ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 2: Computational complexity. Linear data structures Lecture 1: Big O notation. Computational complexity

- consider two functions $f(x)$ and $g(x)$ defined on \mathbb{R}
- consider two functions $f(x)$ and $g(x)$ defined on \mathbb{R}
- how can we compare values of these functions?
- consider two functions $f(x)$ and $g(x)$ defined on \mathbb{R}
- how can we compare values of these functions?
- some obvious ideas
- $\forall x: f(x)=g(x)$
- $\forall x: f(x)<g(x)$
- $\forall x: f(x)>2 \times g(x)$
- consider two functions $f(x)$ and $g(x)$ defined on \mathbb{R}
- how can we compare values of these functions?
- some obvious ideas
- $\forall x: f(x)=g(x)$
- $\forall x: f(x)<g(x)$
- $\forall x: f(x)>2 \times g(x)$

We cant introduce equivalence classes for functions based on these comparisons.

Let's find a way to introduce equivalence classes for functions.

Let's find a way to introduce equivalence classes for functions. $f(x)=\Theta(g(x))$

Let's find a way to introduce equivalence classes for functions. $f(x)=\Theta(g(x))$

- $\exists x_{0}:\left\{\begin{array}{l}\exists c_{1}: \forall x>x_{0}: f(x)<c_{1} \times g(x) \\ \exists c_{2}: \forall x>x_{0}: f(x)>c_{2} \times g(x)\end{array}\right.$

Let's find a way to introduce equivalence classes for functions.
$f(x)=\Theta(g(x))$

- $\exists x_{0}:\left\{\begin{array}{l}\exists c_{1}: \forall x>x_{0}: f(x)<c_{1} \times g(x) \\ \exists c_{2}: \forall x>x_{0}: f(x)>c_{2} \times g(x)\end{array}\right.$
f is bounded above and below by g asymptotically

Now we can introduce two related notations.

Now we can introduce two related notations.

- $f(x)=O(g(x))$

Now we can introduce two related notations.

- $f(x)=O(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)<c \times g(x)$

Now we can introduce two related notations.

- $f(x)=O(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)<c \times g(x)$
- f is bounded above by g assymptotically

Now we can introduce two related notations.

- $f(x)=O(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)<c \times g(x)$
- f is bounded above by g assymptotically
- $f(x)=\Omega(g(x))$

Now we can introduce two related notations.

- $f(x)=O(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)<c \times g(x)$
- f is bounded above by g assymptotically
- $f(x)=\Omega(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)>c \times g(x)$

Now we can introduce two related notations.

- $f(x)=O(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)<c \times g(x)$
- f is bounded above by g assymptotically
- $f(x)=\Omega(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)>c \times g(x)$
- f is bounded below by g assymptotically

Now we can introduce two related notations.

- $f(x)=O(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)<c \times g(x)$
- f is bounded above by g assymptotically
- $f(x)=\Omega(g(x))$
- $\exists x_{0}, c: \forall x>x_{0}: f(x)>c \times g(x)$
- f is bounded below by g assymptotically
$f(x)=\Theta(g(x)) \Leftrightarrow\left\{\begin{array}{l}f(x)=O(g(x)) \\ f(x)=\Omega(g(x))\end{array}\right.$

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$
- $f_{1}(x) \times f_{2}(x)=O\left(g_{1}(x) \times g_{2}(x)\right)$

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$
- $f_{1}(x) \times f_{2}(x)=O\left(g_{1}(x) \times g_{2}(x)\right)$
- $c \times f_{1}(x)=O\left(g_{1}(x)\right)$

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$
- $f_{1}(x) \times f_{2}(x)=O\left(g_{1}(x) \times g_{2}(x)\right)$
- $c \times f_{1}(x)=O\left(g_{1}(x)\right)$
- $f_{1}+c=O\left(g_{1}(x)\right)$

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$
- $f_{1}(x) \times f_{2}(x)=O\left(g_{1}(x) \times g_{2}(x)\right)$
- $c \times f_{1}(x)=O\left(g_{1}(x)\right)$
- $f_{1}+c=O\left(g_{1}(x)\right)$

Examples

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$
- $f_{1}(x) \times f_{2}(x)=O\left(g_{1}(x) \times g_{2}(x)\right)$
- $c \times f_{1}(x)=O\left(g_{1}(x)\right)$
- $f_{1}+c=O\left(g_{1}(x)\right)$

Examples

- $\log _{2} x=O(x)$

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$
- $f_{1}(x) \times f_{2}(x)=O\left(g_{1}(x) \times g_{2}(x)\right)$
- $c \times f_{1}(x)=O\left(g_{1}(x)\right)$
- $f_{1}+c=O\left(g_{1}(x)\right)$

Examples

- $\log _{2} x=O(x)$
- $3 \times x^{2}-5 \times x+7=\Theta\left(x^{2}\right)$

Let $f_{1}(x)=O\left(g_{1}(x)\right)$ and $f_{2}(x)=O\left(g_{2}(x)\right)$.

- $f_{1}(x)+f_{2}(x)=O\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)$
- $f_{1}(x) \times f_{2}(x)=O\left(g_{1}(x) \times g_{2}(x)\right)$
- $c \times f_{1}(x)=O\left(g_{1}(x)\right)$
- $f_{1}+c=O\left(g_{1}(x)\right)$

Examples

- $\log _{2} x=O(x)$
- $3 \times x^{2}-5 \times x+7=\Theta\left(x^{2}\right)$
- $x \times(\ln x+\ln \ln x) \times \ln \ln x=O(x \times \ln x \times \ln \ln x)$

```
Consider a program
    j = 1
    for i = 1 to n
    j = j }\times 
```


Consider a program
 $$
\begin{aligned} & j=1 \\ & \text { for } i=1 \text { to } n \\ & j=j \times i \end{aligned}
$$

This cycle performs n iterations. Every iteration takes constant amount of operations.

Consider a program

$$
\begin{aligned}
& j=1 \\
& \text { for } i=1 \text { to } n \\
& \quad j=j \times i
\end{aligned}
$$

This cycle performs n iterations. Every iteration takes constant amount of operations.

Asymptotical complexity of this program is $O(n)$.

More complicated case

```
j = 1
for i = 1 to n
    for j = 1 to i
        print j
```

More complicated case

$$
\begin{aligned}
& j=1 \\
& \text { for } i=1 \text { to } n \\
& \quad \text { for } j=1 \text { to } i \\
& \quad \text { print } j
\end{aligned}
$$

This cycle performs $\frac{n \times(n+1)}{2}$ iterations. Every iteration takes constant amount of operations.

More complicated case

$$
\begin{aligned}
& j=1 \\
& \text { for } i=1 \text { to } n \\
& \quad \text { for } j=1 \text { to } i \\
& \quad \text { print } j
\end{aligned}
$$

This cycle performs $\frac{n \times(n+1)}{2}$ iterations. Every iteration takes constant amount of operations.

Asymptotical complexity of this program is $O\left(n^{2}\right)$. Constant doesn't matter when we are talking about asymptotical complexity.

Consider you have a program which takes one number n as an input. Let's try to estimate its run time from its complexity and value of n.

Consider you have a program which takes one number n as an input. Let's try to estimate its run time from its complexity and value of n.

complexity	$n=10$	$n=20$	$n=100$	$n=10^{4}$	$n=10^{5}$	$n=10^{8}$
$O(n!)$	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{18}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(2^{n}\right)$	1024	$\approx 10^{6}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(n^{2}\right)$	100	400	10^{4}	10^{8}	10^{10}	10^{16}
$O\left(n \times \log _{2} n\right)$	≈ 30	≈ 100	≈ 700	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{6}$	$\approx 3 \times 10^{9}$

Consider you have a program which takes one number n as an input. Let's try to estimate its run time from its complexity and value of n.

complexity	$n=10$	$n=20$	$n=100$	$n=10^{4}$	$n=10^{5}$	$n=10^{8}$
$O(n!)$	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{18}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(2^{n}\right)$	1024	$\approx 10^{6}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(n^{2}\right)$	100	400	10^{4}	10^{8}	10^{10}	10^{16}
$O\left(n \times \log _{2} n\right)$	≈ 30	≈ 100	≈ 700	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{6}$	$\approx 3 \times 10^{9}$

You can suppose that average amount of operations per second CPU can perform is $\approx 3 \times 10^{8}$. That is precise enough to check if your program will pass Time Limit.

Consider you have a program which takes one number n as an input. Let's try to estimate its run time from its complexity and value of n.

complexity	$n=10$	$n=20$	$n=100$	$n=10^{4}$	$n=10^{5}$	$n=10^{8}$
$O(n!)$	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{18}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(2^{n}\right)$	1024	$\approx 10^{6}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(n^{2}\right)$	100	400	10^{4}	10^{8}	10^{10}	10^{16}
$O\left(n \times \log _{2} n\right)$	≈ 30	≈ 100	≈ 700	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{6}$	$\approx 3 \times 10^{9}$

You can suppose that average amount of operations per second CPU can perform is $\approx 3 \times 10^{8}$. That is precise enough to check if your program will pass Time Limit.

Consider you have a program which takes one number n as an input. Let's try to estimate its run time from its complexity and value of n.

complexity	$n=10$	$n=20$	$n=100$	$n=10^{4}$	$n=10^{5}$	$n=10^{8}$
$O(n!)$	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{18}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(2^{n}\right)$	1024	$\approx 10^{6}$	$>10^{20}$	$>10^{20}$	$>10^{20}$	$>10^{20}$
$O\left(n^{2}\right)$	100	400	10^{4}	10^{8}	10^{10}	10^{16}
$O\left(n \times \log _{2} n\right)$	≈ 30	≈ 100	≈ 700	$\approx 3 \times 10^{5}$	$\approx 2 \times 10^{6}$	$\approx 3 \times 10^{9}$

You can suppose that average amount of operations per second CPU can perform is $\approx 3 \times 10^{8}$. That is precise enough to check if your program will pass Time Limit.

