
How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 8: Breadth First Search

Maxim Buzdalov
Saint Petersburg 2016

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

2 / 6

Intuition

Depth First Search can check if vertex B is reachable from vertex A.
But the path can be quite long. . .

A

B

C

D

E

F

G

What if we want to find the shortest path?

2 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [A]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [B]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [B]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [CB]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [CB]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [C]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [C]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [DC]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [DC]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [D]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [D]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [FD]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [FD]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [F]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [F]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [F]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [F]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [EF]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [EF]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [E]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [H]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [H]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [GH]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [GH]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: [G]

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Breadth First Search

procedure BFS(V , E , v0)
A(v) = {u | (v , u) ∈ E} . Adjacency list
D ← {∞} . Distances to vertices
Q ← [] . Queue of vertices
D[v0]← 0, Push(Q, v0) . Initialization
while not IsEmpty(Q) do

v ← Pop(Q) . Get next vertex
for u ← A(v) do . Check adjacent vertices

if D[u] =∞ then . If not seen yet. . .
D[u]← D[v] + 1 . Update distance
Push(Q, u) . Put to queue

end if
end for

end while
end procedure

Queue: []

A0

B1

C1

D
2

E3

F
2

G4

H4

Running time: O(|V | + |E |) when using adjacency list, O(|V |2) for adjacency matrix

3 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive?

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS!

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

Multiple Source BFS

You are in the forest, and there are wolves.
How to get out alive? Use Multiple Source BFS! And another BFS to save yourself

0

0 03

5
3

1

1

2

2
3

4

2

1

2

2

1

1

Images are courtesy of GDJ, knollbaco, glitch from openclipart.org. License: CC Zero 1.0

4 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [A]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [B]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [B]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [CB]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [CB]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [C]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [C]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [CD]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [CD]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [C]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [C]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [C]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [FC]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [FC]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [EFC]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [EFC]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [EF]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [EF]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [EF]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [EF]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [E]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [E]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [E]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [E]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [H]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [H]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [HG]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [HG]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [H]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [H]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: [H]

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-1 BFS

0-1 BFS: an extension to Breadth First Search to support edge lengths of 0 and 1

I For edge length 1, push the vertex to the head of the queue

I For edge length 0, push the vertex to the tail of the queue

I . . . assuming the vertices are popped from the tail

Queue: []

A0

B0

C1

D
1

E3

F
1

G1

H2
0

1

0

1

1
1

1 1

0

5 / 6

0-K BFS

procedure BFS0K(V , E , K , v0) . Supports integer edge lengths in [0;K]
A(v) = {(u, |(v , u)|) | (v , u) ∈ E} . The adjacency list with edge lengths
Q ← (K + 1) · [] . K + 1 queues – or maybe sets
D ← {∞} . Distances from v0

d ← 0, Σ← 0 . Current distance and sum of size of queues
D[v0]← 0, Push(Q[0], v0), Σ← Σ + 1 . Initialize v0

while Σ > 0 do
while IsEmpty(Q[d mod (K + 1)]) do d ← d + 1 end while . Find next length to work with
v ← Pop(Q[d mod (K + 1)]), Σ← Σ− 1 . Pop the current vertex
for (u, s)← A(v) do . Check all outgoing edges

if D[u] > d + s then . If shorter path found. . .
if D[u] <∞ then . If already was there. . .

Remove(Q[D[u] mod (K + 1)], u), Σ← Σ− 1 . Remove from the queue (in O(1))
end if
D[u]← d + s . Update the length
Push(Q[(d + s) mod (K + 1)], u), Σ← Σ + 1 . Push into the right queue

end if
end for

end while
end procedure

6 / 6

