

ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 2: Computational complexity. Linear data structures Lecture 1: Big O notation. Computational complexity

Pavel Krotkov Saint Petersburg 2016

• consider two functions f(x) and g(x) defined on \mathbb{R}

- consider two functions f(x) and g(x) defined on \mathbb{R}
- how can we compare values of these functions?

- consider two functions f(x) and g(x) defined on \mathbb{R}
- how can we compare values of these functions?
- some obvious ideas
 - $\blacktriangleright \forall x: f(x) = g(x)$
 - $\forall x : f(x) < g(x)$
 - $\forall x: f(x) > 2 \times g(x)$

- consider two functions f(x) and g(x) defined on \mathbb{R}
- how can we compare values of these functions?
- some obvious ideas
 - $\blacktriangleright \forall x: f(x) = g(x)$
 - $\blacktriangleright \forall x : f(x) < g(x)$
 - $\forall x: f(x) > 2 \times g(x)$

We can't introduce equivalence classes for functions based on these comparisons.

Let's find a way to introduce equivalence classes for functions.

Let's find a way to introduce equivalence classes for functions. $f(x) = \Theta(g(x))$

Let's find a way to introduce equivalence classes for functions.

$$f(x) = \Theta(g(x))$$

$$\exists x_0 : \begin{cases} \exists c_1 : \forall x > x_0 : f(x) < c_1 \times g(x) \\ \exists c_2 : \forall x > x_0 : f(x) > c_2 \times g(x) \end{cases}$$

Let's find a way to introduce equivalence classes for functions.

$$f(x) = \Theta(g(x))$$

$$\exists x_0 : \begin{cases} \exists c_1 : \forall x > x_0 : f(x) < c_1 \times g(x) \\ \exists c_2 : \forall x > x_0 : f(x) > c_2 \times g(x) \end{cases}$$

f is bounded *above* and *below* by g asymptotically

• f(x) = O(g(x))

 $O \mbox{ and } \Omega$

- f(x) = O(g(x))
 - $\bullet \exists x_0, c : \forall x > x_0 : f(x) < c \times g(x)$

 $O \mbox{ and } \Omega$

- f(x) = O(g(x))
 - $\exists x_0, c : \forall x > x_0 : f(x) < c \times g(x)$
 - ► *f* is bounded *above* by *g* assymptotically

- f(x) = O(g(x))
 - $\bullet \exists x_0, c : \forall x > x_0 : f(x) < c \times g(x)$
 - ► *f* is bounded *above* by *g* assymptotically
- $f(x) = \Omega(g(x))$

- f(x) = O(g(x))
 - $\blacktriangleright \exists x_0, c : \forall x > x_0 : f(x) < c \times g(x)$
 - ► *f* is bounded *above* by *g* assymptotically
- $f(x) = \Omega(g(x))$
 - $\exists x_0, c : \forall x > x_0 : f(x) > c \times g(x)$

- f(x) = O(g(x))
 - $\blacktriangleright \exists x_0, c : \forall x > x_0 : f(x) < c \times g(x)$
 - ► *f* is bounded *above* by *g* assymptotically
- $f(x) = \Omega(g(x))$
 - $\exists x_0, c: \forall x > x_0: f(x) > c \times g(x)$
 - f is bounded *below* by g assymptotically

 Ω and Ω

- f(x) = O(g(x))
 - $\blacktriangleright \exists x_0, c : \forall x > x_0 : f(x) < c \times g(x)$
 - ► *f* is bounded *above* by *g* assymptotically
- $f(x) = \Omega(g(x))$
 - $\exists x_0, c: \forall x > x_0: f(x) > c \times g(x)$
 - ► *f* is bounded *below* by *g* assymptotically

 $f(x) = \Theta(g(x)) \Leftrightarrow egin{cases} f(x) = O(g(x)) \ f(x) = \Omega(g(x)) \end{cases}$

O and Ω

Let
$$f_1(x) = O(g_1(x))$$
 and $f_2(x) = O(g_2(x))$.

• $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$

- $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$
- $f_1(x) \times f_2(x) = O(g_1(x) \times g_2(x))$

- $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$
- $f_1(x) \times f_2(x) = O(g_1(x) \times g_2(x))$
- $\blacktriangleright c \times f_1(x) = O(g_1(x))$

- $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$
- $f_1(x) \times f_2(x) = O(g_1(x) \times g_2(x))$
- $\blacktriangleright c \times f_1(x) = O(g_1(x))$
- $\blacktriangleright f_1 + c = O(g_1(x))$

- $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$
- $f_1(x) \times f_2(x) = O(g_1(x) \times g_2(x))$
- $\blacktriangleright c \times f_1(x) = O(g_1(x))$
- $\blacktriangleright f_1 + c = O(g_1(x))$

Examples

- $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$
- $f_1(x) \times f_2(x) = O(g_1(x) \times g_2(x))$
- $\blacktriangleright c \times f_1(x) = O(g_1(x))$
- $\blacktriangleright f_1 + c = O(g_1(x))$

Examples

 $\blacktriangleright \log_2 x = O(x)$

- $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$
- $f_1(x) \times f_2(x) = O(g_1(x) \times g_2(x))$
- $\blacktriangleright c \times f_1(x) = O(g_1(x))$
- $\blacktriangleright f_1 + c = O(g_1(x))$

Examples

- ► $\log_2 x = O(x)$
- $3 \times x^2 5 \times x + 7 = \Theta(x^2)$

- $f_1(x) + f_2(x) = O(\max(g_1(x), g_2(x)))$
- $f_1(x) \times f_2(x) = O(g_1(x) \times g_2(x))$
- $\blacktriangleright c \times f_1(x) = O(g_1(x))$
- $\blacktriangleright f_1 + c = O(g_1(x))$

Examples

- ► $\log_2 x = O(x)$
- $3 \times x^2 5 \times x + 7 = \Theta(x^2)$
- $\bullet x \times (\ln x + \ln \ln x) \times \ln \ln x = O(x \times \ln x \times \ln \ln x)$


```
Consider a program

j = 1

for i = 1 to n

j = j \times i
```


Consider a program
 j = 1
 for i = 1 to n
 j = j × i
This cycle performs n iterations. Every iteration takes constant amount of operations.


```
Consider a program
  j = 1
  for i = 1 to n
      j = j × i
This cycle performs n iterations. Every iteration takes constant amount of operations.
```

Asymptotical complexity of this program is O(n).


```
More complicated case
  j = 1
  for i = 1 to n
    for j = 1 to i
    print j
```



```
More complicated case

j = 1

for i = 1 to n

for j = 1 to i

print j

This cycle performs \frac{n \times (n+1)}{2} iterations. Every iteration takes constant amount of

operations.
```


More complicated case j = 1for i = 1 to n for j = 1 to i print j This cycle performs $\frac{n \times (n+1)}{2}$ iterations. Every iteration takes constant amount of operations.

Asymptotical complexity of this program is $O(n^2)$. Constant doesn't matter when we are talking about asymptotical complexity.

complexity	n = 10	<i>n</i> = 20	n = 100	$n = 10^4$	$n = 10^{5}$	$n = 10^{8}$
<i>O</i> (<i>n</i> !)	$pprox 3 imes 10^5$	$pprox 2 imes 10^{18}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(2^{n})$	1024	$pprox 10^{6}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(n^2)$	100	400	10 ⁴	10 ⁸	10 ¹⁰	10^{16}
$O(n imes \log_2 n)$	pprox 30	pprox 100	pprox 700	$pprox 3 imes 10^5$	$pprox 2 imes 10^{6}$	$pprox 3 imes 10^9$

complexity	n = 10	<i>n</i> = 20	n = 100	$n = 10^4$	$n = 10^{5}$	$n = 10^{8}$
<i>O</i> (<i>n</i> !)	$pprox 3 imes 10^5$	$pprox 2 imes 10^{18}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(2^{n})$	1024	$pprox 10^{6}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(n^2)$	100	400	10 ⁴	10 ⁸	10 ¹⁰	10^{16}
$O(n imes \log_2 n)$	≈ 30	pprox 100	pprox 700	$pprox 3 imes 10^5$	$pprox 2 imes 10^{6}$	$pprox 3 imes 10^9$

You can suppose that average amount of operations per second CPU can perform is $\approx 3 \times 10^8$. That is precise enough to check if yor program will pass Time Limit.

complexity	n = 10	<i>n</i> = 20	n = 100	$n = 10^4$	$n = 10^{5}$	$n = 10^{8}$
<i>O</i> (<i>n</i> !)	$pprox 3 imes 10^5$	$pprox 2 imes 10^{18}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(2^{n})$	1024	$pprox 10^{6}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(n^2)$	100	400	10^{4}	10 ⁸	10 ¹⁰	10^{16}
$O(n imes \log_2 n)$	pprox 30	pprox 100	pprox 700	$pprox 3 imes 10^5$	$pprox 2 imes 10^{6}$	$pprox 3 imes 10^9$

You can suppose that average amount of operations per second CPU can perform is $\approx 3 \times 10^8$. That is precise enough to check if yor program will pass Time Limit.

complexity	n = 10	<i>n</i> = 20	n = 100	$n = 10^4$	$n = 10^{5}$	$n = 10^{8}$
<i>O</i> (<i>n</i> !)	$pprox 3 imes 10^5$	$pprox 2 imes 10^{18}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(2^{n})$	1024	$pprox 10^{6}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$	$> 10^{20}$
$O(n^2)$	100	400	10 ⁴	10 ⁸	10^{10}	10^{16}
$O(n imes \log_2 n)$	≈ 30	pprox 100	pprox 700	$pprox 3 imes 10^5$	$pprox 2 imes 10^{6}$	$pprox 3 imes 10^9$

You can suppose that average amount of operations per second CPU can perform is $\approx 3 \times 10^8$. That is precise enough to check if yor program will pass Time Limit.

Thank you for your attention!