
COMP 102.2x
Introduction to Java Programming – Part 2

Lecture One

T.C. Pong

Department of Computer Science & Engineering

HKUST

Topics to be covered

Topics to be covered in part 2 of this
course:

• 2D and multidimensional arrays

• Character strings and File I/O

• Event-driven programming and GUI

• Recursion

• Abstract data types.

BlueJ will be used as the
Integrated Development

Environment (IDE)

BlueJ as IDEBlueJ as IDE

Part 2: Lecture 1

Topics to be covered in this lecture:

• Fundamental Principles of OOP

• 2D and multidimensional arrays

• Sorting and searching

Fundamental Principles of OOP

Three fundamental principles of object-oriented
programming (OOP):

• Encapsulation: Packing data and functions into a
single component (class) so as to hide
implementation details.

• Inheritance: Objects in a subclass are allowed to inherit
properties (including data and methods) of a superclass.

• Polymorphism: The provision of the same interface to
objects of different types.

OOP: Encapsulation

• Encapsulation: Packing data and functions into a
single component (class) so as to hide
implementation details.

– Only what a class can do is visible but not how it
does it

• Java programs contain nothing but definitions and
instantiations of classes.

OOP: Inheritance

Three general principles of object-oriented programming:

• Encapsulation: The bundling of data and functions into
a simple component, and their implementation is
hidden from the user.

• Inheritance: Objects in a subclass are allowed to inherit
properties (including data and methods) of a superclass.

• Polymorphism: The provision of same interface for
objects of different types.

Inheritance: Class Diagram
Person

name
birthday

computeAge

Student

studentID

computeGrade

GradStudent

major

computeGrade

seniorStudent

major

Superclass

Subclass

Class name

Fields/variables

Methods

Is-a relationship

Inheritance: Class Diagram
Person

name
birthday

computeAge

Student

studentID

computeGrade

GradStudent

major

computeGrade

seniorStudent

major

Class name

Fields/variables

Methods

Subclass

Superclass

Is-a relationship

OOP: Polymorphism

Three general principles of object-oriented programming:

• Encapsulation: The bundling of data and functions into
a simple component, and their implementation is
hidden from the user.

• Inheritance: Objects in a subclass are allowed to inherit
properties (including data and methods) of a superclass.

• Polymorphism: The provision of same interface for
objects of different types.

Subclass and Inheritance

• A subclass is a class that is derived from another class
(superclass).

– public class SubclassName extends SuperClassName

• The class Object is the root of the Java class hierarchy.

• A subclass inherits all the fields and methods from its
superclass.

• The keyword super can be used for a subclass to
invoke the constructors or methods of its superclass.

Example: Savings Account
Savings account:

– Bank account that earns interest from the account balance

– As an example, for an account with a principal of $1,000 that
earns an annual interest of 10%, assuming that the interest is
compounded annually.

– What would be the accumulated balance at the end of 5 years?
• 1st year: interest earned $1,000 * 10% or 100, new balance $1,100

• 2nd year: interest earned $1,100 * 10% or 110, new balance $1,210

• 3rd year: interest earned $1,210 * 10% or 121, new balance $1,331

• 4th year: interest earned $1,331 * 10% or 133.1, new balance $1,464.1

• 5th year: interest earned $1,464.1 * 10% or 146.41, new balance $1,610.51

An Example: Bank Account

13

import comp102x.IO;
/**
* A bank account has a balance and an owner who can make
* deposits to and withdrawals from the account.
*/
public class BankAccount {

private double balance = 0.0; // Initial balance is set to zero
private String owner = "NoName"; // Name of owner

/**
* Default constructor for a bank account with zero balance
*/
public BankAccount () { }
/**
* Construct a balance account with a given initial balance and owner’s name
* @param initialBalance the initial balance
* @param name name of owner
*/
public BankAccount (double initialBalance, String name) {

balance = initialBalance;
owner = name;

}

An Example: Bank Account

14

/**
* Method for depositing money to the bank account
* @param dAmount the amount to be deposited
*/

public void deposit(double dAmount) {
balance = balance + dAmount;

}
/**
* Method for withdrawing money from the bank account
* @param wAmount the amount to be withdrawn
*/

public void withdraw(double wAmount) {
balance = balance - wAmount;

}
/**
* Method for getting the current balance of the bank account
* @return the current balance
*/
public double getBalance() {

return balance;
}

An Example: Bank Account

15

import comp102x.IO;
/**
* SavingsAccount is a subclass of BankAccount.
*/

public class SavingsAccount extends BankAccount {
double interestRate;

/**
* Constructor that makes use of the constructor from super class
*/

public SavingsAccount (double initialBalance, String name, double rate) {
super(initialBalance, name);
interestRate = rate;

}
// - A subclass inherits all the members including fields and
// methods from its superclass.
// - Constructors of the superclass are NOT inherited by subclasses
// but can be invoked from the subclass.

An Example: Bank Account

16

/**
* compoundInterest computes the compound interest for a given duration
*
* @param duration the number of times the interest is to be compounded
*/

public void compoundInterest (int duration) {
for (int i =1; i <= duration; i++) {

double currentBalance = getBalance();
deposit(currentBalance * interestRate);}

}

public void setInterestRate(double rate) {
interestRate = rate;
}

}

Interest earned for the ith period

// Formula for computing compound interest:
// P (1 + r) n

Annotation

• Introduced in Java 5

• Predefined annotations provide information to
the compiler to detect errors or suppress
warnings

• Most predefined annotations have no effect on
code

• Syntax
– @AnnotationName

• Some predefined annotations in Java
– @Override, @SuppressWarnings

An Example: Modified Checking Account

/**
* CheckingAccount is a subclass of BankAccount.
* A fee is charged for each withdrawal from a CheckingAccount
*/

public class CheckingAccount extends BankAccount {

// instance variables perChequeFee is the fee charged per cheque
private double perChequeFee;

/**
* Constructor for objects of class CheckingAccount
*/
public CheckingAccount(double initialBalance, String name, double fee) {

super(initialBalance, name); // constructor from the superclass is called
perChequeFee = fee;

}

An Example: Investment Account

/**
* The method withdraw withdraws with wAmount plus a fee from
* CheckingAcount
*
* @param wAmount the amount to be withdraw from the account
*/

@Override
public void withdrawal(double wAmount) {

// a fee is added to each withdrawal
super.withdraw(wAmount + perChequeFee);

}

public void showBalance() {
System.out.println("Balance: " + super.getBalance());

}

}

Error detected during
compilation.

2D and Multidimensional Arrays

Two-dimensional Array

• The idea of one-dimensional array can be
extended to two-dimensional

• A R x C two dimensional array can be
illustrated as a table with R rows and C
columns

• Example: The following scores could be stored
for each student in a course:
– Exam score
– Homework score
– Lab score
– Final score

Two-dimensional Array

Stu
d

e
n

t n
u

m
b

ers (ro
w

 in
d

ex)

scores (column index)

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

double[][] scores;

90.0

85.0

72.0

99.0

double[] testScore

0

Index

1

2

3

0

2

3

1

0 1 2 3
Test1 Test2 Test3 Test4

Example: Students’ test scores

Example: Scores

public class Scores {
/* 1. A 2D array instance variable */

/* 2. Initialize a 2D array */

/* 3. Access a 2D array element */

/* 4. Traverse a 2D array
using a nested loop */

}

public class Scores {
/* 1. A 2D array instance variable */

private double [][] scores ;

/* 2. Initialize a 2D array */

/* 3. Access a 2D array element */

/* 4. Traverse a 2D array
using a nested loop */

}
Define an instance variable of a 2D array
Syntax:

DataType[][] nameOfTheVariable;

Example: Declare Scores

public class Scores {
/* 1. A 2D array instance variable */
private double [][] scores ;

public void initializeAllScores() {

/* 2. Initialize a 2D array */

}

/* 3. Access a 2D array element */
/* 4. Traverse a 2D array using a nested loop */

}

Initializing Scores

Initializing Scores
double[][] scores

An array of 4 rows and 4 columns is created

public void initializeAllScores() {

scores = new double[4][4];

}

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0

2

3

1

0 1 2 3

2D array as an Array of 1D arrays
• Each row can be visualized as a 1D array

– double[][] scores = new double[4][4];

scores[0]

scores[1]

scores[2]

scores[3]

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0

2

3

1

0 1 2 3

scores

Initializing Scores

The first index is the row index and
the second is the column index. Both
indices start from 0

double[][] scores

public void initializeAllScores() {
scores = new double[4][4];

scores[0][0] = 99.0; scores[0][1] = 89.0;
scores[0][2] = 85.0; scores[0][3] = 92.0;

}

99.0 89.0 85.0 92.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0

2

3

1

0 1 2 3

Initializing Scores

Initializing the second row

double[][] fares

public void initializeAllScores() {
scores = new double[4][4];

scores[0][0] = 99.0; scores[0][1] = 89.0;
scores[0][2] = 85.0; scores[0][3] = 92.0;

scores[1][0] = 90.0; scores[1][1] = 74.0;
scores[1][2] = 75.0; scores[1][3] = 82.0;

}

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0

2

3

1

0 1 2 3

Initializing Scores

Initializing the third row

double[][] scores

public void initializeAllScores() {
scores = new double[4][4];

scores[0][0] = 99.0; scores[0][1] = 89.0;
scores[0][2] = 85.0; scores[0][3] = 92.0;
scores[1][0] = 90.0; scores[1][1] = 74.0;
scores[1][2] = 75.0; scores[1][3] = 82.0;
scores[2][0] = 85.0; scores[2][1] = 75.0;
scores[2][2] = 64.0; scores[2][3] = 91.0;

}

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

0.0 0.0 0.0 0.0

0

2

3

1

0 1 2 3

Initializing Scores

Initializing the forth row

double[][] scores
public void initializeAllScores() {
scores = new double[4][4];
scores[0][0] = 99.0; scores[0][1] = 89.0;
scores[0][2] = 85.0; scores[0][3] = 92.0;
scores[1][0] = 90.0; scores[1][1] = 74.0;
scores[1][2] = 75.0; scores[1][3] = 82.0;
scores[2][0] = 85.0; scores[2][1] = 75.0;
scores[2][2] = 64.0; scores[2][3] = 91.0;

scores[3][0] = 72.0; scores[3][1] = 82.0;
scores[3][2] = 81.0; scores[3][3] = 94.0;

}

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

0

2

3

1

0 1 2 3

Shorthand notation for a 2D array

• Declare, define and
initialize a 2D array using
a single statement:

double [][] scores = {
{99.0, 89.0, 85.0, 92.0},
{90.0, 74.0, 75.0, 82.0},
{85.0, 75.0, 64.0, 91.0},
{72.0, 82.0, 81.0, 94.0}

};

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

0

2

3

1

0 1 2 3

Caution on the shorthand syntax

• This shorthand syntax must be in one statement

double [][] scores = {
{99.0, 89.0, 85.0, 92.0},
{90.0, 74.0, 75.0, 82.0},
{85.0, 75.0, 64.0, 91.0},
{72.0, 82.0, 81.0, 94.0}

};

double [][] scores;
scores = {

{99.0, 89.0, 85.0, 92.0},
{90.0, 74.0, 75.0, 82.0},
{85.0, 75.0, 64.0, 91.0},
{72.0, 82.0, 81.0, 94.0}

};

Access a 2D array element
public class Scores{

/* 1. A 2D array instance variable */
private double[][] scores;
public void initializeAllScores() { /* 2. Initialize a 2D array */ }

public double getScoreByIndices(int rowIndex, int colIndex) {
/* 3. Access a 2D array element */

}

/* 4. Traverse a 2D array
using a nested loop */

}

Access an element in a 2D array

Get the number of rows and the number of columns
In this example, we assume that all rows have the same
number of elements

public double getScoreByIndices(int rowIndex, int colIndex)
{

int numOfRows = scores.length;
int numOfCols = scores[0].length;

}

2D array as an Array of 1D arrays
• Each row can be visualized as a 1D array

– double[][] scores = new double[4][4];

scores[0]

scores[1]

scores[2]

scores[3]

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0

2

3

1

0 1 2 3

scores

Number of rows can
be determined by:
scores.length

Number of columns can be determined by:
scores[i].length

Access an element in a 2D array

Get the number of rows and the number of columns
In this example, we assume that all rows have the same
number of elements

public double getScoreByIndices(int rowIndex, int colIndex)
{

int numOfRows = scores.length;
int numOfCols = scores[0].length;

}

Access an element in a 2D array

If the row index or the column index is invalid, return -1.0

public double getScoreByIndices(int rowIndex, int colIndex) {
int numOfRows = scores.length;
int numOfCols = scores[0].length;

if (rowIndex < 0 || rowIndex >= numOfRows)
return -1.0;

if (colIndex < 0 || colIndex >= numOfCols)
return -1.0;

}

Access an element in a 2D array

Return the score located by the rowIndex (the first index)
and the colIndex (the second index)

public double getScoreByIndices(int rowIndex, int colIndex) {
int numOfRows = scores.length;
int numOfCols = scores[0].length;

if (rowIndex < 0 || rowIndex >= numOfRows)
return -1.0;

if (colIndex < 0 || colIndex >= numOfCols)
return -1.0;

return scores[rowIndex][colIndex];
}

Traverse a 2D Array using a Nested Loop

public class Scores {
/* 1. A 2D array instance variable */
private double[][] scores;
public void initializeAllScores() { /* 2. Initialize a 2D array */ }
public double getScoreByIndices(int rowIndex, int colIndex) {

/* 3. Access a 2D array element */
}

public void printAllScores() {
/* 4. Traverse a 2D array using a nested loop */

}

}

Traversing a 2D array using a nested loop

Get the number of rows and the number
of columns. In this example, both are 4.

double[][] fares

public void printAllScores() {

int numOfRows = scores.length;

int numOfCols = scores[0].length;

}

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

0

2

3

1

0 1 2 3

Traversing a 2D array using a nested loop
double[][] scores

public void printAllScores() {
int numOfRows = scores.length;
int numOfCols = scores[0].length;
for (int r=0; r<numOfRows; r++) {

IO.output("Row " + r + " : ");
for (int c=0; c<numOfCols; c++) {

IO.output(getScoreByIndices(r,c) + “ ");
} // for loop c
IO.outputln(“ “);

} // for loop r
} // end of the method

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

0

2

3

1

0 1 2 3

r = 0

c = 0c = 1c = 2c = 3

Traversing a 2D array using a nested loop
double[][] scores

public void printAllScores() {
int numOfRows = scores.length;
int numOfCols = scores[0].length;
for (int r=0; r<numOfRows; r++) {

IO.output("Row " + r + " : ");
for (int c=0; c<numOfCols; c++) {

IO.output(getScoreByIndices(r,c) + “ ");
} // for loop c
IO.outputln(“ “);

} // for loop r
} // end of the method

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

0

2

3

1

0 1 2 3

r = 1

c = 0c = 1c = 2c = 3

Traversing a 2D array using a nested loop
double[][] scores

public void printAllScores() {
int numOfRows = scores.length;
int numOfCols = scores[0].length;
for (int r=0; r<numOfRows; r++) {

IO.output("Row " + r + " : ");
for (int c=0; c<numOfCols; c++) {

IO.output(getScoreByIndices(r,c) + “ ");
} // for loop c
IO.outputln(“ “);

} // for loop r
} // end of the method

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

0

2

3

1

0 1 2 3

r = 3

c = 3

Compute Average
/*
* aveScore computes the average of the values in an array
*/

public double aveScore() {

double sum = 0; // for storing the cumulative sum

int size = scoreArray.length; // size of the array

for (int i = 0; i < size; i++)

sum = sum + scoreArray[i];

return sum / size;

}

Stu
d

e
n

t n
u

m
b

ers (ro
w

 in
d

ex)

scores (column index)

99.0 89.0 85.0 92.0

90.0 74.0 75.0 82.0

85.0 75.0 64.0 91.0

72.0 82.0 81.0 94.0

double[][] scores;

0

2

3

1

0 1 2 3
Test1 Test2 Test3 Test4

Example: Students’ test scores

Compute Average by Row
/*
* aveByRow computes the row average of an array
*/

public double aveByRow(int row) {

double sum = 0; // for storing the cumulative sum

int numOfCols = scores[row].length;

for (int c = 0; c < numOfCols; c++)

sum = sum + scores[row][c];

return sum / numOfCols;

}

Compute Average by Column
/*
* aveByCol computes the column average an array
*/

public double aveByCol(int col) {

double sum = 0; // for storing the cumulative sum

int numOfRows = scores.length;

for (int r = 0; r < numOfRows; r++)

sum = sum + scores[r][col];

return sum / numOfRowls;

}

Find Maximum
/*

* maxIndex finds the location of the largest values in an array
* up to index size - 1
*/

public int maxIndex(int size){

int mIndex = 0; // index for the current maximum

if (size > scoreArray.length) size = scoreArray.length;

for (int i = 0; i < size; i++) {

if (scoreArray[i] > scoreArray[mIndex]) mIndex = i;

}

return mIndex;

}

Find Maximum 2D
/*

* maxRowIndex finds the location of the largest values for a
* given column in a 2D array
*/

public int maxRowIndex(int col, int size){

int mIndex = 0; // index for the current maximum

if (size > scores.length) size = scores.length;

for (int i = 0; i < size; i++) {

if (scores[i][col] > scores[mIndex][col]) mIndex = i;

}

return mIndex;

}

Sorting and Searching

Sorting
• Sorting is the process of arranging a list of

items in certain order, e.g. numerical order or
lexicographical order.

• Many applications require sorting:

– To order a group of students according to their
names, ID, and examinations scores.

– To arrange a list of events in chronological order.

– To facilitate the search for information, e.g.
dictionary or phone books.

– To display a list of webpages based on their
popularity, e.g. number of hits.

Selection Sort
• Selection sort performs sorting by repeatedly finding the

largest element in the unsorted portion of the array and then
placing it to the end of this unsorted portion until the whole
array is sorted.

• Algorithm

– Define the entire array as unsorted at the beginning

– While the unsorted portion of the array has more than
one element:

• Find its largest element

• Swap with last element

• Reduce the unsorted portion of the array by 1

Selection Sort
/*
* Use selection sort to arrange the array in ascending order
*/

public void selectSort () {

int maxPos; // index for the largest element in unsorted array

for (int i = scoreArray.length-1; i > 0; i--) {

maxPos = maxIndex(i+1); // find the largest element

swap (scoreArray, maxPos, i); // swap the largest and last

// elements of unsorted portion

}

}

Searching
and

break and continue statements

Using Break and Continue

• Two statements: break and continue can be
used in all 3 types of loops

• Usage of break statement

– Conditionally terminate and exit the loop

• Usage of continue statement

– Conditionally skip the remaining statements in
the loop body and start the next iteration

Example
int[] intArray = {90,78,100,90,65};
int value = 100; // value to search for
int size = intArray.length;
boolean found = false;
int i;
for (i = 0; i < size; i++) {

if (intArray[i] == value) {
found = true;
break;

}
}
if (found)

IO.outputln("The value was found at index" + i);
else

IO.outputln{“The value was not found”);

Example
int[] intArray = {90,78,100,90,65};
int value = 90; // value to search for
int size = intArray.length;
int nTimes = 0;
int i;
for (i = 0; i < size; i++) {

if (intArray[i] != value) continue;
// actions for each occurrence of value
nTimes++;

}

IO.outputln("The value was found " + nTimes + " times.");

