
How to Win Coding Competitions: Secrets of Champions

Week 2: Computational complexity. Linear data structures
Lecture 1: Big O notation. Computational complexity

Pavel Krotkov
Saint Petersburg 2016



Function comparison

I consider two functions f (x) and g(x) defined on R

I how can we compare values of these functions?
I some obvious ideas

I ∀x : f (x) = g(x)
I ∀x : f (x) < g(x)
I ∀x : f (x) > 2× g(x)

We can’t introduce equivalence classes for functions based on these comparisons.

2 / 9



Function comparison

I consider two functions f (x) and g(x) defined on R
I how can we compare values of these functions?

I some obvious ideas
I ∀x : f (x) = g(x)
I ∀x : f (x) < g(x)
I ∀x : f (x) > 2× g(x)

We can’t introduce equivalence classes for functions based on these comparisons.

2 / 9



Function comparison

I consider two functions f (x) and g(x) defined on R
I how can we compare values of these functions?
I some obvious ideas

I ∀x : f (x) = g(x)
I ∀x : f (x) < g(x)
I ∀x : f (x) > 2× g(x)

We can’t introduce equivalence classes for functions based on these comparisons.

2 / 9



Function comparison

I consider two functions f (x) and g(x) defined on R
I how can we compare values of these functions?
I some obvious ideas

I ∀x : f (x) = g(x)
I ∀x : f (x) < g(x)
I ∀x : f (x) > 2× g(x)

We can’t introduce equivalence classes for functions based on these comparisons.

2 / 9



Asymptotical equivalence

Let’s find a way to introduce equivalence classes for functions.

f (x) = Θ(g(x))

I ∃x0 :

{
∃c1 : ∀x > x0 : f (x) < c1 × g(x)

∃c2 : ∀x > x0 : f (x) > c2 × g(x)

f is bounded above and below by g asymptotically

3 / 9



Asymptotical equivalence

Let’s find a way to introduce equivalence classes for functions.
f (x) = Θ(g(x))

I ∃x0 :

{
∃c1 : ∀x > x0 : f (x) < c1 × g(x)

∃c2 : ∀x > x0 : f (x) > c2 × g(x)

f is bounded above and below by g asymptotically

3 / 9



Asymptotical equivalence

Let’s find a way to introduce equivalence classes for functions.
f (x) = Θ(g(x))

I ∃x0 :

{
∃c1 : ∀x > x0 : f (x) < c1 × g(x)

∃c2 : ∀x > x0 : f (x) > c2 × g(x)

f is bounded above and below by g asymptotically

3 / 9



Asymptotical equivalence

Let’s find a way to introduce equivalence classes for functions.
f (x) = Θ(g(x))

I ∃x0 :

{
∃c1 : ∀x > x0 : f (x) < c1 × g(x)

∃c2 : ∀x > x0 : f (x) > c2 × g(x)

f is bounded above and below by g asymptotically

3 / 9



O and Ω

Now we can introduce two related notations.

I f (x) = O(g(x))
I ∃x0, c : ∀x > x0 : f (x) < c × g(x)
I f is bounded above by g assymptotically

I f (x) = Ω(g(x))
I ∃x0, c : ∀x > x0 : f (x) > c × g(x)
I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O and Ω

Now we can introduce two related notations.
I f (x) = O(g(x))

I ∃x0, c : ∀x > x0 : f (x) < c × g(x)
I f is bounded above by g assymptotically

I f (x) = Ω(g(x))
I ∃x0, c : ∀x > x0 : f (x) > c × g(x)
I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O and Ω

Now we can introduce two related notations.
I f (x) = O(g(x))

I ∃x0, c : ∀x > x0 : f (x) < c × g(x)

I f is bounded above by g assymptotically

I f (x) = Ω(g(x))
I ∃x0, c : ∀x > x0 : f (x) > c × g(x)
I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O and Ω

Now we can introduce two related notations.
I f (x) = O(g(x))

I ∃x0, c : ∀x > x0 : f (x) < c × g(x)
I f is bounded above by g assymptotically

I f (x) = Ω(g(x))
I ∃x0, c : ∀x > x0 : f (x) > c × g(x)
I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O and Ω

Now we can introduce two related notations.
I f (x) = O(g(x))

I ∃x0, c : ∀x > x0 : f (x) < c × g(x)
I f is bounded above by g assymptotically

I f (x) = Ω(g(x))

I ∃x0, c : ∀x > x0 : f (x) > c × g(x)
I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O and Ω

Now we can introduce two related notations.
I f (x) = O(g(x))

I ∃x0, c : ∀x > x0 : f (x) < c × g(x)
I f is bounded above by g assymptotically

I f (x) = Ω(g(x))
I ∃x0, c : ∀x > x0 : f (x) > c × g(x)

I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O and Ω

Now we can introduce two related notations.
I f (x) = O(g(x))

I ∃x0, c : ∀x > x0 : f (x) < c × g(x)
I f is bounded above by g assymptotically

I f (x) = Ω(g(x))
I ∃x0, c : ∀x > x0 : f (x) > c × g(x)
I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O and Ω

Now we can introduce two related notations.
I f (x) = O(g(x))

I ∃x0, c : ∀x > x0 : f (x) < c × g(x)
I f is bounded above by g assymptotically

I f (x) = Ω(g(x))
I ∃x0, c : ∀x > x0 : f (x) > c × g(x)
I f is bounded below by g assymptotically

f (x) = Θ(g(x))⇔

{
f (x) = O(g(x))

f (x) = Ω(g(x))

4 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



O properties

Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)).

I f1(x) + f2(x) = O(max(g1(x), g2(x)))

I f1(x)× f2(x) = O(g1(x)× g2(x))

I c × f1(x) = O(g1(x))

I f1 + c = O(g1(x))

Examples

I log2 x = O(x)

I 3× x2 − 5× x + 7 = Θ(x2)

I x × (ln x + ln ln x)× ln ln x = O(x × ln x × ln ln x)

5 / 9



Asymptotical complexity

Consider a program
j = 1

for i = 1 to n

j = j × i

This cycle performs n iterations. Every iteration takes constant amount of operations.

Asymptotical complexity of this program is O(n).

6 / 9



Asymptotical complexity

Consider a program
j = 1

for i = 1 to n

j = j × i

This cycle performs n iterations. Every iteration takes constant amount of operations.

Asymptotical complexity of this program is O(n).

6 / 9



Asymptotical complexity

Consider a program
j = 1

for i = 1 to n

j = j × i

This cycle performs n iterations. Every iteration takes constant amount of operations.

Asymptotical complexity of this program is O(n).

6 / 9



Asymptotical complexity

More complicated case
j = 1

for i = 1 to n

for j = 1 to i

print j

This cycle performs n×(n+1)
2 iterations. Every iteration takes constant amount of

operations.

Asymptotical complexity of this program is O(n2). Constant doesn’t matter when we
are talking about asymptotical complexity.

7 / 9



Asymptotical complexity

More complicated case
j = 1

for i = 1 to n

for j = 1 to i

print j

This cycle performs n×(n+1)
2 iterations. Every iteration takes constant amount of

operations.

Asymptotical complexity of this program is O(n2). Constant doesn’t matter when we
are talking about asymptotical complexity.

7 / 9



Asymptotical complexity

More complicated case
j = 1

for i = 1 to n

for j = 1 to i

print j

This cycle performs n×(n+1)
2 iterations. Every iteration takes constant amount of

operations.

Asymptotical complexity of this program is O(n2). Constant doesn’t matter when we
are talking about asymptotical complexity.

7 / 9



Estimating run time from complexity

Consider you have a program which takes one number n as an input. Let’s try to
estimate its run time from its complexity and value of n.

complexity n = 10 n = 20 n = 100 n = 104 n = 105 n = 108

O(n!) ≈ 3× 105 ≈ 2× 1018 > 1020 > 1020 > 1020 > 1020

O(2n) 1024 ≈ 106 > 1020 > 1020 > 1020 > 1020

O(n2) 100 400 104 108 1010 1016

O(n × log2 n) ≈ 30 ≈ 100 ≈ 700 ≈ 3× 105 ≈ 2× 106 ≈ 3× 109

You can suppose that average amount of operations per second CPU can perform is
≈ 3× 108. That is precise enough to check if yor program will pass Time Limit.

8 / 9



Estimating run time from complexity

Consider you have a program which takes one number n as an input. Let’s try to
estimate its run time from its complexity and value of n.

complexity n = 10 n = 20 n = 100 n = 104 n = 105 n = 108

O(n!) ≈ 3× 105 ≈ 2× 1018 > 1020 > 1020 > 1020 > 1020

O(2n) 1024 ≈ 106 > 1020 > 1020 > 1020 > 1020

O(n2) 100 400 104 108 1010 1016

O(n × log2 n) ≈ 30 ≈ 100 ≈ 700 ≈ 3× 105 ≈ 2× 106 ≈ 3× 109

You can suppose that average amount of operations per second CPU can perform is
≈ 3× 108. That is precise enough to check if yor program will pass Time Limit.

8 / 9



Estimating run time from complexity

Consider you have a program which takes one number n as an input. Let’s try to
estimate its run time from its complexity and value of n.

complexity n = 10 n = 20 n = 100 n = 104 n = 105 n = 108

O(n!) ≈ 3× 105 ≈ 2× 1018 > 1020 > 1020 > 1020 > 1020

O(2n) 1024 ≈ 106 > 1020 > 1020 > 1020 > 1020

O(n2) 100 400 104 108 1010 1016

O(n × log2 n) ≈ 30 ≈ 100 ≈ 700 ≈ 3× 105 ≈ 2× 106 ≈ 3× 109

You can suppose that average amount of operations per second CPU can perform is
≈ 3× 108. That is precise enough to check if yor program will pass Time Limit.

8 / 9



Estimating run time from complexity

Consider you have a program which takes one number n as an input. Let’s try to
estimate its run time from its complexity and value of n.

complexity n = 10 n = 20 n = 100 n = 104 n = 105 n = 108

O(n!) ≈ 3× 105 ≈ 2× 1018 > 1020 > 1020 > 1020 > 1020

O(2n) 1024 ≈ 106 > 1020 > 1020 > 1020 > 1020

O(n2) 100 400 104 108 1010 1016

O(n × log2 n) ≈ 30 ≈ 100 ≈ 700 ≈ 3× 105 ≈ 2× 106 ≈ 3× 109

You can suppose that average amount of operations per second CPU can perform is
≈ 3× 108. That is precise enough to check if yor program will pass Time Limit.

8 / 9



Estimating run time from complexity

Consider you have a program which takes one number n as an input. Let’s try to
estimate its run time from its complexity and value of n.

complexity n = 10 n = 20 n = 100 n = 104 n = 105 n = 108

O(n!) ≈ 3× 105 ≈ 2× 1018 > 1020 > 1020 > 1020 > 1020

O(2n) 1024 ≈ 106 > 1020 > 1020 > 1020 > 1020

O(n2) 100 400 104 108 1010 1016

O(n × log2 n) ≈ 30 ≈ 100 ≈ 700 ≈ 3× 105 ≈ 2× 106 ≈ 3× 109

You can suppose that average amount of operations per second CPU can perform is
≈ 3× 108. That is precise enough to check if yor program will pass Time Limit.

8 / 9



Thank you
for your attention!

9 / 9


