
1

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Camera Ray Casting

Ravi Ramamoorthi

Outline
§  Camera Ray Casting (choose ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;
 Intersection hit = Intersect (ray, scene) ;

 image[i][j] = FindColor (hit) ;

 }

 return image ;

}

Ray Casting

Virtual Viewpoint

Virtual Screen Objects
Ray misses all objects: Pixel colored black Ray intersects object: shade using color, lights, materials Multiple intersections: Use closest one (as does OpenGL)

Finding Ray Direction
§  Goal is to find ray direction for given pixel i and j

§  Many ways to approach problem
§  Objects in world coord, find dirn of each ray (we do this)
§  Camera in canonical frame, transform objects (OpenGL)

§  Basic idea
§  Ray has origin (camera center) and direction
§  Find direction given camera params and i and j

§  Camera params as in gluLookAt
§  Lookfrom[3], LookAt[3], up[3], fov

Similar to gluLookAt derivation
§  gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx,

upy, upz)

§  Camera at eye, looking at center, with up direction being up

 Eye

Up vector

Center From earlier lecture on deriving gluLookAt

2

Constructing a coordinate frame?

w = a

a

We want to associate w with a, and v with b
§  But a and b are neither orthogonal nor unit norm
§  And we also need to find u

u = b ×w

b ×w

 v = w × u
From basic math lecture - Vectors: Orthonormal Basis Frames

Constructing a coordinate frame

w = a

a

§  We want to position camera at origin, looking down –Z dirn

§  Hence, vector a is given by eye – center

§  The vector b is simply the up vector

u = b ×w

b ×w v = w × u

Eye

Up vector

Center

Canonical viewing geometry

-w αu

βv

Canonical viewing geometry

-w αu

βv

α = tan fovx

2
⎛
⎝⎜

⎞
⎠⎟
× j − (width / 2)

width / 2
⎛
⎝⎜

⎞
⎠⎟

β = tan fovy
2

⎛
⎝⎜

⎞
⎠⎟
× (height / 2)− i

height / 2
⎛
⎝⎜

⎞
⎠⎟

Canonical viewing geometry

-w αu

βv

α = tan fovx

2
⎛
⎝⎜

⎞
⎠⎟
× j − (width / 2)

width / 2
⎛
⎝⎜

⎞
⎠⎟

β = tan fovy
2

⎛
⎝⎜

⎞
⎠⎟
× (height / 2)− i

height / 2
⎛
⎝⎜

⎞
⎠⎟

ray = eye + αu + βv −w

αu + βv −w

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Ray-Object Intersections

Ravi Ramamoorthi

3

Outline
§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;

 Intersection hit = Intersect (ray, scene) ;
 image[i][j] = FindColor (hit) ;

 }

 return image ;

}

Ray-Sphere Intersection

ray ≡

P =

P0 +

P1t

sphere ≡ (

P −

C) i (

P −

C)− r 2 = 0

C

P0

Ray-Sphere Intersection

ray ≡

P =

P0 +

P1t

sphere ≡ (

P −

C) i (

P −

C)− r 2 = 0

Substitute

Ray-Sphere Intersection

ray ≡

P =

P0 +

P1t

sphere ≡ (

P −

C) i (

P −

C)− r 2 = 0

Substitute

ray ≡

P =

P0 +

P1t

sphere ≡ (

P0 +

P1t −

C) i (

P0 +

P1t −

C)− r 2 = 0

Simplify

Ray-Sphere Intersection

ray ≡

P =

P0 +

P1t

sphere ≡ (

P −

C) i (

P −

C)− r 2 = 0

Substitute

ray ≡

P =

P0 +

P1t

sphere ≡ (

P0 +

P1t −

C) i (

P0 +

P1t −

C)− r 2 = 0

Simplify

 t
2(

P1 i

P1)+ 2t

P1 i (

P0 −

C)+ (

P0 −

C) i (

P0 −

C)− r 2 = 0

4

Ray-Sphere Intersection
 t

2(

P1 i

P1)+ 2t

P1 i (

P0 −

C)+ (

P0 −

C) i (

P0 −

C)− r 2 = 0

Solve quadratic equations for t
§  2 real positive roots: pick smaller root

§  Both roots same: tangent to sphere

§  One positive, one negative root: ray
origin inside sphere (pick + root)

§  Complex roots: no intersection (check
discriminant of equation first)

Ray-Sphere Intersection
§  Intersection point:

§  Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

 ray ≡

P =

P0 +

P1t

normal =

P −

C

P −

C

Ray-Triangle Intersection
§  One approach: Ray-Plane intersection, then

check if inside triangle

§  Plane equation:
A B

C

Ray-Triangle Intersection
§  One approach: Ray-Plane intersection, then

check if inside triangle

§  Plane equation:
A B

C

n = (C − A)× (B − A)

(C − A)× (B − A)

Ray-Triangle Intersection
§  One approach: Ray-Plane intersection, then

check if inside triangle

§  Plane equation:
A B

C

 plane ≡

P i

n −

A i

n = 0

n = (C − A)× (B − A)

(C − A)× (B − A)

Ray-Triangle Intersection
§  One approach: Ray-Plane intersection, then

check if inside triangle

§  Plane equation:

§  Combine with ray equation

A B

C

 plane ≡

P i

n −

A i

n = 0

n = (C − A)× (B − A)

(C − A)× (B − A)

t =

A i

n −

P0 i

n

P1 i

n

ray ≡

P =

P0 +

P1t

(

P0 +

P1t) i

n =

A i

n

5

Ray inside Triangle
§  Once intersect with plane, need to find if in triangle

§  Many possibilities for triangles, general polygons

§  We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A B

C

P
α β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

Ray inside Triangle
A B

C

P
α

β

γ

P = αA+ βB + γC
α ≥ 0,β ≥ 0,γ ≥ 0
α + β + γ = 1

 P − A = β(B − A)+ γ (C − A)

0 ≤ β ≤1 , 0 ≤ γ ≤1
β + γ ≤1

Other primitives
§  Much early work in ray tracing focused on ray-primitive

intersection tests

§  Cones, cylinders, ellipsoids

§  Boxes (especially useful for bounding boxes)

§  General planar polygons

§  Many more

Ray Scene Intersection
Intersection (ray, scene) {

 mindist = infinity; hitobject = NULL ;

 For each object in scene { // Find closest intersection; test all objects

 t = Intersect (ray, object) ;

 if (t > 0 && t < mindist) // closer than previous closest object

 mindist = t ; hitobject = object ;

 }

 return IntersectionInfo(mindist, hitobject) ; // may already be in Intersect()

}

Outline
§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Ray-Tracing Transformed Objects
We have an optimized ray-sphere test

§  But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
§  Apply inverse transform to ray, use ray-sphere
§  Allows for instancing (traffic jam of cars)
§  Same idea for other primitives

6

Transformed Objects
§  Consider a general 4x4 transform M (matrix stacks)

§  Apply inverse transform M-1 to ray
§  Locations stored and transform in homogeneous coordinates
§  Vectors (ray directions) have homogeneous coordinate set

to 0 [so there is no action because of translations]

§  Do standard ray-surface intersection as modified

§  Transform intersection back to actual coordinates
§  Intersection point p transforms as Mp
§  Normals n transform as M-tn. Do all this before lighting

Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Lighting Calculations

Ravi Ramamoorthi

Outline
§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Outline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)
{

 Image image = new Image (width, height) ;

 for (int i = 0 ; i < height ; i++)

 for (int j = 0 ; j < width ; j++) {

 Ray ray = RayThruPixel (cam, i, j) ;

 Intersection hit = Intersect (ray, scene) ;

 image[i][j] = FindColor (hit) ;
 }

 return image ;

}

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visible Shadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
  Numerical inaccuracy may cause intersection to be

 below surface (effect exaggerated in figure)
  Causing surface to incorrectly shadow itself
  Move a little towards light before shooting shadow ray

7

Lighting Model
§  Similar to OpenGL

§  Lighting model parameters (global)
§  Ambient r g b
§  Attenuation const linear quadratic

§  Per light model parameters
§  Directional light (direction, RGB parameters)
§  Point light (location, RGB parameters)
§  Some differences from HW 2 syntax

L =

L0

const + lin * d + quad * d 2

Material Model
§  Diffuse reflectance (r g b)

§  Specular reflectance (r g b)

§  Shininess s

§  Emission (r g b)

§  All as in OpenGL

Shading Model

§  Global ambient term, emission from material

§  For each light, diffuse specular terms

§  Note visibility/shadowing for each light (not in OpenGL)

§  Evaluated per pixel per light (not per vertex)

I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s)
Foundations of Computer Graphics

Online Lecture 10: Ray Tracing 2 – Nuts and Bolts

Recursive Ray Tracing

Ravi Ramamoorthi

Outline
§  Camera Ray Casting (choosing ray directions)

§  Ray-object intersections

§  Ray-tracing transformed objects

§  Lighting calculations

§  Recursive ray tracing

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

8

Basic idea
For each pixel

§  Trace Primary Eye Ray, find intersection

§  Trace Secondary Shadow Ray(s) to all light(s)
§  Color = Visible ? Illumination Model : 0 ;

§  Trace Reflected Ray
§  Color += reflectivity * Color of reflected ray

Recursive Shading Model

§  Highlighted terms are recursive specularities [mirror
reflections] and transmission (latter is extra)

§  Trace secondary rays for mirror reflections and
refractions, include contribution in lighting model

§  GetColor calls RayTrace recursively (the I values in
equation above of secondary rays are obtained by
recursive calls)

I = Ka +Ke + Vi

i=1

n

∑ Li (Kd max (li i n,0)+Ks(max(hi i n,0))s)+KsIR +KTIT

Problems with Recursion
§  Reflection rays may be traced forever

§  Generally, set maximum recursion depth

§  Same for transmitted rays (take refraction into account)

Some basic add ons
§  Area light sources and soft shadows: break into

grid of n x n point lights
§  Use jittering: Randomize direction of shadow ray

within small box for given light source direction
§  Jittering also useful for antialiasing shadows when

shooting primary rays

§  More complex reflectance models
§  Simply update shading model
§  But at present, we can handle only mirror global

illumination calculations

