Review

Sets, Relations and Transition Systems

(Naïve) Set Theory

- Sets contain elements, which can be sets:
 - $A = \{a, \{d\}, \{a\}\}$ (Set A contains a, and the sets $\{d\}$ and $\{a\}$)
- Sometimes we do not want to list all the members of a set, then we can write:
 - { *x* | *x* has some property}, e.g. { *x* | *x* is an even number}, the set of all even numbers
- Order not important, number of occurrences not important:

•
$$\{a, b\} = \{a, a, b\} = \{b, a\}$$

• $\{a, \{a\}\} \neq \{a\}$

(Naïve) Set Theory

- Exception: *multi-sets*, number of occurrences *are* important:
 - $\{a, b\} \neq \{a, a, b\}$
- Formally a multi-set is a function that maps elements of its domain to a range of positive integers
 - Multi-set {a, a, b} is the set {a \rightarrow 2, b \rightarrow 1}
- If an element x belongs to a set S, we write x ∈ S
- The empty set, \emptyset . I.e. for all x, the following is true: not (x $\in \emptyset$)

Operations on Sets, Orders

- Cartesian product × :
 - $X \times Y$, the set $\{ab \mid a \in X \text{ and } b \in Y\}$
 - Example, $X = \{a, b, c\} Y = \{c, d, e\}$

 $X \times Y = \{ac, ad, ae, bc, bd, be, cc, cd, ce\}$

- Union \cup :
 - $X \cup Y$ is the set $\{x \mid x \in X \text{ or } x \in Y\}$
 - Example: $X = \{a, b\} Y = \{a, d, e\}$
 - $X \cup Y = \{ a, b, d, e \}$

Operations on sets, orders

- Sets are ordered by the subset, \subseteq , relationship:
- $X \subseteq Y$ iff $a \in X$ then $a \in Y$, for all $a \in X$
 - $\{a, b\} \subseteq \{a, b, c\}$
 - $\{a, b, c\} \subseteq \{a, b, c\}$
 - $\{a, d\} \subseteq \{a, b, c\}$

- A relation X is a subset of S×S
- Example:

•
$$S = \{ a, b, d, e \}$$

• X = { *aa, be, ee* }, sometimes{ (*a,a*), (*b,e*), (*e,e*) }

Partial Order (poset)

- A pair, a set and a relation (S, \leq) which, for any x and y in S is:
 - Reflexive:
 - x ≤ x
 - Anti-symmetric:
 - if $x \le y$ and $y \le x$ then x = y
 - Transitive:
 - if $x \le y$ and $y \le z$ then $x \le z$

- S = { a, d, f, g }
- ≤ = {aa, dd, ff, gg, af, fg, ag, dg}

Total Order

- A set and an relation (S, \leq) which, for any x and y in S is:
 - Reflexive:
 - x≤x
 - Anti-symmetric:
 - if x≤y and y≤x then x=y
 - Transitive:
 - if x≤y and y≤z then x≤z
 - Dichotomy:
 - either x≤y or y≤x

- S = { a, d, f, g }
- $\leq = \{aa, dd, ff, gg, af, fg, ag, dg, dg, df, da\}$

State Transition System (informal)

- A state transition system consists of
 - A set of states

 Rule for which state to go to from each state (transition function/binary relation)

• The set of starting states (*initial states*)

State transition system - example

- Example algorithm:
 - X:=0; while (X<2) do

$$X = X + 1;$$

end

X:=1

- Formally:
 - States {X0, X1, X2, X1'}
 - Transitions function $\{X0 \rightarrow X1, X1 \rightarrow X2, X2 \rightarrow X1'\}$
 - Initial states {X0}

Using graphs:

Distributed Algorithms

- Sequential (centralized) algorithms are modeled as a function from input to output
- Distributed systems and algorithms are systems that runs forever and interacts with its environments
- How do we make a useful abstract model of this?
- These are modeled as transition systems

Transition Systems

- Transition system is a triple TS = (S, \rightarrow, I)
 - S a set of states
 - → is binary transition relation on S
 - I ⊆S, set of initial states
- Transition relation \rightarrow is a subset of S × S

•
$$(s_1, s_2) \in \rightarrow is written s_1 \rightarrow s_2$$

- Execution of TS
 - Is a maximal sequence E = (s₀, s₁, s₂, ...) where s₀ ∈ I, for all i ≥ 0, s_i → s_{i+1}

Transition Systems

- Terminal state
 - a state s_f for which there is no x such that $s_f \rightarrow x$
- Maximal sequence
 - E = (s₀, s₁, s₂, ...) is maximal if it is infinite or ends in a terminal state
- State y is reachable from x, if there is a sequence
 E = (x = s₀, s₁, s₂, ...,s_k = y) with s_i → s_{i+1} for all 0 ≤ i ≤ k
- State y is reachable if it is reachable from an initial states_i \rightarrow s_{i+1}

Labeled Transition Systems

- Labeled Transition system is a 4-tuple TS = (S, A, \rightarrow, I)
 - S a set of states
 - A is a set of actions
 - $a \rightarrow$ is tertiary transition relation takes a state, an action, moves to new state
 - I ⊆S, set of initial states
- Transition relation $a \rightarrow$ is a subset of S × A × S
 - $(s_1, a, s_2) \in \rightarrow$ is written $(s_1, a) \rightarrow s_2$
- Execution of TS
 - Is a maximal sequence $E = (s_0, a_0, s_1, a_1, s_2, ...)$ where $s_0 \in I$, for all $i \ge 0$, $(s_i, a_i) \rightarrow s_{i+1}$

Transition Systems

- Terminal state
 - a state s_f for which there is no x such that $(s_f, a) \rightarrow x$
- Maximal sequence
 - E = (s₀, a₀, s₁, a₁, s₂, ...) is maximal if it is infinite or ends in a terminal state
- State y is reachable from x, if there is a sequence E = (x = s₀, a₀,s₁, a₁, s₂, ...,s_k = y) with (s_i,a_i)→ s_{i+1} for all 0 ≤ i ≤ k
- State y is reachable if it is reachable from an initial states_i \rightarrow s_{i+1}