
SD1x-2 1Property of Penn Engineering, Arvind Bhusnurmath

Video 2.1

Arvind Bhusnurmath

SD1x-2 2Property of Penn Engineering, Arvind Bhusnurmath

• Why is testing important?
• Different types of testing
• Unit testing

Topics

SD1x-2 3Property of Penn Engineering, Arvind Bhusnurmath

• Integral part of development.
• If you ship a software with bugs, you will lose

money.
• The easier a bug is detected, the less time it takes

to fix it.
• Huge job market for software testers.
• In most organizations, a software developer is

responsible for writing their own tests as well.

Software testing

SD1x-2 4Property of Penn Engineering, Arvind Bhusnurmath

• Black box - does this method (or collection of
methods) with this input lead to this specified output. You
do not care what the method is doing internally.

• White box -You do care how the thing being tested
actually works. As an example, instead of just checking
what the method returns, you are checking that its local
variables are all having correct values.

• Unit testing - testing software components. For our
purposes in this course we will usually call one method
one unit.

Software testing

SD1x-2 5Property of Penn Engineering, Arvind Bhusnurmath

int max(int a, int b) {

if (a > b) {

return a;

} else {

return b;

}

}

void testMax() {

int x = max(3, 7);

if (x != 7) {

SOPL("max(3, 7) gives" + x);

}

}

public static void main(String[] args)
{

new MyClass().testMax();

}

@Test

void testMax() {

assertEquals(7, max(3,7));

assertEquals(3, max(3,-7));

}

Old way v/s unit testing way

SD1x-2 6Property of Penn Engineering, Arvind Bhusnurmath

• First line of defense. If you have code that fails a
unit test, that code is not deployed to the
production environment.

• Modification of code becomes a less risky process.
• It represents a developers view of the software

specifications.
• If a bug shows up in code despite the unit tests, a

new unit test can be added to ensure that
situation is covered.

Unit testing advantages

SD1x-2 7Property of Penn Engineering, Arvind Bhusnurmath

Video 2.2

Arvind Bhusnurmath

SD1x-2 8Property of Penn Engineering, Arvind Bhusnurmath

• Writing a unit test
• Test driven development (TDD)

Topics

SD1x-2 9Property of Penn Engineering, Arvind Bhusnurmath

public class BankAccount {
double balance;
String accountOwner;

}

Assume we want to add a method called deposit that will
deposit a certain amount of money into the account

First decide on the specs
parameter – amount to be deposited.
return void – the account balance will change

Writing the stub of a method

SD1x-2 10Property of Penn Engineering, Arvind Bhusnurmath

public void deposit(double amount){
// do not write anything here initially

}

The goal is to use the unit test to guide the
development.

In cases where some value is being returned
• If it is an object return null
• If it is a primitive datatype just return some random

value. 0 for integers for example.

SD1x-2 11Property of Penn Engineering, Arvind Bhusnurmath

To create a JUnit test class:

Step1:

Right click on the class you want
to test → New → JUnit Test Case

Create a JUnit class

SD1x-2 12Property of Penn Engineering, Arvind Bhusnurmath

• To create a JUnit test class:
• Do steps 1, if you haven’t

already
• Click Next>
• Use the checkboxes to

decide which methods
you want test cases for;

• don’t select Object or
anything under it

• Click Finish
• To run the tests:

• Choose Run → Run As
→ JUnit Test

Create JUnit test cases

SD1x-2 13Property of Penn Engineering, Arvind Bhusnurmath

package banking;

import static org.junit.Assert.*;
import org.junit.Test;

public class BankAccountTest {
 @Test
 public void testDeposit() {
 fail("Not yet implemented");
 }
}

SD1x-2 14Property of Penn Engineering, Arvind Bhusnurmath

14

Bar is green if
all tests pass,
red otherwise

Ran 10 of
the 10 tests

No tests
failed, but...

Something unexpected
happened in two tests

This test passed

Something is wrong

Depending on your
preferences, this

window might show
only failed tests

This is how
long the
test took

Viewing results in Eclipse

SD1x-2 15Property of Penn Engineering, Arvind Bhusnurmath

Video 2.3

Arvind Bhusnurmath

SD1x-2 16Property of Penn Engineering, Arvind Bhusnurmath

Topics

Using JUnit assertions
Complete example of Test Driven
Development

SD1x-2 17Property of Penn Engineering, Arvind Bhusnurmath

• Extreme programming

• If code has no automated test case, it is assumed not to
work

• A test framework is used so that automated testing can be
done after every small change to the code.

• This may be as often as every 5 or 10 minutes

• If a bug is found after development, a test is created to keep
the bug from coming back

XP approach to testing

SD1x-2 18Property of Penn Engineering, Arvind Bhusnurmath

• Suppose you have a class Arithmetic with methods int
multiply(int x, int y), and boolean isPositive(int x)

• import org.junit.*;
• import static org.junit.Assert.*;

public class ArithmeticTest {
@Test
public void testMultiply() {

assertEquals(4, Arithmetic.multiply(2, 2));
assertEquals(-15, Arithmetic.multiply(3, -5));

@Test
public void testIsPositive() {

assertTrue(Arithmetic.isPositive(5));
assertFalse(Arithmetic.isPositive(-5));
assertFalse(Arithmetic.isPositive(0));

}

A simple example

SD1x-2 19Property of Penn Engineering, Arvind Bhusnurmath

• Within a test, Call the method being tested and get the actual result
• Assert what the correct result should be with one of the assert

methods
• These steps can be repeated as many times as necessary
• An assert method is a JUnit method that performs a test, and throws an
AssertionError if the test fails

• JUnit catches these Errors and shows you the result

static void assertTrue(boolean test)
static void assertTrue(String message, boolean test)
• Throws an AssertionError if the test fails
• The optional message is included in the Error

static void assertFalse(boolean test)
static void assertFalse(String message, boolean test)

Assert methods 1

SD1x-2 20Property of Penn Engineering, Arvind Bhusnurmath

• We’ll create a simple counter class
• The constructor will create a counter and set it to zero
• The increment method will add 1 to the counter and

return the new value
• The decrement method will subtract 1 from the counter

and return the new value
• We write the test methods before we write the code
• Write the method stubs
• Let the IDE take care of generating the test method

stubs

Example: Counter class

SD1x-2 21Property of Penn Engineering, Arvind Bhusnurmath

public class CounterTest {
Counter counter1;

@Before
void setUp() {

counter1 = new Counter();
}

@Test
public void testIncrement() {

assertTrue(counter1.increment() == 1);
assertTrue(counter1.increment() == 2);

}

@Test
public void testDecrement() {

assertTrue(counter1.decrement() == -1);
}

}

Junit tests for Counter

SD1x-2 22Property of Penn Engineering, Arvind Bhusnurmath

public class Counter {
int count = 0;
public int increment() {

count += 1; return count;
}
public int decrement() {

count -= 1; return count;
}
public int getCount() {

return count;
}

}

The actual Counter class

SD1x-2 23Property of Penn Engineering, Arvind Bhusnurmath

• You can compare primitives with ==
• Java has a method x.equals(y), for comparing objects
• This method works great for Strings and a few other Java classes
• For objects of classes that you create, you have to define equals

• To define equals for your own objects, define exactly this method:

public boolean equals(Object obj) {...}

• The argument must be of type Object, which isn’t what you want, so
you must cast it to the correct type (say, Person):

public boolean equals(Object something) {
Person p = (Person)something;
return this.name == p.name;//test for equality

}

Quick version of the equals method

SD1x-2 24Property of Penn Engineering, Arvind Bhusnurmath

assertEquals(expected, actual)
assertEquals(String message, expected, actual)
expected and actual must be both objects or the same primitive type

For objects, uses your equals method, if you have defined it properly, as
described previously

assertNull(Object object)
assertNull(String message, Object object)
Asserts that the object is null (undefined)

Assert Methods

SD1x-2 25Property of Penn Engineering, Arvind Bhusnurmath

Video 2.4

Arvind Bhusnurmath

SD1x-2 26Property of Penn Engineering, Arvind Bhusnurmath

• Reading an error stacktrace

• Common Exceptions you will encounter
• ArrayIndexOutOfBoundsException
• StringIndexOutOfBoundException
• NullPointerException

Topics

SD1x-2 27Property of Penn Engineering, Arvind Bhusnurmath

• A sequence of method calls

Debugging with a stacktrace

SD1x-2 28Property of Penn Engineering, Arvind Bhusnurmath

• Read the stacktrace top to bottom
• Find the first line of code that you wrote.
• Exceptions “bubble up”. More on this later.
• Some exceptions have self explanatory names
• ArrayIndexOutOfBoundsException
• ArithmeticException

• Pay attention to any extra information being provided by
the stacktrace

Where to begin the debugging process

SD1x-2 29Property of Penn Engineering, Arvind Bhusnurmath

Trying to index array index
4 caused this exception.

SD1x-2 30Property of Penn Engineering, Arvind Bhusnurmath

• One of the most common errors you see
• Occurs when you are trying to access a method or

instance variable from an object that is null.
• Usually caused by
• Forgetting to call a constructor to first create the

object
• If you have a collection of data, then accessing beyond

the first or last element of data.

NullPointerException

SD1x-2 31Property of Penn Engineering, Arvind Bhusnurmath

SD1x-2 32Property of Penn Engineering, Arvind Bhusnurmath

Longer
stacktraces

SD1x-2 33Property of Penn Engineering, Arvind Bhusnurmath

Video 2.6

Arvind Bhusnurmath

SD1x-2 34Property of Penn Engineering, Arvind Bhusnurmath

• Exception handling
• try. catch. finally

Topics

SD1x-2 35Property of Penn Engineering, Arvind Bhusnurmath

• An error is a bug in your program. For example a divide by
zero.

• An exception is a problem whose cause is outside your
program. For example running out of memory.

Errors and Exceptions

SD1x-2 36Property of Penn Engineering, Arvind Bhusnurmath

• An error is a bug and therefore should be fixed.
• An exception is a problem that your program may

encounter.
• The situation in which you encounter the problem might

not be the norm but you want to ensure that your
program does not completely crash.

What to do with errors and
exceptions

SD1x-2 37Property of Penn Engineering, Arvind Bhusnurmath

• A lot of exceptions arise when you are handling files
• A needed file may be missing
• You may not have permission to write a file
• A file may be the wrong type

• Exceptions may also arise when you use someone else’s
classes (or they use yours)
• You might use a class incorrectly
• Incorrect use should result in an exception

Dealing with exceptions

SD1x-2 38Property of Penn Engineering, Arvind Bhusnurmath

• Ignore all but the most important errors
• The code is cleaner, but the program will misbehave

when it encounters an unusual error

• Do something appropriate for every error
• The code is tough to read, but the program works

better
• You might still forget some error conditions

• The Java method - Do the normal processing
in one place, handle the errors in another The
code is at least reasonably uncluttered
• Java tries to ensure that you handle every error

Three approaches to error checking

SD1x-2 39Property of Penn Engineering, Arvind Bhusnurmath

• The try statement (also called the try-catch statement)
separates normal code from the error handling

try {
do the “normal” code, ignoring

exceptions
}
catch (some exception) {

handle the exception
}
catch (some other exception) {

handle the exception
}

The try statement

SD1x-2 40Property of Penn Engineering, Arvind Bhusnurmath

• For certain situations, most commonly in file handling, Java
insists that you do something about the exceptional
situations.

• If you do not catch an exception, the code does not even
compile.

Exception handling is not optional in
Java

SD1x-2 41Property of Penn Engineering, Arvind Bhusnurmath

• In Java, an error doesn’t necessarily cause your program to
crash

• When an error occurs, Java throws an Error object for you
to use
• You can catch this object to try to recover
• You can ignore the error (the program will crash)

• When an exception occurs, Java throws an Exception object
for you to use
• You cannot ignore an Exception; you must catch it
• You get a syntax error if you forget to take care of any

possible Exception

How Java handles errors behind the
scenes

SD1x-2 42Property of Penn Engineering, Arvind Bhusnurmath

• IOException: a problem doing input/output
• FileNotFoundException: no such file
• EOFException: tried to read past the End Of File

• NullPointerException: tried to use a object that
was actually null

• NumberFormatException: tried to convert a non-
numeric String to a number

• OutOfMemoryError: the program has used all available
memory

• There are about 200 predefined Exception types

A few kinds of Exceptions

SD1x-2 43Property of Penn Engineering, Arvind Bhusnurmath

• You have two choices:
• You can “catch” the exception and deal with it
• For Java’s exceptions, this is usually the better

choice
• You can “pass the buck” and let some other part of the

program deal with it
• This is often better for exceptions that you create

and throw
• Exceptions should be handled by the part of the program

that is best equipped to do the right thing about them

What to do about Exceptions

SD1x-2 44Property of Penn Engineering, Arvind Bhusnurmath

• You can catch exceptions with a try statement
• When you catch an exception, you can try to repair

the problem, or you can just print out information
about what happened

• You can “pass the buck” by stating that the method in
which the exception occurs “throws” the exception
• Example:

void openFile(String fileName) throws
IOException { ... }

• Which of these you do depends on whose responsibility it is
to do something about the exception
• If the method “knows” what to do, it should do it
• If it should really be up to the user (the method caller)

to decide what to do, then “pass the buck”

What to do about Exceptions II

SD1x-2 45Property of Penn Engineering, Arvind Bhusnurmath

• Put try {...} around any code that might throw an exception
• This is a syntax requirement you cannot ignore

• For each Exception object that might be thrown, you must
provide a catch phrase:
• catch (exception_type name) {...}
• You can have as many catch phrases as you need
• name is a formal parameter that holds the exception

object
• You can send messages to this object and access its

fields

How to use the try statement

SD1x-2 46Property of Penn Engineering, Arvind Bhusnurmath

• After all the catch phrases, you can have an optional finally
phrase

• try { ... }
catch (AnExceptionType e) { ... }
catch (AnotherExceptionType e) { ... }
finally { ... }

• Whatever happens in try and catch, even if it does a return
statement, the finally code will be executed
• If no exception occurs, the finally will be executed after

the try code
• In an exception does occur, the finally will be executed

after the appropriate catch code

finally

SD1x-2 47Property of Penn Engineering, Arvind Bhusnurmath

• The code in the try {...} part is executed

• If there are no problems, the catch phrases are skipped
• If an exception occurs, the program jumps immediately to

the first catch clause that can handle that exception

• Whether or not an exception occurred, the finally code is
executed

How the try statement works

SD1x-2 48Property of Penn Engineering, Arvind Bhusnurmath

• When you say catch(IOException e), e is a formal
parameter of type IOException
• A catch phrase is almost like a miniature method
• e is an instance (object) of class IOException
• Exception objects have methods you can use

• Here’s an especially useful method that is defined for every
exception type:
• e.printStackTrace();
• This prints out what the exception was, and how you

got to the statement that caused it

Using the exception

SD1x-2 49Property of Penn Engineering, Arvind Bhusnurmath

• PrintStackTrace() does not print on System.out,
but on another stream, System.err
• Eclipse writes this to the same Console window, but

writes it in red
• From the command line: both System.out and
System.err are sent to the terminal window

• printStackTrace(stream) prints on the given stream
• printStackTrace(System.out) prints on
System.out, and this output is printed along with
the “normal” output

printStackTrace

SD1x-2 50Property of Penn Engineering, Arvind Bhusnurmath

Video 2.7

Arvind Bhusnurmath

SD1x-2 51Property of Penn Engineering, Arvind Bhusnurmath

• File I/O
• Reading and writing text files

Topics

SD1x-2 52Property of Penn Engineering, Arvind Bhusnurmath

• Reading a file is not too different from using the
Scanner class.
• So far we have used the Scanner to read from

standard input (input taken from the console).

Reading Files

SD1x-2 53Property of Penn Engineering, Arvind Bhusnurmath

• Open the file
File textFile = new File(“test.txt”);

• Define a scanner on the file
Scanner scnr = new Scanner(textFile);

• Note that Java will insist that the
FileNotFoundException gets handled. Use a try catch
block. Decide what you want to do in the catch block if the
file is not found.

Reading the contents of a file line by
line

SD1x-2 54Property of Penn Engineering, Arvind Bhusnurmath

• Either specify the complete path
• If you want to include the file in the Eclipse project

Where should the file be located?

SD1x-2 55Property of Penn Engineering, Arvind Bhusnurmath

while(scnr.hasNextLine()){
String line = scnr.nextLine();
System.out.println(line);

}

Reading the contents of a file line by
line

SD1x-2 56Property of Penn Engineering, Arvind Bhusnurmath

• FileWriter writer = new FileWriter(filename, append?);
• If the append argument is set to true the text will be added to

the end of the file
• If the append argument is set to false the file will be

overwritten.

• PrintWriter printer = new PrintWriter(writer);

• printer.println(whatever you wanted to write to the file)

• printer.flush() in order to ensure that text is written out to the
file. Without the flush method being called, the printing out to
the file could be buffered.

Writing to a text file

SD1x-2 57Property of Penn Engineering, Arvind Bhusnurmath

try {
FileWriter fileWriter = new

FileWriter(“test.txt”,true)
PrintWriter printer = new

PrintWriter(fileWriter);
printer.println(”some words");
printer.flush();

}
catch(IOException e) {

e.printStackTrace();
}

Complete example

