
Algorithm – Eventually Perfect Failure Detector

Algorithm 1 Increasing Timeout

Implements:

EventuallyPerfectFailureDetector, instance ♦P .

Uses:

PerfectPointToPointLinks, instance pp2p.

1: upon event 〈 Init 〉 do
2: alive := Π

3: suspected := ∅
4: delay := ∆

5: startTimer(delay)

6: upon event 〈 Timeout 〉 do
7: if alive ∩ suspected 6= ∅ then

8: delay := delay + ∆

9: for all p ∈ Π do

10: if (p /∈ alive) ∧ (p /∈ suspected) then

11: suspected := suspected ∪ {p}
12: trigger 〈 ♦P,Suspect | p 〉
13: else if (p ∈ alive) ∧ (p ∈ suspected) then

14: suspected := suspected \ {p}
15: trigger 〈 ♦P,Restore | p 〉
16: trigger 〈 pp2p,Send | p, [HeartbeatRequest] 〉
17: alive := ∅
18: startTimer(delay)

19: upon event 〈 pp2p,Deliver | p, [HeartbeatRequest] 〉 do
20: trigger 〈 pp2p,Send | p, [HeartbeatReply] 〉
21: upon event 〈 pp2p,Deliver | p, [HeartbeatReply] 〉 do
22: alive := alive ∪ {p}

1



Algorithm 2 Increasing Timeout with sequence numbers

Implements:

EventuallyPerfectFailureDetector, instance ♦P .

Uses:

PerfectPointToPointLinks, instance pp2p.

1: upon event 〈 Init 〉 do
2: seqnum := 0

3: alive := Π

4: suspected := ∅
5: delay := ∆

6: startTimer(delay)

7: upon event 〈 Timeout 〉 do
8: if alive ∩ suspected 6= ∅ then

9: delay := delay + ∆

10: seqnum := seqnum + 1

11: for all p ∈ Π do

12: if (p /∈ alive) ∧ (p /∈ suspected) then

13: suspected := suspected ∪ {p}
14: trigger 〈 ♦P,Suspect | p 〉
15: else if (p ∈ alive) ∧ (p ∈ suspected) then

16: suspected := suspected \ {p}
17: trigger 〈 ♦P,Restore | p 〉
18: trigger 〈 pp2p,Send | p, [HeartbeatRequest, seqnum] 〉
19: alive := ∅
20: startTimer(delay)

21: upon event 〈 pp2p,Deliver | p, [HeartbeatRequest, n] 〉 do
22: trigger 〈 pp2p,Send | p, [HeartbeatReply, n] 〉
23: upon event 〈 pp2p,Deliver | p, [HeartbeatReply, n] 〉 do
24: if n = seqnum ∨ p ∈ suspected then

25: alive := alive ∪ {p}

2


