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Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .
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Depth First Search can check if vertex B is reachable from vertex A.
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Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v ] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []
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Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix
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0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail
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0-K BFS

procedure BFS0K(V , E , K , v0) . Supports integer edge lengths in [0;K ]
A(v) = {(u, |(v , u)|) | (v , u) ∈ E} . The adjacency list with edge lengths
Q ← (K + 1) · [] . K + 1 queues – or maybe sets
D ← {∞} . Distances from v0

d ← 0, Σ← 0 . Current distance and sum of size of queues
D[v0]← 0, Push(Q[0], v0), Σ← Σ + 1 . Initialize v0

while Σ > 0 do
while IsEmpty(Q[d mod (K + 1)]) do d ← d + 1 end while . Find next length to work with
v ← Pop(Q[d mod (K + 1)]), Σ← Σ− 1 . Pop the current vertex
for (u, s)← A(v) do . Check all outgoing edges

if D[u] > d + s then . If shorter path found. . .
if D[u] <∞ then . If already was there. . .

Remove(Q[D[u] mod (K + 1)], u), Σ← Σ− 1 . Remove from the queue (in O(1))
end if
D[u]← d + s . Update the length
Push(Q[(d + s) mod (K + 1)], u), Σ← Σ + 1 . Push into the right queue

end if
end for

end while
end procedure
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