
How to Win Coding Competitions: Secrets of Champions

Week 2: Computational complexity. Linear data structures
Lecture 5: Stack. Queue. Deque

Pavel Krotkov
Saint Petersburg 2016



General overview

Stack, Queue and Deque are just interfaces.

I sometimes it’s reasonable to limit set of possible operations on data structure

I implementation of Stack and Queue can be based on Vector or Array

I different implementations will have different properties

2 / 10



General overview

Stack, Queue and Deque are just interfaces.

I sometimes it’s reasonable to limit set of possible operations on data structure

I implementation of Stack and Queue can be based on Vector or Array

I different implementations will have different properties

2 / 10



General overview

Stack, Queue and Deque are just interfaces.

I sometimes it’s reasonable to limit set of possible operations on data structure

I implementation of Stack and Queue can be based on Vector or Array

I different implementations will have different properties

2 / 10



General overview

Stack, Queue and Deque are just interfaces.

I sometimes it’s reasonable to limit set of possible operations on data structure

I implementation of Stack and Queue can be based on Vector or Array

I different implementations will have different properties

2 / 10



Stack overview

Stack has only two possible operations.
I push — inserting element to the end of structure

I pop — removing element from the end of structure and returning its value

Push operation

3
6
2
5

3
6
2
5
8

3 / 10



Stack overview

Stack has only two possible operations.
I push — inserting element to the end of structure
I pop — removing element from the end of structure and returning its value

Push operation

3
6
2
5

3
6
2
5
8

3 / 10



Stack overview

Stack has only two possible operations.
I push — inserting element to the end of structure
I pop — removing element from the end of structure and returning its value

Push operation

3
6
2
5

3
6
2
5
8

3 / 10



Stack overview

Pop operation

3
6
2
5

3
6
2
5
8

The end of the structure is called top of the stack.

4 / 10



Stack overview

Pop operation

3
6
2
5

3
6
2
5
8

The end of the structure is called top of the stack.

4 / 10



Stack analysis

Stack can be implemented with vector or with list.

I both this data structures support inserting elements to and removing elements
from the end of the structure in constant time

Stack has numerous applications in different areas.

I various graph algorithms (DFS)

I local variables and function calls during execution of yor program are stored in
stack

I during calculation of expressions written in Reverse Polish notation

I etc.

5 / 10



Stack analysis

Stack can be implemented with vector or with list.

I both this data structures support inserting elements to and removing elements
from the end of the structure in constant time

Stack has numerous applications in different areas.

I various graph algorithms (DFS)

I local variables and function calls during execution of yor program are stored in
stack

I during calculation of expressions written in Reverse Polish notation

I etc.

5 / 10



Stack analysis

Stack can be implemented with vector or with list.

I both this data structures support inserting elements to and removing elements
from the end of the structure in constant time

Stack has numerous applications in different areas.

I various graph algorithms (DFS)

I local variables and function calls during execution of yor program are stored in
stack

I during calculation of expressions written in Reverse Polish notation

I etc.

5 / 10



Stack analysis

Stack can be implemented with vector or with list.

I both this data structures support inserting elements to and removing elements
from the end of the structure in constant time

Stack has numerous applications in different areas.

I various graph algorithms (DFS)

I local variables and function calls during execution of yor program are stored in
stack

I during calculation of expressions written in Reverse Polish notation

I etc.

5 / 10



Stack analysis

Stack can be implemented with vector or with list.

I both this data structures support inserting elements to and removing elements
from the end of the structure in constant time

Stack has numerous applications in different areas.

I various graph algorithms (DFS)

I local variables and function calls during execution of yor program are stored in
stack

I during calculation of expressions written in Reverse Polish notation

I etc.

5 / 10



Queue overview

Queue is a list organized by FIFO (first in - first out) rule.

It supports two operations:

I enqueue — inserting element to the end of structure

I dequeue — removing element from the beginning of structure

Enqueue operation

3 6 2 5

3 6 2 5 88

6 / 10



Queue overview

Queue is a list organized by FIFO (first in - first out) rule. It supports two operations:

I enqueue — inserting element to the end of structure

I dequeue — removing element from the beginning of structure

Enqueue operation

3 6 2 5

3 6 2 5 88

6 / 10



Queue overview

Queue is a list organized by FIFO (first in - first out) rule. It supports two operations:

I enqueue — inserting element to the end of structure

I dequeue — removing element from the beginning of structure

Enqueue operation

3 6 2 5

3 6 2 5 88

6 / 10



Queue overview

Dequeue operation

6 2 5 8

3 6 2 5 83

I the end of queue is called tail

I the beginning of queue is called head

7 / 10



Queue overview

Dequeue operation

6 2 5 8

3 6 2 5 83

I the end of queue is called tail

I the beginning of queue is called head

7 / 10



Queue overview

Dequeue operation

6 2 5 8

3 6 2 5 83

I the end of queue is called tail

I the beginning of queue is called head

7 / 10



Queue analysis

Queue implementation

I the easiest way to implement queue is based on list
I we just need to store links to the first and last elements of list

I queue can be implemented with array, if maximum possible size of queue is known
beforehand

I we can reuse free elements at the beginning of array for storing new elements of
queue

I queue can be implemented with vector
I some additional techniques of removing from the beginning of vector required

I queue with amortized constant time of operations can be implemented with two
stacks

I details of implementation can be considered as a home work

Queue usage.
I graph algorithms (BFS)
I processing some queries in order of their arrival

8 / 10



Queue analysis

Queue implementation
I the easiest way to implement queue is based on list

I we just need to store links to the first and last elements of list

I queue can be implemented with array, if maximum possible size of queue is known
beforehand

I we can reuse free elements at the beginning of array for storing new elements of
queue

I queue can be implemented with vector
I some additional techniques of removing from the beginning of vector required

I queue with amortized constant time of operations can be implemented with two
stacks

I details of implementation can be considered as a home work

Queue usage.
I graph algorithms (BFS)
I processing some queries in order of their arrival

8 / 10



Queue analysis

Queue implementation
I the easiest way to implement queue is based on list

I we just need to store links to the first and last elements of list
I queue can be implemented with array, if maximum possible size of queue is known

beforehand
I we can reuse free elements at the beginning of array for storing new elements of

queue

I queue can be implemented with vector
I some additional techniques of removing from the beginning of vector required

I queue with amortized constant time of operations can be implemented with two
stacks

I details of implementation can be considered as a home work

Queue usage.
I graph algorithms (BFS)
I processing some queries in order of their arrival

8 / 10



Queue analysis

Queue implementation
I the easiest way to implement queue is based on list

I we just need to store links to the first and last elements of list
I queue can be implemented with array, if maximum possible size of queue is known

beforehand
I we can reuse free elements at the beginning of array for storing new elements of

queue
I queue can be implemented with vector

I some additional techniques of removing from the beginning of vector required

I queue with amortized constant time of operations can be implemented with two
stacks

I details of implementation can be considered as a home work

Queue usage.
I graph algorithms (BFS)
I processing some queries in order of their arrival

8 / 10



Queue analysis

Queue implementation
I the easiest way to implement queue is based on list

I we just need to store links to the first and last elements of list
I queue can be implemented with array, if maximum possible size of queue is known

beforehand
I we can reuse free elements at the beginning of array for storing new elements of

queue
I queue can be implemented with vector

I some additional techniques of removing from the beginning of vector required
I queue with amortized constant time of operations can be implemented with two

stacks
I details of implementation can be considered as a home work

Queue usage.
I graph algorithms (BFS)
I processing some queries in order of their arrival

8 / 10



Queue analysis

Queue implementation
I the easiest way to implement queue is based on list

I we just need to store links to the first and last elements of list
I queue can be implemented with array, if maximum possible size of queue is known

beforehand
I we can reuse free elements at the beginning of array for storing new elements of

queue
I queue can be implemented with vector

I some additional techniques of removing from the beginning of vector required
I queue with amortized constant time of operations can be implemented with two

stacks
I details of implementation can be considered as a home work

Queue usage.
I graph algorithms (BFS)

I processing some queries in order of their arrival

8 / 10



Queue analysis

Queue implementation
I the easiest way to implement queue is based on list

I we just need to store links to the first and last elements of list
I queue can be implemented with array, if maximum possible size of queue is known

beforehand
I we can reuse free elements at the beginning of array for storing new elements of

queue
I queue can be implemented with vector

I some additional techniques of removing from the beginning of vector required
I queue with amortized constant time of operations can be implemented with two

stacks
I details of implementation can be considered as a home work

Queue usage.
I graph algorithms (BFS)
I processing some queries in order of their arrival

8 / 10



Deque overview

Deque is a queue with allowed operations of removing element from the end and
inserting element to the beginning.

I implementation details are very similar to queue implementation details
I doubly linked list
I cycled array (if fixed maximum size)
I vector

I can be used as stack and as queue at the same time

9 / 10



Deque overview

Deque is a queue with allowed operations of removing element from the end and
inserting element to the beginning.

I implementation details are very similar to queue implementation details
I doubly linked list
I cycled array (if fixed maximum size)
I vector

I can be used as stack and as queue at the same time

9 / 10



Thank you
for your attention!

10 / 10


