4nd
 Penn Engineering
 ONLINE LEARNING

Video 3.I
Vijay Kumar and Ani Hsieh

Dynamics of Robot Arms

Vijay Kumar and Ani Hsieh University of Pennsylvania

Lagrange's Equation of Motion

$$
\begin{aligned}
& \text { Lagrangian } \quad \mathcal{L}=\mathcal{K}-\mathcal{P} \\
& \text { Kinetic Potential } \\
& \text { Energy Energy } \\
& q, q_{k} \quad \text { Generalized Coordinates } \\
& \tau, \tau_{k} \quad \text { Generalized Forces }
\end{aligned}
$$

Motion of Systems of Particles

- Center of Mass

$$
\mathbf{r}_{C}=\frac{1}{m} \sum_{i=1}^{k} m_{i} \mathbf{r}_{O P_{i}}
$$

Newton's $2^{\text {nd }}$ Law $\quad \mathbf{F}=\sum_{i=1}^{k} \mathbf{f}_{i}=m \mathbf{a}_{C}$

Rigid Body as a System of Particles

- Constraints

$$
\left\|\mathbf{r}_{O P_{i}}-\mathbf{r}_{O P_{j}}\right\|=l_{i j}
$$

- Holonomic Constraints
- Constraints on position

$$
g_{i}\left(\mathbf{r}_{O P_{1}}, \ldots, \mathbf{r}_{O P_{k}}\right)=0, \quad i=1, \ldots l
$$

Holonomic Constraints

- Given a system with k particles and I holonomic constraints
$>D O F=k-I$
$>n=k-l$ generalized coordinates
$>\mathbf{r}_{O P_{i}}=\mathbf{r}_{O P_{i}}\left(q_{1}, \ldots, q_{n}\right), \quad i=1, \ldots, k$
$>q_{1}, \ldots, q_{n}$ are independent

Types of Displacements

- Actual
- Possible
- Virtual (or Admissible)

4nd
 Penn Engineering
 ONLINE LEARNING

Video 3.2
Vijay Kumar and Ani Hsieh

Classification of Forces

Newtonian

Lagrangian

Internal vs External
Constraint vs Applied
Applied Forces:
Any forces that are not constraint forces

D'Alembert's Principle

> The totality of the constraint forces may be disregarded in the dynamics problem for a system of particles

D'Alembert's \& Virtual Displacements

- C_{i} - Constraint Surface

$$
g_{i}\left(r_{O P_{1}}, \ldots, r_{O P_{k}}\right)=0
$$

- $T C_{i}$ - Tangent space of C_{i}
- Virtual Displacements
$\partial \mathbf{r}_{O P_{i}}$ satisfy:

1. $g_{i}\left(r_{O P_{1}}, \ldots, r_{O P_{k}}\right)=0$
2. Eqn of Motion

Intuition for D'Alembert's (I)

From Newton's $2^{\text {nd }}$ Law

$$
\begin{gathered}
\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right)=\sum_{i=1}^{k} \mathbf{f}_{i}^{a} \\
{\left[\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right)\right]_{\perp}+\left[\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right)\right]_{\|}=\left[\sum_{i=1}^{k} \mathbf{f}_{i}^{a}\right]_{\perp}+\left[\sum_{i=1}^{k} \mathbf{f}_{i}^{a}\right]_{\|}} \\
{\left[\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right)\right]_{\perp}} \\
\left.\left[\sum_{i=1}^{k}\left(m_{i=1}^{k} \ddot{\mathbf{r}}_{i}^{a}\right]_{\perp} \mathbf{f}_{i}\right)\right]_{\|}^{k}
\end{gathered}
$$

Intuition for D'Alembert's (2)

By definition

$$
\begin{aligned}
{\left[\sum_{i=1}^{k} \mathbf{f}_{i}^{a}\right]_{\perp}=0 } & \text { and } \quad i=0 \\
\text { And, }\left[\sum_{i=1}^{k} \mathbf{f}_{i}^{a}\right]_{\|}=0 & \text { b/c motion is constrained } \\
& \text { and } \quad \triangle=0
\end{aligned}
$$

D'Alembert's Principle

Alternative Form:

I. Tangent component of \mathbf{f}_{i} are the only ones to contribute to the particle's acceleration

$$
\sum_{i=1}^{k} m_{i} \ddot{\mathbf{r}}_{i}-\left(\mathbf{f}_{i}\right)_{\|}=0
$$

2. Normal components of f_{i} are in equilibrium $\mathrm{w} / \mathbf{f}_{i}^{a}$

$$
\sum_{i=1}^{k}\left(\mathbf{f}_{i}\right)_{\perp}+\mathbf{f}_{i}^{a}=0
$$

4nd
 Penn Engineering
 ONLINE LEARNING

Video 3.3
Vijay Kumar and Ani Hsieh

Principle of Virtual Work

The totality of the constraint forces does no virtual work.

Virtual Work $\quad \delta W=\mathbf{f} \cdot \delta \mathbf{r}$

$$
\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right) \cdot \delta \mathbf{r}_{i}=\sum_{i=1}^{k} \mathbf{f}_{i}^{a} \cdot \delta \mathbf{r}_{i}
$$

By D'Alembert's Principle

$$
\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right) \cdot \delta \mathbf{r}_{i}=\sum_{i=1}^{k} \mathbf{f}_{i}^{a} \cdot \delta \mathbf{r}_{i}=0
$$

Lagrange's EOM for Systems of Particles (I)

System w/ k particles, I constraints, $\mathrm{n}=\mathrm{k}$-I DOF
Virtual Work $\quad \sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right) \cdot \delta \mathbf{r}_{i}=\sum_{i=1}^{k} \mathbf{f}_{i}^{a} \cdot \delta \mathbf{r}_{i}$

$$
\begin{gathered}
\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right) \cdot \delta \mathbf{r}_{i}=0 \\
\sum_{i=1}^{k} \mathbf{f}_{i} \cdot \delta \mathbf{r}_{i}=\sum_{i=1}^{k} \sum_{j=1}^{n} \mathbf{f}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j}=\sum_{j=1}^{n} \sum_{i=1}^{k} \mathbf{f}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j}=\sum_{j=1}^{n} \psi_{j} \delta q_{j} \\
\psi_{j}=\sum_{i=1}^{k} \mathbf{f}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \quad \mathrm{j}^{\text {th }} \text { generalized force }
\end{gathered}
$$

Lagrange's EOM for Systems of Particles (2)

$$
\begin{gathered}
\sum_{i=1}^{k} m_{i} \ddot{\mathbf{r}}_{i}^{T} \delta \mathbf{r}_{i}=\sum_{i=1}^{k} \sum_{j=1}^{n} m_{i} \ddot{\mathbf{r}}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \delta q_{j} \\
\frac{d}{d t}\left[m_{i} \dot{\mathbf{r}}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}\right]=m_{i} \ddot{\mathbf{r}}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}+m_{i} \dot{\mathbf{r}}_{i}^{T} \frac{d}{d t} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}
\end{gathered}
$$

Note:

$$
\text { I) } \quad \dot{\mathbf{r}}_{i}=\mathbf{v}_{i}=\sum_{j=1}^{n} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}} \dot{q}_{j} \square \frac{\partial \mathbf{v}_{i}}{\partial \dot{q}_{j}}=\frac{\partial \mathbf{r}_{i}}{\partial q_{j}}
$$

$$
\text { 2) } \frac{d}{d t} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}=\sum_{l=1}^{n} \frac{\partial^{2} \mathbf{r}_{i}}{\partial q_{j} \partial q_{l}} \dot{q}_{l}=\frac{\partial}{\partial q_{j}} \sum_{l=1}^{n} \frac{\partial \mathbf{r}_{i}}{\partial q_{l}} \dot{q}_{l}=\frac{\partial \mathbf{v}_{i}}{\partial q_{j}}
$$

Lagrange's EOM for Systems of Particles (3)

$$
\sum_{i=1}^{k} m_{i} \ddot{\mathbf{r}}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}=\sum_{i=1}^{k}\left\{\frac{d}{d t}\left[m_{i} \mathbf{v}_{i}^{T} \frac{\partial \mathbf{v}_{i}}{\partial \dot{q}_{j}}\right]-m_{i} \mathbf{v}_{i}^{T} \frac{\partial \mathbf{v}_{i}}{\partial q_{j}}\right\}
$$

Kinetic Energy $\quad K=\sum_{i=1}^{k} \frac{1}{2} m_{i} \mathbf{v}_{i}^{T} \mathbf{v}_{i}$

$$
\sum_{i=1}^{k} m_{i} \ddot{\mathbf{r}}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}=\frac{d}{d t} \frac{\partial K}{\partial \dot{q}_{j}}-\frac{\partial K}{\partial q_{j}}
$$

Lagrange's EOM for Systems of Particles (4)

$$
\begin{gathered}
\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right) \cdot \delta \mathbf{r}_{i}=0 \\
\sum_{i=1}^{k} m_{i} \ddot{\mathbf{r}}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial q_{j}}=\frac{d}{d t} \frac{\partial K}{\partial \dot{q}_{j}}-\frac{\partial K}{\partial q_{j}} \quad \sum_{i=1}^{k} \mathbf{f}_{i} \cdot \delta \mathbf{r}_{i}=\sum_{j=1}^{n} \psi_{j} \delta q_{j}
\end{gathered}
$$

And if $\psi_{j}=-\frac{\partial P}{\partial q_{j}}+\tau_{j} \quad P-$ Potential Energy

τ_{j} - Generalized Applied Forces

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}}-\frac{\partial \mathcal{L}}{\partial q_{j}}=\tau_{j}
$$

Summary

$$
\sum_{i=1}^{k}\left(m_{i} \ddot{\mathbf{r}}_{i}-\mathbf{f}_{i}\right) \cdot \delta \mathbf{r}_{i}=0 \quad \square \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}}-\frac{\partial \mathcal{L}}{\partial q_{j}}=\tau_{j}
$$

- \mathbf{f}_{i} - vector in 3D
- Virtual work $\delta W=\mathbf{f} \cdot \delta \mathbf{q}=\sum_{j=1}^{n} f_{j} \delta q_{j}$
- f_{j} - component in the direction of $\hat{\mathbf{e}}_{q_{j}}$

DO virtual work vs. DO NOT

4nd
 Penn Engineering
 ONLINE LEARNING

Video 3.4
Vijay Kumar and Ani Hsieh

Potential Energy

Kinetic Energy

Kinetic energy of a rigid body consists of two parts

$$
\mathcal{K}=\begin{array}{|c|}
\hline \frac{1}{2} m \mathbf{v}^{T} \mathbf{v} \\
\text { Translational } \\
\text { Rotational }
\end{array}
$$

Inertia Tensor

$$
\mathcal{I}=\mathbf{R I R}^{T}
$$

Inertia Tensor

$$
\mathbf{I}=\left[\begin{array}{ccc}
I_{z x} & I_{y y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z x}
\end{array}\right]
$$

Prinoipral
 Prondeats of
 Inertia

- 3×3 matrix
- Symmetric matrix

$$
I_{x y}=I_{y x}, I_{x z}=I_{z x}, I_{y z}=I_{z y}
$$

Let $\rho(x, y, z)$ denote the mass density

Principal
Moments of
Inertia $\left\{\begin{array}{l}I_{x x}\end{array}=\iiint\left(y^{2}+z^{2}\right) \rho(x, y, z) d x d y d z ~=~ I_{y y}=\iiint\left(x^{2}+z^{2}\right) \rho(x, y, z) d x d y d z ~\left(I_{z z}=\iiint\left(x^{2}+y^{2}\right) \rho(x, y, z) d x d y d z\right.\right.$

Remarks

Inertia tensor depends on

- reference point

Example

Compute the inertia tensor of the block with the given dimensions.

Assume $\rho(x, y, z)$ is constant.

4nd
 Penn Engineering
 ONLINE LEARNING

Video 3.5
Vijay Kumar and Ani Hsieh

Potential Energy for n-Link Robot

- I-Link Robot

$$
P=m \mathbf{g}^{T} \mathbf{r}_{C}
$$

- n-Link Robot

$$
\begin{aligned}
P_{i} & =m_{i} \mathbf{g}^{T} \mathbf{r}_{C_{i}} \\
P & =\sum_{i=1}^{n} m_{i} \mathbf{g}^{T} \mathbf{r}_{C_{i}}
\end{aligned}
$$

Kinetic Energy for n-Link Robot (I)

- I-Link Robot

$$
\mathcal{K}=\frac{1}{2} m \mathbf{v}^{T} \mathbf{v}+\frac{1}{2} \omega^{T} \mathcal{I} \omega
$$

- n-Link Robot

$$
\mathcal{K}=\sum_{i=1}^{n}\left\{\frac{1}{2} m \mathbf{v}_{i}^{T} \mathbf{v}_{i}+\frac{1}{2} \omega_{i}^{T} \mathcal{I}_{i} \omega_{i}\right\}
$$

Review of the Jacobian

$$
\begin{gathered}
\mathbf{q} \in \mathbb{R}^{n} \\
\mathbf{f}(\mathbf{q}) \in \mathbb{R}^{m} \\
\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
\mathbf{J}=\left[\begin{array}{lll}
\frac{\partial \mathbf{f}}{\partial q_{1}} & \cdots & \frac{\delta \mathbf{f}}{\partial q_{n}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial q_{1}} & \cdots & \frac{\partial f_{1}}{\partial q_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial q_{1}} & \cdots & \frac{\partial f_{m}}{\partial q_{n}}
\end{array}\right] \\
\mathbf{J}_{i j}=\frac{\partial f_{i}}{\partial q_{j}}
\end{gathered}
$$

Kinetic Energy of \mathbf{n}-Link Robot (2)

$$
\begin{gathered}
\mathbf{v}_{i}=\mathbf{J}_{v_{i}}(\mathbf{q}) \dot{\mathbf{q}} \quad \omega_{i}=\mathbf{J}_{\omega_{i}}(\mathbf{q}) \dot{\mathbf{q}} \\
\mathcal{K}=\frac{1}{2} \dot{\mathbf{q}}^{T}\left[\sum_{i=1}^{n} m_{i} \mathbf{J}_{v_{i}}^{T} \mathbf{J}_{v_{i}}+\mathbf{J}_{\omega_{i}}^{T} \mathbf{R}_{i} I_{i} \mathbf{R}_{i}^{T} \mathbf{J}_{\omega_{i}}\right] \dot{\mathbf{q}} \\
\mathbf{D}(\mathbf{q})=\left[\sum_{i=1}^{n} m_{i} \mathbf{J}_{v_{i}}^{T} \mathbf{J}_{v_{i}}+\mathbf{J}_{\omega_{i}}^{T} \mathbf{R}_{i} I_{i} \mathbf{R}_{i}^{T} \mathbf{J}_{\omega_{i}}\right]
\end{gathered}
$$

Euler-Lagrange EOM for n-Link Robot (I)

Assumptions:

- \mathcal{K} is quadratic function of $\dot{\mathbf{q}}$
- $\mathcal{P}=\mathcal{P}(\mathbf{q}) \quad$ and independent of $\dot{\mathbf{q}}$

$$
\begin{aligned}
\mathcal{L}=\mathcal{K}-\mathcal{P} & =\frac{1}{2} \dot{\mathbf{q}}^{T} \mathbf{D}(\mathbf{q}) \dot{\mathbf{q}}-\mathcal{P}(\mathbf{q}) \\
& =\frac{1}{2} \sum_{i, j} d_{i j}(\mathbf{q}) \dot{q}_{i} \dot{q}_{j}-\mathcal{P}(\mathbf{q})
\end{aligned}
$$

Euler-Lagrange EOM for n-Link Robot (2)

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{k}}-\frac{\partial L}{\partial q_{k}}=\tau_{k} \quad \mathcal{L}=\frac{1}{2} \sum_{i, j} d_{i j}(\mathbf{q}) \dot{q}_{i} \dot{q}_{j}-\mathcal{P}(\mathbf{q})
$$

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \dot{q}_{k}}=\sum_{j} d_{k j} \dot{q}_{j} \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{k}}=\sum_{j} d_{k j} \ddot{q}_{j}+\sum_{i, j} \frac{\partial d_{k j}}{\partial q_{i}} \dot{q}_{i} \dot{q}_{j}
\end{gathered}
$$

Euler-Lagrange EOM for n-Link Robot (3)

$$
\begin{gathered}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{k}}-\frac{\partial L}{\partial q_{k}}=\tau_{k} \quad \mathcal{L}=\frac{1}{2} \sum_{i, j} d_{i j}(\mathbf{q}) \dot{q}_{i} \dot{q}_{j}-\mathcal{P}(\mathbf{q}) \\
\frac{\partial \mathcal{L}}{\partial q_{k}}=\frac{1}{2} \sum_{i, j} \frac{\partial d_{i j}}{\partial q_{k}} \dot{q}_{i} \dot{q}_{j}-\frac{\partial \mathcal{P}}{\partial q_{k}} \\
\sum_{j} d_{k j} \ddot{q}_{j}+\sum_{i, j} \frac{\partial d_{k j}}{\partial q_{i}} \dot{q}_{i} \dot{q}_{j}-\sum_{i, j} \frac{1}{2}\left\{\frac{\partial d_{i j}}{\partial q_{k}}\right\} \dot{q}_{i} \dot{q}_{j}+\frac{\partial P}{\partial q_{k}}=\tau_{k}
\end{gathered}
$$

Euler-Lagrange EOM for n-Link Robot (4)

$$
\sum_{j=1}^{n} d_{k j}(\mathbf{q}) \ddot{q}_{j}+\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j k} \dot{q}_{i} \dot{q}_{j}+g_{k}(\mathbf{q})=\tau_{k}
$$

$$
k=1, \ldots, n
$$

$$
g_{k}=\frac{\partial \mathcal{P}}{\partial q_{k}}
$$

Christoffel Symbols $\quad c_{i j k} \equiv \frac{1}{2}\left\{\frac{\partial d_{k j}}{\partial q_{i}}+\frac{\partial d_{k i}}{\partial q_{j}}-\frac{\partial d_{i j}}{\partial q_{k}}\right\}$

In matrix form

$$
\mathbf{D}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+\mathbf{g}(\mathbf{q})=\tau
$$

Skew Symmetry

$\mathbf{D}(\mathbf{q}) \dot{\mathbf{q}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+\mathbf{g}(\mathbf{q})=\tau$

$$
\mathbf{D}(\mathbf{q})=\left[\sum_{i=1}^{n} m_{i} \mathbf{J}_{v_{i}}^{T} \mathbf{J}_{v_{i}}+\mathbf{J}_{\omega_{i}}^{T} \mathbf{R}_{i} I_{i} \mathbf{R}_{i}^{T} \mathbf{J}_{\omega_{i}}\right]
$$

$$
c_{j k}=\sum_{i=1}^{n} c_{i j k}(\mathbf{q}) \dot{q}_{i}
$$

$$
=\sum_{i=1}^{n} \frac{1}{2}\left\{\frac{\partial d_{k j}}{\partial q_{i}}+\frac{\partial d_{k i}}{\partial q_{j}}-\frac{\partial d_{i j}}{\partial q_{k}}\right\} \dot{q}_{i}
$$

$$
[\dot{\mathbf{D}}(\mathbf{q})-2 \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})]=-[\dot{\mathbf{D}}(\mathbf{q})-2 \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})]^{T}
$$

Passivity

$$
\int_{0}^{T} \dot{\mathbf{q}}^{T} \tau(\varepsilon) d \varepsilon \geq-\beta
$$

- Power = Force \times Velocity
- Energy dissipated over finite time is bounded
- Important for Controls

Bounds on D(q)

- $\lambda_{i}(\mathbf{q})$ - eigenvalue of $\mathbf{D}(\mathbf{q})$
- $0 \leq \lambda_{1}(\mathbf{q}) \leq \ldots \leq \lambda_{n}(\mathbf{q})$

$$
\lambda_{1}(\mathbf{q}) \mathbf{I} \leq \mathbf{D}(\mathbf{q}) \leq \lambda_{n}(\mathbf{q}) \mathbf{I}
$$

Linearity in the Parameters

System Parameters:

- Mass, moments of inertia, lengths, etc.

$$
\begin{gathered}
\mathbf{D}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+\mathbf{g}(\mathbf{q})=\tau \\
\mathbf{D}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+\mathbf{g}(\mathbf{q})=\mathbf{Y}(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}}) \Theta
\end{gathered}
$$

2-Link Cartesian Manipulator (I)

$$
\begin{aligned}
& \mathcal{L}=\mathcal{K}-\mathcal{P} \\
& \mathcal{P}=g\left(m_{1}+m_{2}\right) q_{1} \\
& \begin{aligned}
\mathcal{K}= & \frac{1}{2} \dot{\mathbf{q}}^{T}\left\{m_{1} \mathbf{J}_{v_{c 1}}^{T} \mathbf{J}_{v_{c 1}} \xrightarrow{\mathrm{q}_{1}}{ }^{\mathbf{t o n}_{0}}\right. \\
& \left.+m_{2} \mathbf{J}_{v_{c 2}}^{T} \mathbf{J}_{v_{c 2}}\right\} \dot{\mathbf{q}}
\end{aligned}
\end{aligned}
$$

2-Link Cartesian Manipulator (2)

$\mathcal{K}=\frac{1}{2} \dot{\mathbf{q}}^{T}\left\{m_{1} \mathbf{J}_{v_{c 1}}^{T} \mathbf{J}_{v_{c 1}}+m_{2} \mathbf{J}_{v_{c 2}}^{T} \mathbf{J}_{v_{c 2}}\right\} \dot{\mathbf{q}}$

2-Link Cartesian Manipulator (3)

 $\mathcal{K}=\frac{1}{2} \dot{\mathbf{q}}^{T}\left\{m_{1} \mathbf{J}_{v_{c 1}}^{T} \mathbf{J}_{v_{c 1}}+m_{2} \mathbf{J}_{v_{c 2}}^{T} \mathbf{J}_{v_{c 2}}\right\} \dot{\mathbf{q}}$

2-Link Cartesian Manipulator (4)

4nd
 Penn Engineering
 ONLINE LEARNING

Video 3.6
Vijay Kumar and Ani Hsieh

2-Link Planar Manipulator (I)

System parameters:

- Link lengths a_{1}, a_{2}
- Link center of mass location $a_{c_{1}}, a_{c_{2}}$
- Link masses m_{1}, m_{2}

2-Link Planar Manipulator (2)

Recall $\quad \mathbf{r}_{C_{O P}}=a_{c_{1}} \cos \left(q_{1}\right) \mathbf{x}_{0}+a_{c_{1}} \sin \left(q_{1}\right) \mathbf{y}_{0}$

$$
\begin{aligned}
\mathbf{r}_{C_{P Q}}= & \left(a_{1} \cos \left(q_{1}\right)+a_{c_{2}} \cos \left(q_{1}+q_{2}\right)\right) \mathbf{x}_{0} \\
& +\left(a_{1} \sin \left(q_{1}\right)+a_{c_{2}} \sin \left(q_{1}+q_{2}\right)\right) \mathbf{y}_{0}
\end{aligned}
$$

2-Link Planar Manipulator (3)

$$
\mathbf{J}_{v_{C 1}}=\left[\begin{array}{cc}
-a_{C_{1}} \sin \left(q_{1}\right) & 0 \\
a_{C_{1}} \cos \left(q_{1}\right) & 0 \\
0 & 0
\end{array}\right]
$$

$$
\mathbf{J}_{v_{C_{2}}}=\left[\begin{array}{cc}
-a_{1} \sin \left(q_{1}\right)-a_{C_{2}} \sin \left(q_{1}+q_{2}\right) & -a_{C_{2}} \sin \left(q_{1}+q_{2}\right) \\
a_{1} \cos \left(q_{1}\right)+a_{C_{2}} \cos \left(q_{1}+q_{2}\right) & a_{C_{2}} \cos \left(q_{1}+q_{2}\right) \\
0 & 0
\end{array}\right]
$$

2-Link Planar Manipulator (4)

Kinetic Energy $=$ Translational + Rotational
Translational

2-Link Planar Manipulator (5)

Kinetic Energy $=$ Translational + Rotational

Rotational

2-Link Planar Manipulator (6)

Kinetic Energy = Translational + Rotational

Rotational

2-Link Planar Manipulator (7)

Kinetic Energy = Translational + Rotational

Rotational

4nd
 Penn Engineering
 ONLINE LEARNING

Video 3.7
Vijay Kumar and Ani Hsieh

2-Link Planar Manipulator (8)

Kinetic Energy $=$ Translational + Rotational

Rotational

2-Link Planar Manipulator (6)

$$
\begin{aligned}
& \frac{1}{2} \dot{\mathbf{q}}^{T}\left\{I_{z_{1} z_{1}}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+I_{z_{2} z_{2}}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\} \dot{\mathbf{q}} \\
& \mathbf{D}(\mathbf{q})=m_{1} \mathbf{J}_{v_{C_{1}}}^{T} \mathbf{J}_{v_{C_{1}}}+m_{2} \mathbf{J}_{v_{C_{2}}}^{T} \mathbf{J}_{v_{C_{2}}}+\left[\begin{array}{cc}
I_{z_{1} z_{1}}+I_{z_{2} z_{2}} & I_{z_{2} z_{2}} \\
I_{z_{2} z_{2}} & I_{z_{2} z_{2}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
d_{11}= & m_{1} a_{C_{1}}^{2}+m_{2}\left(a_{1}^{2}+a_{C_{2}}^{2}+2 a_{1} a_{C_{2}} \cos \left(q_{2}\right)\right) \\
& +I_{z_{1} z_{1}}+I_{z_{2} z_{2}} \\
d_{12}= & d_{21}=m_{2}\left(a_{C_{2}}^{2}+a_{1} a_{C_{2}} \cos \left(q_{2}\right)+I_{z_{2} z_{2}}\right. \\
d_{22}= & m_{2} a_{C_{2}}^{2}+I_{z_{2} z_{2}}
\end{aligned}
$$

Engineering
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

2-Link Planar Manipulator (7)

$$
\begin{aligned}
d_{11} & =m_{1} a_{C_{1}}^{2}+m_{2}\left(a_{1}^{2}+a_{C_{2}}^{2}+2 a_{1} a_{C_{2}} \cos \left(q_{2}\right)\right)+I_{z_{1} z_{1}}+I_{z_{2} z_{2}} \\
d_{12} & =d_{21}=m_{2}\left(a_{C_{2}}^{2}+a_{1} a_{C_{2}} \cos \left(q_{2}\right)+I_{z_{2} z_{2}}\right. \\
d_{22} & =m_{2} a_{C_{2}}^{2}+I_{z_{2} z_{2}}
\end{aligned}
$$

Christoffel Symbols

$$
\begin{aligned}
c_{111} & =\frac{1}{2} \frac{\partial d_{11}}{\partial q_{1}} & c_{112} & =\frac{\partial d_{21}}{\partial q_{1}}-\frac{1}{2} \frac{\partial d_{11}}{\partial q_{2}} \\
c_{121} & =c_{211}=\frac{1}{2} \frac{\partial d_{11}}{\partial q_{2}} & c_{122} & =c_{212}=\frac{1}{2} \frac{\partial d_{22}}{\partial q_{1}} \\
c_{221} & =\frac{\partial d_{12}}{\partial q_{2}}-\frac{1}{2} \frac{\partial d_{22}}{\partial q_{1}} & c_{222} & =\frac{1}{2} \frac{\partial d_{22}}{\partial q_{2}}
\end{aligned}
$$

2-Link Planar Manipulator (8)

Potential Energy

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

2-Link Planar Manipulator (9)

Putting it all together

$$
\begin{aligned}
d_{11} \ddot{q}_{1}+d_{12} \ddot{q}_{2}+c_{121} \dot{q}_{1} \dot{q}_{2}+c_{211} \dot{q}_{2} \dot{q}_{1}+c_{221} \dot{q}_{2}^{2}+g_{1} & =\tau_{1} \\
d_{21} \ddot{q}_{1}+d_{22} \ddot{q}_{2}+c_{112} \dot{q}_{1}^{2}+g_{2} & =\tau_{2}
\end{aligned}
$$

$$
\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})=\left[\begin{array}{cc}
h \dot{q}_{2} & h \dot{q}_{2}+h \dot{q}_{1} \\
-h \dot{q}_{1} & 0
\end{array}\right]
$$

Newton-Euler vs. Euler-Lagrange

> N-E: Newton's Laws of Motion
$>$ N-E: Explicit accounting for constraints
$>\mathrm{N}$-E: Explicit accounting of the reference frame
> E-L: D'Alembert's Principle + Principle of Virtual Work
> E-L: Invariant under point transformations

Summary

- Lagrangian $\mathcal{L}=\mathcal{K}-\mathcal{P}$
- D'Alembert's Principle + Principle of Virtual Work
- Euler-Lagrange EOM $\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{k}}-\frac{\partial L}{\partial q_{k}}=\tau_{k}$

$$
k=1, \ldots, n
$$

- Properties of the E-L EOM
- Examples: 2 Link Planar Manipulators

