Constant	Symbol	Value
Speed of light in vacuum	c	$2.99792458 \times 10^8 \text{ m} \cdot \text{s}^{-1}$
Planck's constant	h	$6.62606876 \times 10^{-34} \text{ Js}$
Reduced Planck's constant	$\hbar = h/2\pi$	$1.054571596 \times 10^{-34} \text{ Js}$
Rest mass of an electron	m	$9.10938188 \times 10^{-31} \text{ kg}$
Rest mass energy of an electron	mc^2	81.871041 fJ = 510.99888 keV
Elementary charge	e	$1.60217653 \times 10^{-19} \text{ C}$
Permiability of free space	$\mu_0 = 4\pi \times 10^{-7}$	$1.2566371 \times 10^{-6} \text{ Vs/(Am)}$
Permittivity of free space	$\epsilon_0 = 1/\mu_0 c^2$	$8.85418782 \times 10^{-12} \text{ As/(Vm)}$
Thomson scattering length	$r_0 = e^2/4\pi\epsilon_0 mc^2$	$2.82 \times 10^{-15} \text{ m}$
Fine structure constant	$\alpha = \mu_0 c e^2 / 2h$	1/137.03599976
Boltzmann's constant	k_B	$1.3806503 \times 10^{-23} \text{ JK}^{-1}$
Avogadro's number	N_A	$6.02214199 \times 10^{23} \text{ mol}^{-1}$
Absolute zero	$ heta_0$	-273.15 ° C
Gas constant	$R = kN_A$	$8.314472 \ \mathrm{JK^{-1}} \ \mathrm{mol^{-1}}$
Normal pressure	p_n	101 325 Pa
Classical electron radius	r_0	$2.8179 \times 10^{-15} \mathrm{m}$

List of physical constants

Cosine rule

By using the sine and cosine rules, one can determine the length of a side or an angle of a triangle with sides a, b, and c; and opposing angles A, B, and C, respectively (Figure 1). The cosine rule states that the length of each side can be written as

 $\begin{aligned} a^2 &= b^2 + c^2 - 2bc\cos A \\ b^2 &= c^2 + a^2 - 2ca\cos B \\ c^2 &= a^2 + b^2 - 2ab\cos C \end{aligned}$

Similarly, these expressions can be rearranged to find the angles, for example,

 $\cos A = (b^2 + c^2 - a^2)/2bc.$ The sine rules states $(\sin A)/A = (\sin B)/B = (\sin C)/C$ Which rule you use depends on the information available about the triangle.

Figure 1: Cosine rule reference triangle.