List of physical constants

Constant	Symbol	Value
Speed of light in vacuum	c	$2.99792458 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Planck's constant	h	$6.62606876 \times 10^{-34} \mathrm{Js}$
Reduced Planck's constant	$\hbar=h / 2 \pi$	$1.054571596 \times 10^{-34} \mathrm{Js}$
Rest mass of an electron	m	$9.10938188 \times 10^{-31} \mathrm{~kg}$
Rest mass energy of an electron	$m c^{2}$	$81.871041 \mathrm{fJ}=510.99888 \mathrm{keV}$
Elementary charge	e	$1.60217653 \times 10^{-19} \mathrm{C}$
Permiability of free space	$\mu_{0}=4 \pi \times 10^{-7}$	$1.2566371 \times 10^{-6} \mathrm{Vs} /(\mathrm{Am})$
Permittivity of free space	$\epsilon_{0}=1 / \mu_{0} c^{2}$	$8.85418782 \times 10^{-12} \mathrm{As} /(\mathrm{Vm})$
Thomson scattering length	$r_{0}=e^{2} / 4 \pi \epsilon_{0} m c^{2}$	$2.82 \times 10^{-15} \mathrm{~m}$
Fine structure constant	$\alpha=\mu_{0} c e^{2} / 2 h$	$1 / 137.03599976$
Boltzmann's constant	k_{B}	$1.3806503 \times 10^{-23} \mathrm{JK}{ }^{-1}$
Avogadro's number	N_{A}	$6.02214199 \times 10^{23} \mathrm{~mol}{ }^{-1}$
Absolute zero	θ_{0}	$-273.15{ }^{o} \mathrm{C}$
Gas constant	$R=k N_{A}$	$8.314472 \mathrm{JK} \mathrm{Jol}^{-1} \mathrm{~mol}^{-1}$
Normal pressure	p_{n}	101325 Pa
Classical electron radius	r_{0}	$2.8179 \times 10^{-15} \mathrm{~m} \mathrm{~m}^{2}$

Cosine rule

By using the sine and cosine rules, one can determine the length of a side or an angle of a triangle with sides a, b, and c; and opposing angles A, B, and C, respectively (Figure 1). The cosine rule states that the length of each side can be written as

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=c^{2}+a^{2}-2 c a \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Similarly, these expressions can be rearranged to find the angles, for example,
$\cos A=\left(b^{2}+c^{2}-a^{2}\right) / 2 b c$.
The sine rules states
$(\sin A) / A=(\sin B) / B=(\sin C) / C$
Which rule you use depends on the information available about the triangle.

Figure 1: Cosine rule reference triangle.

