CS 188: Artificial Intelligence

Reinforcement Learning

Dan Klein, Pieter Abbeel

University of California, Berkeley

Reinforcement Learning

Reinforcement Learning

State: s
Reward: r

Actions: a

Environment

= Basicidea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Example: Learning to Walk

E - ~ . -
| g <
ﬁ .

Before Learning A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

The Crawler!

[You, in Project 3]

Reinforcement Learning

= Still assume a Markov decision process (MDP):
= Asetof statess[S

= Aset of actions (per state) A “
= Amodel T(s,a,s’) ; Warm be
= Areward function R(s,a,s’) ® “

= Still looking for a policy TUs) oo Overheated

= New twist: don’t know T or R
= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

= Simplified task: policy evaluation
* |nput: a fixed policy 11s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= Goal: learn the state values

= |n this case:
= Learneris “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience

This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

= Goal: Compute values for each state under 1t

DOVBLE

/!
a® NOTHING .

= |dea: Average together observed sample values

= Act according to Tt

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

» This is called direct evaluation

Example: Direct Evaluation

Input Policy Tt

Episode 1

Observed Episodes (Training)
Episode 2

B, east, C, -1
C,east, D, -1
D, exit, x, +10

B, east, C, -1
C,east, D, -1
D, exit, x, +10

Episode 3

Episode 4

E, north, C, -1
C,east, D,-1
Assume:y=1 D, exit, x, +10 A, exit,

E, north, C, -1
C, east, A -1

Output Values

Problems with Direct Evaluation

= What'’s good about direct evaluation?
= |t’s easy to understand
= |t doesn’t require any knowledge of T, R

= |t eventually computes the correct average values,
using just sample transitions

= What bad about it?
= |t wastes information about state connections
= Each state must be learned separately
= S0, it takes a long time to learn

Output Values

If Band E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:
= Each round, replace V with a one-step-look-ahead layer over V

Vi(s)=0 | T(S)

Vit1(s) <= >_T(s,m(s), sHR(s,m(s),s") + 7V (s)] ,,,s,;"fiS),S’A
s/ S

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
= |n other words, how to we take a weighted average without knowing the weights?

Example: Expected Age

Goal: Compute expected age of cs188 students

(Known P(A) \

L E[A]=) Pla)-a =035x20+... J

Without P(A), instead collect samples [a,, a,, ... ay]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

I I
Why does this Pla) = num(a) Why does this
work? Because : N E-4] . i Z o work? Because
eventually you - . SHTN & samples appear
2
learn the right E[A] ~ L Pla) - a with the right
a

model. / \ frequencies.

Model-Based Learning

Model-Based Learning

= Model-Based ldea:
= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomess’ foreachs, a
= Normalize to give an estimate of 7'(s, a, s")
= Discovereach R(s,a, s/) when we experience (s, a, s’)

(

= Step 2: Solve the learned MDP
= For example, use policy evaluation

Vi 1(s) + > T(s,m(s),s)[R(s,m(s),s") + VI (s)]

Example: Model-Based Learning

Input Policy Tt Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s)
B, east, C, -1 B, east, C, -1 T(B, east, C) = 1.00
C, east, D, -1 C, east, D, -1 IEE 2:2:’ 2; - g;?
D, exit, x, +10 D, exit, x, +10 T
Episode 3 Episode 4 R(s,a,s)
E, north, C, -1 E, north, C, -1 izg' easz, g)): 1
, east, D) =-
C, ea_st, D, -1 C, east, A -1 R(D, exit, x) = +10
Assume:y=1 D, exit, x, +10 A, exit, x,-10

Model-Free Learning

DoOvBLE

PR./30
OR NOTHING

Sample-Based Policy Evaluation?

= We want to improve our estimate of V by computing these averages:
Vitg1(s) <= > T(s,m(s),s)[R(s,7(s),5") + vV (s)]
5/

= |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s),s7) + V" (s]) _
samples = R(s,m(s),s5) + YV (s5) “";‘

samplen = R(s,w(s),s,) + Vi (sh) | & & 3 |@

1
Vi 1(s) « - > sample;
7

Temporal Difference Learning

= Bigidea: learn from every experience! S
= Update V(s) each time we experience a transition (s, a, s’, r) T[(S)
= Likely outcomes s’ will contribute updates more often

S, T(S)

= Temporal difference learning of values

= Policy still fixed, still doing evaluation! ANEY
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s’) +~V7(s")
Update to V(s): VT(s) + (1 —a)V™(s) + (o) sample

Same update: VT (s) + V™(s) 4+ a(sample — V™ (s))

10

Exponential Moving Average

= Exponential moving average

= The running interpolation update: Zp, = (1 — @) - Tp—1 + @ - Ty,
= Makes recent samples more important:

T _mn_‘_(l_a)'xnfl-l'(l_a)z'$71,72+---
" L+ (1—a)+(1—a)2+...

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States Observed Transitions

[B, east, C, -2] [C,east, D, -2]

Assume:y=1,a=1/2
VT(s) « (1 — a)V™(s) 4+ a [R(s,7(s),s") + 1V (s)]

11

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmaxQ(s,a)
a

Q(s,a) = Z T(s,a,s) [R(s, a,s') + 'yV(s/)]

Idea: learn Q-values, not values

Makes action selection model-free too!

Active Reinforcement Learning

12

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= You choose the actions now
= Goal: learn the optimal policy / values

= |n this case:
= Learner makes choices!
= Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= Given V,, calculate the depth k+1 values for all states:

Vit1(s) + mfsz(S’ a,s’) [R(s,a, s+ 'yvk(s’)]

S
= But Q-values are more useful, so compute them instead

= Start with Qq(s,a) = 0, which we know is right
= Given Qy, calculate the depth k+1 g-values for all g-states:

Qui1(s,@) « S T(s,0,8) [Rls,a.8) +7 maxQu(s',a)

13

Q-Learning

= Q-Learning: sample-based Q-value iteration
Qt1(s:) ¢ L T(s,a,8) [R(s,0,5) +7 maxQu(s',)

s! a

= |Learn Q(s,a) values as you go

= Receive a sample (s,a,s’,r)

= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s") +~ max Q(s',ah)
a’
* |ncorporate the new estimate into a running average:

Q(s,;a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[demo — grid, crawler Q’s]

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough A —
= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

14

CS 188: Artificial Intelligence

Reinforcement Learning Il

Dan Klein, Pieter Abbeel
University of California, Berkeley

Reinforcement Learning

= We still assume an MDP:
= Asetof statess[]S
= A set of actions (per state) A
= A model T(s,a,s’)
= A reward function R(s,a,s’)

= Still looking for a policy 11s)

= New twist: don’t know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

15

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, 1t* Value / policy iteration
Evaluate a fixed policy T Policy evaluation
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, 1t* VI/Pl on approx. MDP Compute V*, Q*, Tt* Q-learning
Evaluate a fixed policy Tt PE on approx. MDP Evaluate a fixed policy Tt Value Learning

Model-Free Learning

Model-free (temporal difference) learning

= Experience world through episodes
(8, a,r, SI, a/, ,r,/, S“, a//, 'I“//, s)

= Update estimates each transition (s, a, r, s’)
= OQver time, updates will mimic Bellman updates

Q-Value Iteration (model-based, requires known MDP)

/ / o
Qut1(5,a) « S T(s,0,5) [R(s,0,8) +7 max Qu(s',a)]
s @
Q-Learning (model-free, requires only experienced transitions)

Qs:a) + (1 - a)Q(s,0) + (@) |r +ymaxQ(s',a)]

16

Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qk-l—l(sa a) A Z T(Sa a, S,) [R(87 a, Sl) + Y ma,X Qk(8,7 a/)
s’ a

= But can’t compute this update without knowing T, R

» |nstead, compute average as we go
= Receive a sample transition (s,a,r,s’)

= This sample suggests
Q(s,a) = 7+ 7 maxQ(s', ')
a

= But we want to average over results from (s,a) (Why?)
= So keep a running average

Q(s,0) — (1 -)Q(s,0) + () |r +ymax Q(s',a)

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough A —
= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

[demo — off policy]

17

Exploration vs. Exploitation

&

s s
\ ;
e

How to Explore?

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-€, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

[demo — crawler]

18

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and -
returns an optimistic utility, e.g. f(u,n) = u+ k/n

Regular Q-Update: Q(s,a) <+ R(s,a,5") +~ max Q(s',ad")
Modified Q-Update: Q(s,a) <+ R(s,a,s") +~ max f(Q(,a), N, a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[demo — crawler]

Regret

= Even if you learn the optimal policy,
you still make mistakes along the way

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

19

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience

= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

20

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[demo — RL pacman]

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |sit the exact state on this slide?

= (Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

21

Linear Value Functions

= Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) = wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)Fwafa(s,a)+...+wnfn(s, a)
= Advantage: our experience is summed up in a few powerful numbers

= Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

| Qs @) = w1 (s)t wafals,0)+ . Awnfals,a) |

= Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = {r + v max Qs a/)] - Q(s,a)
Q(s,a) «— Q(s,a) + a[difference] Exact Q's
w; «— w; + « [difference] f;(s,a) Approximate Q's

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Formal justification: online least squares

22

Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s,a)

~

fpor(s,NORTH) = 0.5

a — NORTH
r = —500
fasr(s, NORTH) = 1.0

J

Q(s,NORTH) = +1 Q(s',) =0
r 4y max Q(s',d) = —5004+0

difference = —501 |:> wpor + 4.0+ a[-501]0.5
west +— —1.0 + a[-501] 1.0

Q(s,a) =3.0fpor(s,a) —3.0fgsr(s,a)

[demo — RL pacman]

Q-Learning and Least Squares

23

Linear Approximation: Regression™

40

20

f1(=x)

Prediction: Prediction:

g = wo + w1 f1(x) g; = wo + w1 f1(z) + wafa(x)

Optimization: Least Squares™

2
total error = Z (y; — y}-)2 =Y (yi - Zwkfk(mi))
,l: k

7

. Error or “residual”
Observation Yy

Prediction g

24

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y -y wkfk(:c)>
k

0 error(w) B

(y - Zwkfk(fﬁ)) Jm(x)
k

Owm

Wm — wm + a (y - Zwkfk($)> fm(x)

k

Approximate q update explained:
wm — wm +a |r +yMaxQ(s',a) — Q(s, a)| fm(s, a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

25

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
= WEe'll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

26

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function
= Nudge each feature weight up and down and see if your policy is better than before

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Conclusion

= We're done with Part I: Search and Planning!

= We’ve seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

= Next up: Part Il: Uncertainty and Learning!

27

