## Review

## Sets, Relations and Transition Systems

## (Naïve) Set Theory

- Sets contain elements, which can be sets:
- $A=\{a,\{d\},\{a\}\}$ (Set $A$ contains $a$, and the sets $\{d\}$ and $\{a\}$ )
- Sometimes we do not want to list all the members of a set, then we can write:
- $\{x \mid x$ has some property $\}$, e.g. $\{x \mid x$ is an even number $\}$, the set of all even numbers
- Order not important, number of occurrences not important:
- $\{a, b\}=\{a, a, b\}=\{b, a\}$
- $\{a,\{a\}\} \neq\{a\}$


## (Naïve) Set Theory

- Exception: multi-sets, number of occurrences are important:
- $\{a, b\} \neq\{a, a, b\}$
- Formally a multi-set is a function that maps elements of its domain to a range of positive integers
- Multi-set $\{a, a, b\}$ is the set $\{a \rightarrow 2, b \rightarrow 1\}$
- If an element $x$ belongs to a set $S$, we write $x \in S$
- The empty set, $\varnothing$. I.e. for all $x$, the following is true: $\operatorname{not}(x \in \varnothing)$


## Operations on Sets, Orders

- Cartesian product $\times$ :
- $X \times Y$, the set $\{a b \mid a \in X$ and $b \in Y\}$
- Example, $X=\{a, b, c\} \mathrm{Y}=\{c, d, e\}$
$X \times Y=\{a c, a d, a e, b c, b d, b e, c c, c d, c e\}$
- Union $\cup$ :
- $X \cup Y$ is the set $\{x \mid x \in X$ or $x \in Y\}$
- Example: $X=\{a, b\} Y=\{a, d, e\}$
- $X \cup Y=\{a, b, d, e\}$


## Operations on sets, orders

- Sets are ordered by the subset, $\subseteq$, relationship:
- $X \subseteq Y$ iff $a \in X$ then $a \in Y$, for all $a \in X$
- $\{a, b\} \subseteq\{a, b, c\}$
- $\{a, b, c\} \subseteq\{a, b, c\}$
- $\{a, d\} \subseteq\{a, b, c\}$


## Binary Relations

- A relation $X$ is a subset of $S \times S$
- Example:
- $\mathrm{S}=\{a, b, d, e\}$
- $\mathrm{X}=\{a a, b e, e e\}$, sometimes $\{(a, a),(b, e),(e, e)\}$


## Partial Order (poset)

- A pair, a set and a relation $(S, \leq)$ which, for any $x$ and $y$ in $S$ is:
- Reflexive:
- $\mathrm{x} \leq \mathrm{x}$
- Anti-symmetric:
- if $x \leq y$ and $y \leq x$ then $x=y$
- Transitive:
- if $x \leq y$ and $y \leq z$ then $x \leq z$


## Partial Order example

- $S=\{a, d, f, g\}$
- $\leq=\{a a, d d, f f, g g, a f, f g, a g, d g\}$



## Total Order

- A set and an relation $(S, \leq)$ which, for any $x$ and $y$ in $S$ is:
- Reflexive:
- $\mathrm{x} \leq \mathrm{x}$
- Anti-symmetric:
- if $x \leq y$ and $y \leq x$ then $x=y$
- Transitive:
- if $x \leq y$ and $y \leq z$ then $x \leq z$
- Dichotomy:
- either $x \leq y$ or $y \leq x$


## Total order example

- $S=\{a, d, f, g\}$
- $\leq=$ aaa, dd, ff, gg, af, fg, ag, dg, dg, df, da\}



## State Transition System (informal)

- A state transition system consists of
- A set of states
- Rule for which state to go to from each state (transition function/binary relation)
- The set of starting states (initial states)


## State transition system-example

- Example algorithm: Using graphs:

$$
\begin{aligned}
& X:=0 ; \\
& \text { while }(X<2) \text { do } \\
& \quad X=X+1 ; \\
& \text { end } \\
& X:=1
\end{aligned}
$$



- Formally:
- States \{X0, X1, X2, X1’\}
- Transitions function $\left\{\mathrm{X} 0 \rightarrow \mathrm{X} 1, \mathrm{X} 1 \rightarrow \mathrm{X} 2, \mathrm{X} 2 \rightarrow \mathrm{X} 1^{\prime}\right\}$
- Initial states $\{\mathrm{X} 0\}$


## Distributed Algorithms

- Sequential (centralized) algorithms are modeled as a function from input to output
- Distributed systems and algorithms are systems that runs forever and interacts with its environments
- How do we make a useful abstract model of this?
- These are modeled as transition systems


## Transition Systems

- Transition system is a triple $\mathrm{TS}=(\mathrm{S}, \rightarrow \mathrm{I})$
- S a set of states
- $\rightarrow$ is binary transition relation on $S$
- $\quad \mathrm{CS}$, set of initial states
- Transition relation $\rightarrow$ is a subset of $S \times S$
- $\left(s_{1}, s_{2}\right) \in \rightarrow$ is written $s_{1} \rightarrow s_{2}$
- Execution of TS
- Is a maximal sequence $E=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ where $s_{0} \in I$, for all $i \geq 0, s_{i} \rightarrow s_{i+1}$


## Transition Systems

- Terminal state
- a state $\mathrm{s}_{\mathrm{f}}$ for which there is no x such that $\mathrm{s}_{\mathrm{f}} \rightarrow \mathrm{x}$
- Maximal sequence
- $E=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ is maximal if it is infinite or ends in a terminal state
- State $y$ is reachable from $x$, if there is a sequence $E=\left(x=s_{0}, s_{1}, s_{2}, \ldots, s_{k}=y\right)$ with $s_{i} \rightarrow s_{i+1}$ for all $0 \leq i \leq k$
- State $y$ is reachable if it is reachable from an initial states ${ }_{i} \rightarrow s_{i+1}$


## Labeled Transition Systems

- Labeled Transition system is a 4-tuple TS $=(\mathrm{S}, \mathrm{A}, \rightarrow \mathrm{I})$
- S a set of states
- A is a set of actions
- $a \rightarrow$ is tertiary transition relation takes a state, an action, moves to new state
- I $\subseteq$ S, set of initial states
- Transition relation $a \rightarrow$ is a subset of $S \times A \times S$
- $\left(\mathrm{s}_{1}, a, \mathrm{~s}_{2}\right) \in \rightarrow$ is written $\left(\mathrm{s}_{1}, a\right) \rightarrow \mathrm{s}_{2}$
- Execution of TS
- Is a maximal sequence $E=\left(s_{0}, a_{0}, s_{1}, a_{1}, s_{2}, \ldots\right)$ where $s_{0} \in I$, for all $i \geq 0,\left(s_{i}, a_{i}\right) \rightarrow s_{i+1}$


## Transition Systems

- Terminal state
- a state $\mathrm{s}_{\mathrm{f}}$ for which there is no x such that $\left(\mathrm{s}_{\mathrm{f}}, a\right) \rightarrow \mathrm{x}$
- Maximal sequence
- $\mathrm{E}=\left(\mathrm{s}_{0}, a_{0}, \mathrm{~s}_{1}, a_{1}, \mathrm{~s}_{2}, \ldots\right)$ is maximal if it is infinite or ends in a terminal state
- State $y$ is reachable from $x$, if there is a sequence $\mathrm{E}=\left(\mathrm{x}=\mathrm{s}_{0}, a_{0}, \mathrm{~s}_{1}, a_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}=\mathrm{y}\right)$ with $\left(\mathrm{s}_{\mathrm{i}}, a_{\mathrm{i}}\right) \rightarrow \mathrm{s}_{\mathrm{i}+1}$ for all $0 \leq i \leq k$
- State $y$ is reachable if it is reachable from an initial states ${ }_{i} \rightarrow s_{i+1}$

