function that is monotonic
wherever fX(x) > 0. The PDF of Y = g(X) is given by

fY (y) = fX (h(y)) ∣
dh

dy
(y)∣ .

where h = g−1 in the interval where g is monotonic.



Sums of independent r.v., covariance and correlation

Proposition (Discrete case) Let X,Y be discrete independent
random variables and Z = X + Y , then the PMF of Z is

pZ(z) =∑
x

pX(x)pY (z − x).

Proposition (Continuous case) Let X,Y be continuous
independent random variables and Z = X +Y , then the PDF of Z is

fZ(z) = ∫
∞

−∞
fX(x)fY (z − x)dx.

Proposition (Sum of independent normal r.v.) Let X ∼ N (µx, σ2
x)

and Y ∼ N (µy , σ2
y) independent. Then

Z = X + Y ∼ N (µx + µy , σ2
x + σ2

y).
Definition (Covariance) We define the covariance of random
variables X,Y as

Cov(X,Y ) △= E [(X −E[X]) (Y −E[Y ])] .

Properties (Properties of covariance)

• If X,Y are independent, then Cov(X,Y ) = 0.

• Cov(X,X) = Var(X).
• Cov(aX + b, Y ) = aCov(X,Y ).
• Cov(X,Y +Z) = Cov(X,Y ) +Cov(X,Z).
• Cov(X,Y ) = E[XY ] −E[X]E[Y ].

Proposition (Variance of a sum of r.v.)

Var(X1 +⋯ +Xn) =∑
i

Var(Xi) +∑
i≠j

Cov(Xi,Xj).

Definition (Correlation coefficient) We define the correlation
coefficient of random variables X,Y , with σX , σY > 0, as

ρ(X,Y ) △=
Cov(X,Y )
σXσY

.

Properties (Properties of the correlation coefficient)

• −1 ≤ ρ ≤ 1.

• If X,Y are independent, then ρ = 0.

• ∣ρ∣ = 1 if and only if X −E[X] = c (Y −E[Y ]).
• ρ(aX + b, Y ) = sign(a)ρ(X,Y ).

Conditional expectation and variance, sum of
random number of r.v.

Definition (Conditional expectation as a random variable) Given
random variables X,Y the conditional expectation E[X ∣Y ] is the
random variable that takes the value E[X ∣Y = y] whenever Y = y.

Theorem (Law of iterated expectations)

E [E[X ∣Y ]] = E[X].

Definition (Conditional variance as a random variable) Given
random variables X,Y the conditional variance Var(X ∣Y ) is the
random variable that takes the value Var(X ∣Y = y) whenever
Y = y.

Theorem (Law of total variance)

Var(X) = E [Var(X ∣Y )] +Var (E[X ∣Y ]) .

Proposition (Sum of a random number of independent r.v.)

Let N be a nonnegative integer random variable.
Let X,X1,X2, . . . ,XN be i.i.d. random variables.
Let Y = ∑iXi. Then

E[Y ] = E[N]E[X],

Var(Y ) = E[N]Var(X) + (E[X])2 Var(N).

Convergence of random variables

Inequalities, convergence, and the Weak Law of
Large Numbers

Theorem (Markov inequality) Given a random variable X ≥ 0 and,
for every a > 0 we have

P(X ≥ a) ≤
E[X]
a

.

Theorem (Chebyshev inequality) Given a random variable X with
E[X] = µ and Var(X) = σ2, for every ε > 0 we have

P (∣X − µ∣ ≥ ε) ≤
σ2

ε2
.

Theorem (Weak Law of Large Number (WLLN)) Given a
sequence of i.i.d. random variables {X1,X2, . . .} with E[Xi] = µ
and Var(Xi) = σ2, we define

Mn =
1

n

n

∑
i=1

Xi,

for every ε > 0 we have

lim
n→∞

P (∣Mn − µ∣ ≥ ε) = 0.

Definition (Convergence in probability) A sequence of random
variables {Yi} converges in probability to the random variable Y if

lim
n→∞

P (∣Yi − Y ∣ ≥ ε) = 0,

for every ε > 0.

Properties (Properties of convergence in probability) If Xn → a
and Yn → b in probability, then

• Xn + Yn → a + b.
• If g is a continuous function, then g(Xn)→ g(a).
• E[Xn] does not always converge to a.

The Central Limit Theorem

Theorem (Central Limit Theorem (CLT)) Given a sequence of
independent random variables {X1,X2, . . .} with E[Xi] = µ and
Var(Xi) = σ2, we define

Zn =
1

σ
√
n

n

∑
i=1

(Xi − µ).

Then, for every z, we have

lim
n→∞

P(Zn ≤ z) = P(Z ≤ z),

where Z ∼ N (0,1).
Corollary (Normal approximation of a binomial) Let
X ∼ Bin(n, p) with n large. Then Sn can be approximated by
Z ∼ N (np,np(1 − p)).
Remark (De Moivre-Laplace 1/2 approximation) Let X ∼ Bin,
then P(X = i) = P (i − 1

2
≤ X ≤ i + 1

2
) and we can use the CLT to

approximate the PMF of X.


