

Video 3.1 Vijay Kumar and Ani Hsieh

Dynamics of Robot Arms

Vijay Kumar and Ani Hsieh University of Pennsylvania

Lagrange's Equation of Motion

Lagrangian
$$\mathcal{L} = \overline{\mathcal{K}} - \overline{\mathcal{P}}$$

Kinetic Potential
Energy Energy
I-DOF n-DOF
 $\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \tau$ $\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = \tau_k \ k = 1, \dots, n$
 q, q_k Generalized Coordinates

 au, au_k Generalized Forces

Motion of Systems of Particles

Rigid Body as a System of Particles

Constraints

$$\|\mathbf{r}_{OP_i} - \mathbf{r}_{OP_j}\| = l_{ij}$$

- Holonomic Constraints
 - Constraints on position

$$g_i(\mathbf{r}_{OP_1},\ldots,\mathbf{r}_{OP_k})=0, \quad i=1,\ldots l$$

Holonomic Constraints

- Given a system with k particles and l holonomic constraints
 - \succ DOF = k l
 - \succ n = k l generalized coordinates
 - $\succ \mathbf{r}_{OP_i} = \mathbf{r}_{OP_i}(q_1, \dots, q_n), \quad i = 1, \dots, k$
 - $> q_1, \ldots, q_n$ are independent

Types of Displacements

Actual

Possible

• Virtual (or Admissible)

Video 3.2 Vijay Kumar and Ani Hsieh

Classification of Forces

Newtonian

Internal vs External

Constraint vs Applied

Applied Forces: Any forces that are not constraint forces

D'Alembert's Principle

The totality of the constraint forces may be disregarded in the dynamics problem for a system of particles

D'Alembert's & Virtual Displacements

- C_i Constraint Surface
 - $g_i(r_{OP_1},\ldots,r_{OP_k})=0$
 - TC_i Tangent space of C_i
- Virtual Displacements $\partial \mathbf{r}_{OP_i}$ satisfy:
 - I. $g_i(r_{OP_1}, \dots, r_{OP_k}) = 0$
 - 2. Eqn of Motion

 TC_i

Intuition for D'Alembert's (I)

From Newton's 2nd Law

$$\sum_{i=1}^{k} \left(m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i \right) = \sum_{i=1}^{k} \mathbf{f}_i^a$$

$$\left[\sum_{i=1}^{k} \left(m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i\right)\right]_{\perp} + \left[\sum_{i=1}^{k} \left(m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i\right)\right]_{\parallel} = \left[\sum_{i=1}^{k} \mathbf{f}_i^a\right]_{\perp} + \left[\sum_{i=1}^{k} \mathbf{f}_i^a\right]_{\parallel}$$

$$\begin{bmatrix} \sum_{i=1}^{k} (m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i) \end{bmatrix}_{\perp} = \begin{bmatrix} \sum_{i=1}^{k} \mathbf{f}_i^a \end{bmatrix}_{\perp} \quad \bigstar$$
$$\begin{bmatrix} \sum_{i=1}^{k} (m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i) \end{bmatrix}_{\parallel} = \begin{bmatrix} \sum_{i=1}^{k} \mathbf{f}_i^a \end{bmatrix}_{\parallel} \quad \blacktriangle$$

Intuition for D'Alembert's (2)

By definition

$$\left[\sum_{i=1}^{k} \mathbf{f}_{i}^{a}\right]_{\perp} = 0 \quad \text{and} \quad \bigstar = \mathbf{0}$$

And,
$$\left[\sum_{i=1}^{k} \mathbf{f}_{i}^{a}\right]_{\parallel} = 0$$
 b/c motion is constrained
and $\mathbf{A} = \mathbf{0}$

D'Alembert's Principle

Alternative Form:

I. Tangent component of f_i are the only ones to contribute to the particle's acceleration

$$\sum_{i=1}^{\kappa} m_i \ddot{\mathbf{r}}_i - (\mathbf{f}_i)_{\parallel} = 0$$

2. Normal components of \mathbf{f}_i are in equilibrium w/ \mathbf{f}_i^a

$$\sum_{i=1}^{k} \left(\mathbf{f}_i\right)_{\perp} + \mathbf{f}_i^a = 0$$

Video 3.3 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.3 15

Principle of Virtual Work

The totality of the constraint forces does no virtual work.

Virtual Work $\delta W = \mathbf{f} \cdot \delta \mathbf{r}$

$$\sum_{i=1}^{k} \left(m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i \right) \cdot \delta \mathbf{r}_i = \sum_{i=1}^{k} \mathbf{f}_i^a \cdot \delta \mathbf{r}_i$$

By D'Alembert's Principle

$$\sum_{i=1}^{k} \left(m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i \right) \cdot \delta \mathbf{r}_i = \sum_{i=1}^{k} \mathbf{f}_i^a \cdot \delta \mathbf{r}_i = 0$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Lagrange's EOM for Systems of Particles (I)

System w/ k particles, I constraints, n = k-I DOF

Virtual Work
$$\sum_{i=1}^{k} (m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i) \cdot \delta \mathbf{r}_i = \sum_{i=1}^{k} \mathbf{f}_i^a \cdot \delta \mathbf{r}_i$$

$$\sum_{i=1}^{k} \left(m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i \right) \cdot \delta \mathbf{r}_i = 0$$

$$\sum_{i=1}^{k} \mathbf{f}_{i} \cdot \delta \mathbf{r}_{i} = \sum_{i=1}^{k} \sum_{j=1}^{n} \mathbf{f}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{j=1}^{n} \sum_{i=1}^{k} \mathbf{f}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{j=1}^{n} \psi_{j} \delta q_{j}$$

$$\psi_j = \sum_{i=1}^k \mathbf{f}_i^T \frac{\partial \mathbf{r}_i}{\partial q_j}$$

jth generalized force

Lagrange's EOM for Systems of Particles (2)

Note:

$$\sum_{i=1}^{k} m_i \ddot{\mathbf{r}}_i^T \delta \mathbf{r}_i = \sum_{i=1}^{k} \sum_{j=1}^{n} m_i \ddot{\mathbf{r}}_i^T \frac{\partial \mathbf{r}_i}{\partial q_j} \delta q_j$$

$$\frac{d}{dt} \left[m_i \dot{\mathbf{r}}_i^T \frac{\partial \mathbf{r}_i}{\partial q_j} \right] = m_i \ddot{\mathbf{r}}_i^T \frac{\partial \mathbf{r}_i}{\partial q_j} + m_i \dot{\mathbf{r}}_i^T \frac{d}{dt} \frac{\partial \mathbf{r}_i}{\partial q_j}$$
Note:

$$\mathbf{I} \quad \dot{\mathbf{r}}_i = \mathbf{v}_i = \sum_{j=1}^{n} \frac{\partial \mathbf{r}_i}{\partial q_j} \dot{q}_j \quad \bigoplus \quad \frac{\partial \mathbf{v}_i}{\partial \dot{q}_j} = \frac{\partial \mathbf{r}_i}{\partial q_j}$$

2)
$$\frac{d}{dt}\frac{\partial \mathbf{r}_i}{\partial q_j} = \sum_{l=1}^n \frac{\partial^2 \mathbf{r}_i}{\partial q_j \partial q_l} \dot{q}_l = \frac{\partial}{\partial q_j} \sum_{l=1}^n \frac{\partial \mathbf{r}_i}{\partial q_l} \dot{q}_l = \frac{\partial \mathbf{v}_i}{\partial q_j}$$

Lagrange's EOM for Systems of Particles (3)

$$\sum_{i=1}^{k} m_i \ddot{\mathbf{r}}_i^T \frac{\partial \mathbf{r}_i}{\partial q_j} = \sum_{i=1}^{k} \left\{ \frac{d}{dt} \left[m_i \mathbf{v}_i^T \frac{\partial \mathbf{v}_i}{\partial \dot{q}_j} \right] - m_i \mathbf{v}_i^T \frac{\partial \mathbf{v}_i}{\partial q_j} \right\}$$

Kinetic Energy

$$K = \sum_{i=1}^{k} \frac{1}{2} m_i \mathbf{v}_i^T \mathbf{v}_i$$

$$\sum_{i=1}^{k} m_i \ddot{\mathbf{r}}_i^T \frac{\partial \mathbf{r}_i}{\partial q_j} = \frac{d}{dt} \frac{\partial K}{\partial \dot{q}_j} - \frac{\partial K}{\partial q_j}$$

Lagrange's EOM for Systems of Particles (4)

$$\sum_{i=1}^{k} (m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i) \cdot \delta \mathbf{r}_i = 0$$

$$\sum_{i=1}^{k} m_i \ddot{\mathbf{r}}_i^T \frac{\partial \mathbf{r}_i}{\partial q_j} = \frac{d}{dt} \frac{\partial K}{\partial \dot{q}_j} - \frac{\partial K}{\partial q_j} \qquad \sum_{i=1}^{k} \mathbf{f}_i \cdot \delta \mathbf{r}_i = \sum_{j=1}^{n} \psi_j \delta q_j$$
And if $\psi_j = -\frac{\partial P}{\partial q_j} + \tau_j$ P - Potential Energy
$$\tau_j - \text{Generalized Applied}_{Forces}$$

$$\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_j} - \frac{\partial \mathcal{L}}{\partial q_j} = \tau_j$$

Summary

$$\sum_{i=1}^{k} (m_i \ddot{\mathbf{r}}_i - \mathbf{f}_i) \cdot \delta \mathbf{r}_i = 0 \qquad \Longrightarrow \quad \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_j} - \frac{\partial \mathcal{L}}{\partial q_j} = \tau_j$$

- \mathbf{f}_i vector in 3D
- Virtual work $\delta W = \mathbf{f} \cdot \delta \mathbf{q} = \sum_{j=1}^{N} f_j \delta q_j$
- f_j component in the direction of $\hat{\mathbf{e}}_{q_j}$

DO virtual work vs. DO NOT

Video 3.4 Vijay Kumar and Ani Hsieh

Potential Energy

Kinetic Energy

Kinetic energy of a rigid body consists of two parts

Inertia Tensor

Peinoissal Proordecots of Inertia

- 3x3 matrix
- Symmetric matrix

$$I_{xy} = I_{yx}, I_{xz} = I_{zx}, I_{yz} = I_{zy}$$

Let $\rho(x, y, z)$ denote the mass density

Principal Moments of Inertia $\begin{cases}
I_{xx} = \int \int \int (y^2 + z^2) \rho(x, y, z) dx dy dz \\
I_{yy} = \int \int \int \int (x^2 + z^2) \rho(x, y, z) dx dy dz \\
I_{zz} = \int \int \int \int (x^2 + y^2) \rho(x, y, z) dx dy dz
\end{cases}$ Cross Products of Inertia $\begin{cases} I_{xy} = I_{yx} = -\int \int \int xy\rho(x,y,z)dxdydz \\ I_{xz} = I_{zx} = -\int \int \int xz\rho(x,y,z)dxdydz \end{cases}$

$$I_{yz} = I_{zy} = -\int \int \int \int yz \rho(x, y, z) dx dy dz$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Remarks

Inertia tensor depends on

reference point

Example

Compute the inertia tensor of the block with the given dimensions.

Assume $\rho(x, y, z)$ is constant.

Video 3.5 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.3 29

Potential Energy for n-Link Robot

• I-Link Robot

$$P = m \mathbf{g}^T \mathbf{r}_C$$

n-Link Robot

$$P_i = m_i \mathbf{g}^T \mathbf{r}_{C_i}$$
$$P = \sum_{i=1}^n m_i \mathbf{g}^T \mathbf{r}_{C_i}$$

Kinetic Energy for n-Link Robot (I)

• I-Link Robot

$$\mathcal{K} = \frac{1}{2}m\mathbf{v}^T\mathbf{v} + \frac{1}{2}\omega^T\mathcal{I}\omega$$

n-Link Robot

$$\mathcal{K} = \sum_{i=1}^{n} \left\{ \frac{1}{2} m \mathbf{v}_i^T \mathbf{v}_i + \frac{1}{2} \omega_i^T \mathcal{I}_i \omega_i \right\}$$

Review of the Jacobian

Kinetic Energy of n-Link Robot (2)

$$\mathbf{v}_i = \mathbf{J}_{v_i}(\mathbf{q})\dot{\mathbf{q}} \qquad \omega_i = \mathbf{J}_{\omega_i}(\mathbf{q})\dot{\mathbf{q}}$$

$$\mathcal{K} = \frac{1}{2} \dot{\mathbf{q}}^T \left[\sum_{i=1}^n m_i \mathbf{J}_{v_i}^T \mathbf{J}_{v_i} + \mathbf{J}_{\omega_i}^T \mathbf{R}_i I_i \mathbf{R}_i^T \mathbf{J}_{\omega_i} \right] \dot{\mathbf{q}}$$
$$\mathbf{D}(\mathbf{q}) = \left[\sum_{i=1}^n m_i \mathbf{J}_{v_i}^T \mathbf{J}_{v_i} + \mathbf{J}_{\omega_i}^T \mathbf{R}_i I_i \mathbf{R}_i^T \mathbf{J}_{\omega_i} \right]$$

Euler-Lagrange EOM for n-Link Robot (I)

Assumptions:

- ${\cal K}$ is quadratic function of ${\dot {f q}}$
- $\mathcal{P} = \mathcal{P}(\mathbf{q})$ and independent of $\dot{\mathbf{q}}$ $\mathcal{L} = \mathcal{K} - \mathcal{P} = \frac{1}{2} \dot{\mathbf{q}}^T \mathbf{D}(\mathbf{q}) \dot{\mathbf{q}} - \mathcal{P}(\mathbf{q})$ $= \frac{1}{2} \sum_{i,j} d_{ij}(\mathbf{q}) \dot{q}_i \dot{q}_j - \mathcal{P}(\mathbf{q})$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Euler-Lagrange EOM for n-Link Robot (2)

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = \tau_k \qquad \qquad \mathcal{L} = \frac{1}{2}\sum_{i,j} d_{ij}(\mathbf{q})\dot{q}_i\dot{q}_j - \mathcal{P}(\mathbf{q})$$

$$\frac{\partial \mathcal{L}}{\partial \dot{q}_k} = \sum_j d_{kj} \dot{q}_j$$

$$rac{d}{dt}rac{\partial L}{\partial {\dot q}_k} = \sum_j d_{kj} {\ddot q}_j + \sum_{i,j} rac{\partial d_{kj}}{\partial q_i} {\dot q}_i {\dot q}_j$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Euler-Lagrange EOM for n-Link Robot (3)

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = \tau_k \qquad \mathcal{L} = \frac{1}{2}\sum_{i,j} d_{ij}(\mathbf{q})\dot{q}_i\dot{q}_j - \mathcal{P}(\mathbf{q})$$

$$\sum_j d_{kj} \ddot{q}_j + \sum_{i,j} rac{\partial d_{kj}}{\partial q_i} \dot{q}_i \dot{q}_j - \sum_{i,j} rac{1}{2} iggl\{ rac{\partial d_{ij}}{\partial q_k} iggr\} \dot{q}_i \dot{q}_j + rac{\partial P}{\partial q_k} = au_k$$

Euler-Lagrange EOM for n-Link Robot (4)

$$\sum_{j=1}^{n} d_{kj}(\mathbf{q}) \ddot{q}_{j} + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ijk} \dot{q}_{i} \dot{q}_{j} + g_{k}(\mathbf{q}) = \tau_{k}$$
$$k = 1, \dots, n$$
$$\partial \mathcal{P}$$

$$g_k = \frac{\partial P}{\partial q_k}$$

Christoffel Symbols
$$c_{ijk} \equiv \frac{1}{2} \left\{ \frac{\partial d_{kj}}{\partial q_i} + \frac{\partial d_{ki}}{\partial q_j} - \frac{\partial d_{ij}}{\partial q_k} \right\}$$

In matrix form

$$\mathbf{D}(\mathbf{q})\mathbf{\ddot{q}} + \mathbf{C}(\mathbf{q},\mathbf{\dot{q}})\mathbf{\dot{q}} + \mathbf{g}(\mathbf{q}) = \tau$$

Skew Symmetry

$$\begin{aligned} \mathbf{D}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{g}(\mathbf{q}) &= \tau \\ \mathbf{D}(\mathbf{q}) &= \left[\sum_{i=1}^{n} m_i \mathbf{J}_{v_i}^T \mathbf{J}_{v_i} + \mathbf{J}_{\omega_i}^T \mathbf{R}_i I_i \mathbf{R}_i^T \mathbf{J}_{\omega_i}\right] \\ \mathbf{c}_{jk} &= \sum_{i=1}^{n} c_{ijk}(\mathbf{q})\dot{q}_i \\ &= \sum_{i=1}^{n} \frac{1}{2} \left\{ \frac{\partial d_{kj}}{\partial q_i} + \frac{\partial d_{ki}}{\partial q_j} - \frac{\partial d_{ij}}{\partial q_k} \right\} \dot{q}_i \end{aligned}$$

$[\dot{\mathbf{D}}(\mathbf{q}) - 2\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})] = -[\dot{\mathbf{D}}(\mathbf{q}) - 2\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})]^T$

Passivity

$$\int_0^T \dot{\mathbf{q}}^T \tau(\varepsilon) d\varepsilon \ge -\beta$$

- Power = Force x Velocity
- Energy dissipated over finite time is bounded
- Important for Controls

Bounds on D(q)

• $\lambda_i(\mathbf{q})$ - eigenvalue of $\mathbf{D}(\mathbf{q})$

•
$$0 \leq \lambda_1(\mathbf{q}) \leq \ldots \leq \lambda_n(\mathbf{q})$$

$\lambda_1(\mathbf{q})\mathbf{I} \leq \mathbf{D}(\mathbf{q}) \leq \lambda_n(\mathbf{q})\mathbf{I}$

Linearity in the Parameters

System Parameters:

Mass, moments of inertia, lengths, etc.

$\mathbf{D}(\mathbf{q})\mathbf{\ddot{q}} + \mathbf{C}(\mathbf{q},\mathbf{\dot{q}})\mathbf{\dot{q}} + \mathbf{g}(\mathbf{q}) = \tau$

$\mathbf{D}(\mathbf{q})\mathbf{\ddot{q}} + \mathbf{C}(\mathbf{q},\mathbf{\dot{q}})\mathbf{\dot{q}} + \mathbf{g}(\mathbf{q}) = \mathbf{Y}(\mathbf{q},\mathbf{\dot{q}},\mathbf{\ddot{q}})\mathbf{\Theta}$

2-Link Cartesian Manipulator (I)

$$\mathcal{L} = \mathcal{K} - \mathcal{P}$$

$$\mathcal{P} = g(m_1 + m_2)q_1$$

$$\mathcal{K} = \frac{1}{2} \dot{\mathbf{q}}^T \{ m_1 \mathbf{J}_{v_{c1}}^T \mathbf{J}_{v_{c1}} \mathbf{J}_{v_{c1}} \mathbf{J}_{v_{c1}} \mathbf{J}_{v_{c1}} \mathbf{J}_{v_{c1}} \mathbf{J}_{v_{c2}} \mathbf{J}_{v_{c2}} \} \dot{\mathbf{q}}$$

2-Link Cartesian Manipulator (2)

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

2-Link Cartesian Manipulator (3)

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

2-Link Cartesian Manipulator (4)

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Video 3.6 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.3 46

2-Link Planar Manipulator (I)

System parameters:

- Link lengths a_1, a_2
- Link center of mass location a_{c_1}, a_{c_2}

 y_0

У1

 \mathbf{q}_2

 X_0

 \mathbf{X}_1

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

y₂

 X_2

2-Link Planar Manipulator (2)

Recall $\mathbf{r}_{C_{OP}} = a_{c_1} \cos(q_1) \mathbf{x}_0 + a_{c_1} \sin(q_1) \mathbf{y}_0$

 $\mathbf{r}_{C_{PQ}} = (a_1 \cos(q_1) + a_{c_2} \cos(q_1 + q_2)) \mathbf{x}_0$ $+ (a_1 \sin(q_1) + a_{c_2} \sin(q_1 + q_2)) \mathbf{y}_0$

2-Link Planar Manipulator (3)

$$\mathbf{J}_{v_{C_1}} = \begin{bmatrix} -a_{C_1}\sin(q_1) & 0\\ a_{C_1}\cos(q_1) & 0\\ 0 & 0 \end{bmatrix} \xrightarrow{\mathbf{y}_0} \xrightarrow{\mathbf{q}_2} \mathbf{y}_0$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Engineering

2-Link Planar Manipulator (4)

Kinetic Energy = Translational + Rotational

Translational

2-Link Planar Manipulator (5)

Kinetic Energy = Translational + Rotational

2-Link Planar Manipulator (6)

Kinetic Energy = Translational + Rotational

2-Link Planar Manipulator (7)

Kinetic Energy = Translational + Rotational

Video 3.7 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.3 54

2-Link Planar Manipulator (8)

Kinetic Energy = Translational + Rotational

2-Link Planar Manipulator (6)

56

2-Link Planar Manipulator (7)

$$d_{11} = m_1 a_{C_1}^2 + m_2 \left(a_1^2 + a_{C_2}^2 + 2a_1 a_{C_2} \cos(q_2) \right) + I_{z_1 z_1} + I_{z_2 z_2}$$

$$d_{12} = d_{21} = m_2 (a_{C_2}^2 + a_1 a_{C_2} \cos(q_2) + I_{z_2 z_2})$$

$$d_{22} = m_2 a_{C_2}^2 + I_{z_2 z_2}$$

Christoffel Symbols

$$c_{111} = \frac{1}{2} \frac{\partial d_{11}}{\partial q_1} \qquad c_{112} = \frac{\partial d_{21}}{\partial q_1} - \frac{1}{2} \frac{\partial d_{11}}{\partial q_2}$$

$$c_{121} = c_{211} = \frac{1}{2} \frac{\partial d_{11}}{\partial q_2} \qquad c_{122} = c_{212} = \frac{1}{2} \frac{\partial d_{22}}{\partial q_1}$$

$$c_{221} = \frac{\partial d_{12}}{\partial q_2} - \frac{1}{2} \frac{\partial d_{22}}{\partial q_1} \qquad c_{222} = \frac{1}{2} \frac{\partial d_{22}}{\partial q_2}$$

2-Link Planar Manipulator (8)

Potential Energy

2-Link Planar Manipulator (9)

Putting it all together

ngineering

 $d_{11}\ddot{q}_1 + d_{12}\ddot{q}_2 + c_{121}\dot{q}_1\dot{q}_2 + c_{211}\dot{q}_2\dot{q}_1 + c_{221}\dot{q}_2^2 + g_1 = \tau_1$ $d_{21}\ddot{q}_1 + d_{22}\ddot{q}_2 + c_{112}\dot{q}_1^2 + g_2 = \tau_2$

Newton-Euler vs. Euler-Lagrange

- N-E: Newton's Laws of Motion
- N-E: Explicit accounting for constraints
- N-E: Explicit accounting of the reference frame

- E-L: D'Alembert's Principle + Principle of Virtual Work
- E-L: Invariant under point transformations

Summary

- Lagrangian $\mathcal{L} = \mathcal{K} \mathcal{P}$
- D'Alembert's Principle + Principle of Virtual Work
- Euler-Lagrange EOM $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_k} \frac{\partial L}{\partial q_k} = \tau_k$ $k = 1, \dots, n$
- Properties of the E-L EOM
- Examples: 2 Link Planar Manipulators

