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» consider two functions f(x) and g(x) defined on R

» how can we compare values of these functions?
> some obvious ideas

» Vx: f(x) = g(x)

» Vx: f(x) < g(x)

» Vx:f(x)>2xg(x)

We can’t introduce equivalence classes for functions based on these comparisons.
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f(x) = ©(g(x))
dep 1 Vx> x0 1 f(x) < a1 x g(x)
> dxp :
dep 1 Vx> xo 1 F(x) > & x g(x)
f is bounded above and below by g asymptotically
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Now we can introduce two related notations.

> f(x) = O(g(x))
» Ixg,c: Vx> xp: f(x) < ¢ xg(x)
» f is bounded above by g assymptotically

> f(x) = Q(g(x))
» dxp,c: Vx> xp: f(x) > cx g(x)
» f is bounded below by g assymptotically

f(x) = O(g(x))
x) = O(g(x
f(x) (g(x)) < {f(x) = Q(g(x))
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O properties

Let fi(x) = O(g1(x)) and A(x) = O(ga(x)).
> fi(x) + fa(x) = O(max(g1(x), £2(x)))
> fi(x) x f(x) = O(g1(x) x g2(x))

» ¢ x fi(x) = O(gi(x))
> fi+c=0(a(x))
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Let f1(x) = O(g1(x )) and f(x )
> fl(X) +

» c X f1(x)=0

» i+c=0(a
Examples

> log, x = O(x)

» 3xx2—5xx+7=0(x?)

» x X (Inx+Inlnx) x Inlnx = O(x X Inx x Inln x)
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More complicated case
j=1
for i =1 ton
for j =1¢to i

print j
This cycle performs % iterations. Every iteration takes constant amount of
operations.

Asymptotical complexity of this program is O(n?). Constant doesn't matter when we
are talking about asymptotical complexity.
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Thank you

for your attention!
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