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PROBABILITY

Probability models and axioms

A sample space (2 is the set of all
possible outcomes. The set’s elements must be mutually exclusive,
collectively exhaustive and at the right granularity.

An event is a subset of the sample space.
Probability is assigned to events.

A probability law P assigns
probabilities to events and satisfies the following axioms:

Nonnegativity P(A) >0 for all events A.
Normalization P(Q) =1.

(Countable) additivity For every sequence of events A1, Ag, ...

such that A;nA; =@: P (UAZ) = Z]P(Al)

e P(g)=0.
e For any finite collection of disjoint events Aq,...
p(4)- Eren.
i=1 i=1
o P(A)+P(A°)=1.
e P(A)<1.
e If Ac B, then P(A) < P(B).
e P(AuB)=P(A)+P(B)-P(ANnB).
e P(AuB)<P(A)+P(B).
Example (Discrete uniform law) Assume € is finite and consists

of n equally likely elements. Also, assume that A c  with k
elements. Then P(A) = %

yAn,

Conditioning and Bayes’ rule
Given that event B has
occurred and that P(B) > 0, the probability that A occurs is
P(AnB
p(ap) 2 ZANE)
P(B)

Remark (Conditional probabilities properties) They are the same
as ordinary probabilities. Assuming P(B) > 0:

o P(AB)>0.
o P(QIB) =1
e P(B|B)=1.

e If AnC =g, P(AuC|B) =P(A|B) + P(C|B).
Proposition (Multiplication rule)
IP(Al ﬂA2ﬂ~~~ﬂAn) = P(A1)~P(A2|A1)~~~P(An‘z41 ﬁAgﬁmﬂAn,l).

Theorem (Total probability theorem) Given a partition
{A1,As,...} of the sample space, meaning that UA; = Q and the
i

events are disjoint, and for every event B, we have

P(B) = Y P(A)P(BJA,).

Theorem (Bayes’ rule) Given a partition {A1, Aa,...} of the
sample space, meaning that L_)Ai =) and the events are disjoint,

2
and if P(A;) > 0 for all ¢, then for every event B, the conditional
probabilities P(A;|B) can be obtained from the conditional

probabilities P(B|A;) and the initial probabilities P(A;) as follows:

P(A;)P(B|A;)
P(A;|B) = ————————.

i) = < P, P (BIA)
Independence

Two events are independent
if occurrence of one provides no information about the other. We
say that A and B are independent if

P(AnB)=P(A)P(B).
Equivalently, as long as IP(A) >0 and P(B) > 0,
P(B|A) =P(B) P(A|B) =P(A).
Remarks

e The definition of independence is symmetric with respect to
A and B.

e The product definition applies even if P(A) =0 or P(B) =0.

If A and B are independent, then A and B¢ are
independent. Similarly for A¢ and B, or for A® and B€.
We say that A and B are
independent conditioned on C, where P(C) > 0, if

P(An B|C) = P(A|C)P(B|C).

‘We say that
events Ay, As,..., Ay are independent if for every collection of
distinct indices 41,12, ...,4s, we have

Counting

This section deals with finite sets with uniform probability law. In
this case, to calculate P(A), we need to count the number of
elements in A and in Q.
Remark (Basic counting principle) For a selection that can be
done in r stages, with n; choices at each stage i, the number of
possible selections is ny - ng--ny.

The number of permutations
(orderings) of n different elements is

nl=1-2.3-n.

Given a set of n elements, the number
of subsets with exactly k elements is

n n!
(k) T Bl(n-k)

We are given an n—element set and
nonnegative integers ni,na,...,n,, whose sum is equal to n. The
number of partitions of the set into r disjoint subsets, with the ith
subset containing exactly n; elements, is equal to

(")
Nlyeeey Ny ni'ng!--n,!

Remark This is the same as counting how to assign n distinct
elements to r people, giving each person i exactly n; elements.

Discrete random variables
Probability mass function and expectation

A random variable X is a function
of the sample space 2 into the real numbers (or R™). Its range can
be discrete or continuous.

The probability law
of a discrete random variable X is called its PMF. It is defined as
px (@) =P(X =) =P ({we Q: X (w) = a}).

Properties
px(x) >0, V.

Example (Bernoulli random variable) A Bernoulli random
variable X with parameter 0 <p <1 (X ~ Ber(p)) takes the

following values:
xoJ1 wpp
0 w.p. 1-p.

An indicator random variable of an event (I4 =1 if A occurs) is an
example of a Bernoulli random variable.

Example (Discrete uniform random variable) A Discrete uniform
random variable X between a and b with a <b (X ~ Uni[a, b])
takes any of the values in {a,a +1,...,b} with probability ﬁ

Example (Binomial random variable) A Binomial random
variable X with parameters n (natural number) and 0 <p<1

(X ~ Bin(n,p)) takes values in the set {0,1,...,n} with
probabilities px (i) = (?)p’(l -p)" L.

It represents the number of successes in n independent trials where
each trial has a probability of success p. Therefore, it can also be
seen as the sum of n independent Bernoulli random variables, each
with parameter p.

Example (Geometric random variable) A Geometric random
variable X with parameter 0 <p <1 (X ~ Geo(p)) takes values in
the set {1,2,...} with probabilities px (i) = (1 -p)*p.

It represents the number of independent trials until (and including)
the first success, when the probability of success in each trial is p.

The
expectation of a discrete random variable is defined as

E[X] 2 Y apx (z).

assuming Y, |z|px (x) < oo.

Properties (Properties of expectation)
e If X >0 then E[X]>0.
o Ifa< X <bthen a<E[X]<b.
e If X =cthen E[X]=c.
Example Expected value of know r.v.
e If X ~Ber(p) then E[X] =p.
o If X =14 then E[X]=P(A).
o If X ~ Uni[a,b] then E[X] = 22
e If X ~Bin(n,p) then E[X] = np.
e If X ~ Geo(p) then E[X] = %



Theorem (Expected value rule) Given a random variable X and a
function g: R - R, we construct the random variable Y = g(X).
Then

Yypy (y) =EB[Y]=E[g(X)] = g(z)px ().
Y x

Remark (PMF of Y = g(X)) The PMF of Y = g(X) is

py(y)= ¥ px(z).
aig(2)=y

Remark In general g (E[X]) # E[g(X)]. They are equal if
g(z) =azx +b.
Variance, conditioning on an event, multiple r.v.

Given a random
variable X with p = E[X], its variance is a measure of the spread
of the random variable and is defined as

Var(X) =80 [(x- ,u)z] = (z- 1)?px (x).

ox =/ Var(X).
Properties (Properties of the variance)
Var(aX) = a2 Var(X), for all a € R.
Var(X +b) = Var(X), for all be R.
Var(aX +b) = a® Var(X).
Var(X) = E[X2] - (E[X])2.
Example (Variance of known r.v.)
If X ~ Ber(p), then Var(X) =p(1 - p).
If X ~ Uni[a,b], then Var(X) = {¢=e)(b-a+2)
e If X ~Bin(n,p), then Var(X) =np(1 -p).
If X ~ Geo(p), then Var(X) = 110;2?

Proposition (Conditional PMF and expectation, given an event)
Given the event A, with P(A) > 0, we have the following

o pxja(z) =P(X = z|A).
e If A is a subset of the range of X, then:
ﬁpx(l‘x ifzeA,

px|a(z) E Px|ixeay(z) =

R otherwise.
o Y.pxjalz) =1
o B[X|A] =X, zpx|a(z).
o E[g(X)|A] = E, 9(z)px|a ().

Proposition (Total expectation rule) Given a partition of disjoint
events Aq,..., Ay, such that 3, P(4;) =1, and P(A4;) >0,

E[X]=P(A1)E[X|A1]+ -+ P(An)E[X]|An].

When we condition a geometric random variable X on the event
X >n we have memorylessness, meaning that the “remaining time”
X —n, given that X > n, is also geometric with the same parameter.
Formally,
Px-n|x>n (1) =px (9).
The joint PMF of random variables

X1,X2,...,Xn is
PX1,X5,....Xn (3317 ..

n)=P(X1=21,...,Xn =2n).

Properties (Properties of joint PMF)

o XY pxy,... Xn (%1, 20) = 1.
r1 T

o px, (1) =X T px,,... . x, (@T1,T2,...,%0).
T2 T
® PXa,Xn (T2, -, %n) = L PX),Xg,00, X (1, T2, -+, @)
xy
If Z = g(X1,...,Xn),
where g : R"® - R, then pz(z) =P (9(X1,...,Xn) = 2).

Proposition (Expected value rule for multiple r.v.) Given

g:R™ > R,
E[g(X1,...,Xn)]= >

L1,y Ty

g(xly-~'awn)le,A..,Xn(wlv~~~755n)~

Properties (Linearity of expectations)
o E[aX +b]=aE[X]+b.
o E[X1+ -+ Xn]=E[X1]++E[Xn].

Conditioning on a random variable, independence

Given discrete random variables X,Y and y such that py (y) >0
we define
A PX,Y(Q% y)
px|y (zly) = —————

py ()
Proposition (Multiplication rule) Given jointly discrete random
variables X,Y’, and whenever the conditional probabilities are
defined,

px,v (z,9) = px (2)py|x (¥|z) = Py (¥)Px )Y (T]Y)-

Given discrete random
variables X,Y and y such that py (y) > 0 we define

E[X|Y =y] = > zpxy (zly)-

Additionally we have
E[g(X)Y =y] =Y g(z)pxy (zly).
x

Theorem (Total probability and expectation theorems)
If py (y) >0, then

px(z) = X py (W)px|y (=ly),
Yy
E[X] =) py (y)E[X]Y =y].
y

A
discrete random variable X and an event A are independent if
P(X =z and A) =px (x)P(A), for all x.

Two discrete
random variables X and Y are independent if
px.y(z,y) = px (z)py (y) for all z,y.
Remark (Independence of a collection of random variables) A
collection X1, Xa,..., Xy, of random variables are independent if

7~Tn) =Px; (xl)"’an («Tn)7 VZ1,...,%Tn.

DX, Xn (T2,

Remark (Independence and expectation) In general,
E[g(X,Y)]#g(E[X],E[Y]). An exception is for linear functions:
E[aX +bY ] =aE[X] +bE[Y].

Proposition (Expectation of product of independent r.v.) If X
and Y are discrete independent random variables,

E[XY]=E[X]E[Y].
Remark If X and Y are independent,
E[g(X)h(Y)] =E[g(X)]E[R(Y)].

Proposition (Variance of sum of independent random variables)
IF X and Y are discrete independent random variables,

Var(X +Y) = Var(X) + Var(Y).

Continuous random variables
PDF, Expectation, Variance, CDF

A probability
density function of a r.v. X is a non-negative real valued function
fx that satisfies the following

° 770 fx(z)dz = 1.

b
e P(a<X <b) =/ fx(x)dx for some random variable X.

A random variable X is
continuous if its probability law can be described by a PDF fx.

Remark Continuous random variables satisfy:
e For small § >0, P(a< X <a+6)~ fx(a)d.
e P(X=a)=0,VaceR.

The
expectation of a continuous random variable is

E[X] 2 [: ofx (z)de.

assuming [ |z|fx (z)dz < oo.

Properties (Properties of expectation)
e If X >0 then E[X]>0.
e Ifa< X <bthena<E[X]<D.

o E[g()]= [ g@)fx(@)da.

e E[aX +b]=aE[X]+b.

Given a
continuous random variable X with p = E[X], its variance is

Var(X) =B[(X - 0?] = [~ (@~ w)?fx (2)da.

It has the same properties as the variance of a discrete random
variable.

Example (Uniform continuous random variable) A Uniform

continuous random variable X between a and b, with a < b,
(X ~ Uni(a,b)) has PDF

1 .
—, ifa<z<d
_Jb-a’ 1 )
Fx(@) {O, otherwise.
2
We have E[X] = ‘%’b and Var(X) = (b;;) .




Example (Exponential random variable) An Exponential random
variable X with parameter A >0 (X ~ Exzp())) has PDF

Ae ™ if x>0,

0, otherwise.

fX($)={

We have E[X] = % and Var(X) = )\—12

The CDF
of a random variable X is Fx(z) = P(X < z).
In particular, for a continuous random variable, we have

Fy(z) = f Fx(2)dz,

dFX T
fx(a) = X
dz

Properties (Properties of CDF)
e If y >z, then Fx (y) > Fx(z).

e lim Fx(z)=0.
Pir e

o lim Fx(z)=1.
Tr—>00

A Normal random
variable X with mean p and variance o2 >0 (X ~ N (u,0?)) has
PDF
e—ﬁ(ﬂc—u)zl

fx(z)=

1
V2no?
We have E[X] = p and Var(X) = 2.

Remark (Standard Normal) The standard Normal is N'(0, 1).

Proposition (Linearity of Gaussians) Given X ~ N(u,0?), and if
a #0, then aX +b~ N (ap +b,a%0?).
Using this Y = X=£

o

is a standard gaussian.

Conditioning on an event, and multiple continuous r.v.

Given a continuous
random variable X and event A with P(A) >0, we define the
conditional PDF as the function that satisfies

P(X ¢ B|A) = fB Fxia(@)dz.

Given a continuous
random variable X and an A c R, with P(A) > 0:

1
= fx(x), zcA
z) =4 P(4) ’ ’
fX|XeA( ) {07 zf A
Given a continuous random
variable X and an event A, with P(A) > 0:

E[X|A] = [ fxja(o)de.

When we condition an exponential random variable X on the event
X >t we have memorylessness, meaning that the “remaining time”
X -t given that X >t is also geometric with the same parameter
ie.,

P(X-t>z|X>t)=P(X >z).

Theorem (Total probability and expectation theorems) Given a
partition of the space into disjoint events A1, Ag,..., Ay such that
Y;P(A;) =1 we have the following:

Fx(z) = P(A1)Fxja, (%) + -+ P(An) Fix|a, (),

fx(z) =P(A1) fx|a, (@) + -+ P(An) fx|4, (%),
E[X]=P(A1)E[X[|A1] + -+ P(Ap)E[X|An].

A pair
(collection) of random variables is jointly continuous if there exists
a joint PDF fx y that describes them, that is, for every set B ¢ R™

P(x.V)eB) = [[ fxy(ey)dady.

Properties (Properties of joint PDFs)

o Ix(@)= ] fxov(@p)dy.

x
o Fxy(z,y)=P(X<z,Y<y)= [

—o0

y
|;j fx,v(u, v)dv] du.

92 Fx v (z,y)
o fxy (@)= %%,

Example (Uniform joint PDF on a set S) Let S ¢ R? with area
s> 0, then the random variable (X,Y") is uniform over S if it has
PDF

(z,y) €S,

1
Ixy(z,y) = {057 (2.1) ¢ .

Conditioning on a random variable, independence, Bayes’ rule
Given jointly continuous random variables X,Y and a value y such
that fy (y) > 0, we define the conditional PDF as

a fxy(z,y)
Ixy (zly) = T

Additionally we define P(X € AlY =y) [, fx|y (zly)dz.
Proposition (Multiplication rule) Given jointly continuous
random variables X, Y, whenever possible we have

Ix,v(®,y) = fx (@) fy)x (Wlz) = fy () fxpy (2ly)-

Given jointly continuous
random variables X,Y’, and y such that fy (y) > 0, we define the
conditional expected value as

E[XIY =y)= [ afxy (aly)da.
Additionally we have

ElgCOW =] = [ g@)fxpy (sly)da.

Theorem (Total probability and total expectation theorems)
x@) = [~y @)fxy aly)dy,

EIX]= [ fy nEIX]Y = yldy.

Jointly continuous random variables
X,Y are independent if fx yv(z,y) = fx(x)fy (y) for all z,y.

Proposition (Expectation of product of independent r.v.) If X
and Y are independent continuous random variables,

E[XY] = E[X]E[Y].

Remark If X and Y are independent,
E[g(X)h(Y)] =E[g(X)]E[R(Y)].

Proposition (Variance of sum of independent random variables)
If X and Y are independent continuous random variables,

Var(X +Y) = Var(X) + Var(Y).

Proposition (Bayes’ rule summary)

px (z)py|x (ylz)

e For X,Y discrete: px|y (zly) = oy ()

Ix (@) fyx (ylx)

e For X,Y continuous: fx|y (zly) = )

px (z) fyx (ylz)

e For X discrete, Y continuous: px|y (zly) = o)

e For X continuous, Y discrete: fx|y (z]y) = %‘w
Derived distributions

Proposition (Discrete case) Given a discrete random variable X
and a function g, the r.v. Y = g(X) has PMF

py (y) = Z

z:g(x)=y

px ().

Remark (Linear function of discrete random variable) If
g(x) = az +b, then py (y) = px (L2).

Proposition (Linear function of continuous r.v.) Given a
continuous random variable X and Y = aX + b, with a # 0, we have

@) =i (20

lal a

If X ~N(p,02) and
Y =aX +b, with a # 0, then Y ~ N (ap +b,a%5?).

Example (General function of a continuous r.v.) If X is a
continuous random variable and g is any function, to obtain the
pdf of Y = g(X) we follow the two-step procedure:

1. Find the CDF of Y: Fy (y) =P(Y <y) =P (g9(X) <y).

2. Differentilag;e the CDF of Y to obtain the PDF:
Fy(y) = T

Proposition (General formula for monotonic g) Let X be a
continuous random variable and g a function that is monotonic
wherever fx(z) > 0. The PDF of Y = g(X) is given by

Fr () = Fx (h(»)) ‘%(y)‘ .

where h = g~! in the interval where g is monotonic.



Sums of independent r.v., covariance and correlation

Proposition (Discrete case) Let X,Y be discrete independent
random variables and Z = X + Y, then the PMF of Z is

pz(2) =Y px(z)py (2 - ).

Proposition (Continuous case) Let X,Y be continuous
independent random variables and Z = X +Y, then the PDF of Z is

fz(2) = [: Ix (@) fy(z -z)dz.

Proposition (Sum of independent normal r.v.) Let X ~ N(,U,;C,O'g)
and Y ~ N (uy,02) independent. Then
Z=X+Y ~ N(pa + py,02 +02).

We define the covariance of random
variables X,Y as

Cov(X,Y) £ E[(X - E[X]) (Y - E[Y])].

Properties (Properties of covariance)

e If X,Y are independent, then Cov(X,Y) =0.

e Cov(X,X) = Var(X).

e Cov(aX +b,Y)=aCov(X,Y).

e Cov(X,Y+Z)=Cov(X,Y)+Cov(X,Z).

e Cov(X,Y)=E[XY]-E[X]E[Y].
Proposition (Variance of a sum of r.v.)

Var(X1 + -+ Xpn) =Y. Var(X;) + Y. Cov(X;, X;).

i#]

We define the correlation
coefficient of random variables X,Y, with ox,o0y >0, as

o(X,Y) N Cov(X,Y).
OX0y
Properties (Properties of the correlation coefficient)
e —1<p<1.
e If X,Y are independent, then p =0.
e |p|=1if and only if X -E[X]=c(Y - E[Y]).
e p(aX +b,Y) =sign(a)p(X,Y).
Conditional expectation and variance, sum of
random number of r.v.

Given
random variables X,Y the conditional expectation E[X|Y] is the
random variable that takes the value E[X|Y = y] whenever ¥ =y.

Theorem (Law of iterated expectations)

E[E[X|Y]] = B[X].

Given
random variables X,Y the conditional variance Var(X|Y') is the
random variable that takes the value Var(X|Y =y) whenever
Y =y.

Theorem (Law of total variance)

Var(X) = E[Var(X[|Y)] + Var (E[X|Y]) .

Proposition (Sum of a random number of independent r.v.)

Let N be a nonnegative integer random variable.
Let X, X1, X2,..., XN be iid. random variables.
Let Y =3, X;. Then

E[Y] = E[N]E[X],
Var(Y) = E[N] Var(X) + (E[X])? Var(N).

CONVERGENCE OF RANDOM VARIABLES

Inequalities, convergence, and the Weak Law of
Large Numbers

Theorem (Markov inequality) Given a random variable X > 0 and,
for every a > 0 we have

P(X 2a)< E[X]

Theorem (Chebyshev inequality) Given a random variable X with
E[X] = p and Var(X) = o2, for every € > 0 we have

2
]P(|X—,u|25)£a—2.
€

Theorem (Weak Law of Large Number (WLLN)) Given a
sequence of i.i.d. random variables {X1, X5,...} with E[X;]=p
and Var(X;) = 02, we define

for every € > 0 we have
lim P (|My —p| =€) =0.
n—o0o

A sequence of random
variables {Y;} converges in probability to the random variable Y if

lim P(]Y;-Y|>¢€) =0,
n—o00

for every € > 0.
Properties (Properties of convergence in probability) If X, —a
and Y, — b in probability, then

e Xp,+Y,—>a+b.
e If g is a continuous function, then g(X,) — g(a).

e E[X,,] does not always converge to a.

The Central Limit Theorem

Theorem (Central Limit Theorem (CLT)) Given a sequence of
independent random variables { X1, Xs,...} with E[X;] = u and
Var(X;) = 02, we define

1 n
Zn = Tﬁ ;(Xz - ).

Then, for every z, we have

lim P(Z, <2)=P(Z < z),
n—co

where Z ~ N (0,1).

Let
X ~ Bin(n,p) with n large. Then S, can be approximated by
Z ~ N (np,np(1-p)).
Remark (De Moivre-Laplace 1/2 approximation) Let X ~ Bin,
then P(X =i) =P (i— $ < X <i+ 3) and we can use the CLT to
approximate the PMF of X.



