4nd
 Penn Engineering
 ONLINE LEARNING

Video 6.I
Vijay Kumar and Ani Hsieh

In General

Disturbance

Learning Objectives for this Week

- State Space Notation
- Modeling in the time domain
- Solutions in the time domain
- From Frequency Domain to Time Domain and Back
- Design in the Time Domain
- Linearization

State-Space Representation

- Converts N -th order differential equation into N simultaneous FIRST-ORDER differential equations
$a_{n} \frac{d^{n} c(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} c(t)}{d t^{n-1}}+\ldots+a_{0} c(t)=b_{m} \frac{d^{m} r(t)}{d t^{m}}+b_{m-1} \frac{d^{m-1} r(t)}{d t^{m-1}}+\ldots+b_{0} r(t)$
- Allows for multiple inputs and/or outputs
- Versatility - our initial conditions DO NOT have to be 0

State Variables

Smallest set of linearly independent system variables s.t. state_variables(t_0) + known input (or forcing) functions completely determines the system.
\# of state variables $=$ Dimension of the State Space
\# of state variables $=$ order of the original diff eqn

Example

$f(t)=M \frac{d^{2} x}{d t^{2}}+f_{v} \frac{d x}{d t}+k x(t)$

Another Example (I)

$d_{11} \ddot{q}_{1}+d_{12} \ddot{q}_{2}+c_{121} \dot{q}_{1} \dot{q}_{2}+c_{211} \dot{q}_{2} \dot{q}_{1}+c_{221} \dot{q}_{2}^{2}+g_{1}=\tau_{1}$

$d_{21} \ddot{q}_{2}+d_{22} \ddot{q}_{2}+c_{112} \dot{q}_{1}^{2}+g_{2}=\tau_{2}$

Another Example (2)

$$
\begin{aligned}
d_{11} \ddot{q}_{1}+d_{12} \ddot{q}_{2}+c_{121} \dot{q}_{1} \dot{q}_{2}+c_{211} \dot{q}_{2} \dot{q}_{1}+c_{221} \dot{q}_{2}^{2}+g_{1} & =\tau_{1} \\
d_{21} \ddot{q}_{2}+d_{22} \ddot{q}_{2}+c_{112} \dot{q}_{1}^{2}+g_{2} & =\tau_{2}
\end{aligned}
$$

4nd
 Penn Engineering
 ONLINE LEARNING

Video 6.2
Vijay Kumar and Ani Hsieh

Transfer Function \rightarrow State Space (I)

$$
\text { Given } \frac{C(s)}{R(s)}=\frac{24}{s^{3}+9 s^{2}+26 s+24}
$$

Transfer Function $\boldsymbol{\rightarrow}$ State Space (2)

$$
\text { Given } \frac{C(s)}{R(s)}=\frac{24}{s^{3}+9 s^{2}+26 s+24}
$$

Transfer Function \rightarrow State Space (3)

Given $\frac{C(s)}{R(s)}=\frac{24}{s^{3}+9 s^{2}+26 s+24}$

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-24 & -26 & -9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
24
\end{array}\right] r \\
y & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

State Space \rightarrow Transfer Function (I)

Given $\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}$
 $$
\mathrm{y}=\mathrm{Cx}+\mathrm{Du}
$$

State Space \rightarrow Transfer Function (2)

Given $\dot{\mathrm{x}}=\mathrm{Ax}+\mathrm{Bu}$

$$
y=C x+D u
$$

$$
T(s)=\frac{Y(s)}{U(s)}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

Solutions in the Time Domain

Given $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \quad \mathbf{x}(\mathbf{y})=\mathbf{x}_{0}$
 $$
\mathbf{y}=\mathbf{C x}+\mathbf{D u}
$$

$$
\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}
$$

$$
(\dot{\mathbf{x}}-\mathbf{A x})=\mathbf{B u}
$$

$$
e^{-\mathbf{A} t}(\dot{\mathbf{x}}-\mathbf{A} \mathbf{x})=e^{-\mathbf{A} t} \mathbf{B u}
$$

$$
\frac{d}{d t}\left(e^{-\mathbf{A} t} \mathbf{x}(t)\right)=e^{-\mathbf{A} t} \mathbf{B u}
$$

$$
\int_{0}^{t} \frac{d}{d t}\left(e^{-\mathbf{A} t} \mathbf{x}(t)\right) d t=\int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau
$$

Time Domain Solution (2)

$$
\begin{aligned}
\left.e^{-\mathbf{A} t} \mathbf{x}\right|_{0} ^{t} & =\int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
e^{-\mathbf{A} t} \mathbf{x}(t)-\mathbf{x}_{0} & =\int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
e^{-\mathbf{A} t} \mathbf{x}(t) & =\mathbf{x}_{0}+\int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}(t) & =e^{\mathbf{A} t} \mathbf{x}_{0}+e^{\mathbf{A} t} \int_{0}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}(t) & =e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
\end{aligned}
$$

Output of the System

$$
\begin{array}{r}
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau} \\
\text { Natural Particular } \\
\text { Response Response }
\end{array}
$$

Thus, output of the system is given by

$$
\mathbf{y}(t)=\mathbf{C}\left(e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau\right)+\mathbf{D} \mathbf{u}
$$

4nd
 Penn Engineering
 ONLINE LEARNING

Video 6.3
Vijay Kumar and Ani Hsieh

The Matrix Exponential

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\frac{\mathbf{A}^{2} t^{2}}{2!}+\frac{\mathbf{A}^{3} t^{3}}{3!}+\ldots
$$

Properties of $e^{\mathbf{A} t}$

- $e^{\mathbf{A} t} \mathbf{A}=\mathbf{A} e^{\mathbf{A} t}$
- If $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\boldsymbol{\Lambda} \quad$ then $e^{\mathbf{A} t}=\mathbf{P} e^{\boldsymbol{\Lambda} t} \mathbf{P}^{-1}$

Characterizing System Response

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d \tau
$$

Since $e^{\mathbf{A} t}=\mathbf{P} e^{\boldsymbol{\Lambda} t} \mathbf{P}^{-1} \quad$, for constant \mathbf{A} , then $\mathbf{\Lambda}=\mathbf{I} \lambda(\mathbf{A}) \quad \mathbf{w} /$ constant \mathbf{P} and \mathbf{P}^{-1}

Then,

$$
e^{\boldsymbol{\Lambda} t}=\left[\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & e^{\lambda_{n} t}
\end{array}\right]
$$

Steady-State Performance

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d \tau
$$

Since $\underline{e^{\mathbf{A} t}}=\mathbf{P}\left[\begin{array}{cccc}e^{\lambda_{1} t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2} t} & \cdots & 0 \\ \ddots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & e^{\lambda_{n} t}\end{array}\right] \mathbf{P}^{-1}$
System is stable if and only if

$$
\operatorname{Re}\left(\lambda_{i}(\mathbf{A})\right)<0 \quad \forall i=1, \ldots, n
$$

Transient Performance

What about complex eigenvalues?
Recall $e^{j \theta}=\cos \theta+j \sin \theta e^{\lambda_{i} t}$, then with $\lambda_{i}=\sigma_{i}+j \omega_{i}$ results in
$e^{\lambda_{i} t}=e^{\sigma_{i} t} e^{j \omega_{i} t}=e^{\sigma_{i} t}\left(\cos \left(\omega_{i} t\right)+j \sin \left(\omega_{i} t\right)\right)$
$j \sin \left(\omega_{i} t\right)$
Complex eigenvalues come in pairs, terms will cancel out.

Example (I)

Given $\dot{\mathbf{x}}=\left[\begin{array}{cc}0 & 2 \\ -2 & -5\end{array}\right] \mathbf{x}+\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{-2 t} \quad \mathbf{W} / \mathbf{x}(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

$$
\mathbf{y}=\left[\begin{array}{ll}
2 & 1
\end{array}\right] \mathbf{x}
$$

Eigenvalues and eigenvectors of $\left[\begin{array}{cc}0 & 2 \\ -2 & -5\end{array}\right]$ are
$\lambda_{1,2}=-1,-4 \quad$ and $\mathbf{p}_{1,2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -2\end{array}\right]$

Example (2)

$$
\int_{0}^{t} \Phi(t-\tau) \mathbf{B} \mathbf{u}(\tau) d \tau=\left[\begin{array}{c}
\frac{2}{3} e^{-t}+\frac{1}{3} e^{-4 t}-e^{-2 t} \\
\frac{-1}{3} e^{-t}-\frac{2}{3} e^{-4 t}+e^{-2 t}
\end{array}\right]
$$

Example (3)

$$
\begin{aligned}
\mathbf{x}(t)= & e^{\mathbf{A} t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\int_{0}^{t} \Phi(t-\tau) \mathbf{B} \mathbf{u}(\tau) d \tau \\
= & {\left[\begin{array}{c}
\frac{10}{3} e^{-t}+\frac{4}{3} e^{-4 t}-e^{-2 t} \\
\frac{-5}{3} e^{-t}+\frac{8}{3} e^{-4 t}+e^{-2 t}
\end{array}\right] } \\
& \quad \begin{array}{l}
\text { Property of Penn Engineering, Vijay Kumar and Ani Hsieh }
\end{array}
\end{aligned}
$$

State Space Design

Given $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \quad \mathbf{w} / \mathbf{x}(0)=\mathbf{x}_{0}$

$$
\mathbf{y}=\mathbf{C x}+\mathbf{D u}
$$

Linear State Feedback Control Law

$$
\mathbf{u}=-\mathbf{K} \mathbf{x}+\mathbf{r}
$$

Closed-loop system $\dot{\mathrm{x}}=(\mathbf{A}-\mathbf{B K}) \mathbf{x}$

$$
\mathbf{y}=(\mathbf{C}-\mathbf{D K}) \mathbf{x}
$$

Choose \mathbf{K} such that CL response is stable.

Advantages of State Space Design

Given $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \mathbf{w} / \mathbf{x}(0)=\mathbf{x}_{0}$

$$
\mathbf{y}=\mathbf{C x}+\mathbf{D u}
$$

with $\mathbf{u}=-\mathbf{K x}+\mathbf{r}$
I. Not restricted to $2^{\text {nd }}$ order approximations
2. Access to a larger range of closed-loop poles
3. Allows for full state feedback

4nd
 Penn Engineering
 ONLINE LEARNING

Video 6.4
Vijay Kumar and Ani Hsieh

A Caveat - Controllability

A linear system is controllable if for each $\mathbf{x}(0)=\mathbf{x}_{0}$ and $\mathbf{x}\left(t_{f}\right)=\mathbf{x}_{f} \quad$, there exists a $\mathbf{u}(t)$ that can get the system from \mathbf{x}_{0} to \mathbf{x}_{f} at time t_{f}.

Such a linear system is controllable if and only if

Controllability Matrix

Feedback Law and Controllability

Let $\alpha(s)=s^{n}+\alpha_{n} s^{n-1}+\ldots+\alpha_{2} s+\alpha_{1}$
s.t.
α_{i} are real coefficients. Then there exists
$\mathbf{u}=-\mathbf{K x} \quad$ such that $\operatorname{det}(s \mathbf{I}-\mathbf{A}+\mathbf{B K})=\alpha(s)$
if and only if $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$ is controllable.

State feedback enables any controllable linear system to have arbitrary closed-loop poles!

Linear Quadratic (LQ) Control

Find optimal feedback control strategy that

> Constrained Optimization Problem

> Optimal Control

Optimal LQ Controller

$$
\min _{\mathbf{u}(t), \mathbf{x}(t)} J=\int_{0}^{\infty}\left(\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{u}^{T} \mathbf{R} \mathbf{u}\right) d t
$$

subject to $\dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u}$

$$
\mathbf{x}(0)=\mathbf{x}_{0}
$$

w/ symmetric, positive definite matrix \mathbf{Q} and \mathbf{R}

$$
\mathbf{u}_{*}=-\mathbf{K}_{*} \mathbf{x} \quad \mathbf{w} / \mathbf{K}_{*}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{P}
$$

where $\mathbf{A}^{T} \mathbf{P}+\mathbf{P A}-\mathbf{R}^{-1} \mathbf{B} \mathbf{B}^{T} \mathbf{P}+\mathbf{Q}=0$

A Few More Words

The Algebraic Riccati Equation

$$
\mathbf{A}^{T} \mathbf{P}+\mathbf{P A}-\mathbf{R}^{-1} \mathbf{B} \mathbf{B}^{T} \mathbf{P}+\mathbf{Q}=0
$$

- \mathbf{P} is $\mathrm{n} \times \mathrm{n}$ matrix
- \mathbf{P} is unique
- \mathbf{P} is symmetric and positive definite
- $\mathbf{u}_{*}=-\mathbf{K}_{*} \mathbf{x} \mathbf{w} / \mathbf{K}_{*}=\mathbf{R}^{-1} \mathbf{B}^{T} \mathbf{P}$ is optimal

Caveat for the Caveat Observability

Recall: If $\dot{\mathrm{x}}=\mathbf{A x}+\mathbf{B u} \quad$ is controllable, then

 \mathbf{K} can be chosen s.t. $\dot{\mathrm{x}}=(\mathbf{A}-\mathbf{B K}) \mathbf{x}$ achieves arbitrary CL poles.Assumption: $\mathbf{u}=-\mathbf{K x}$

Example - Robot Joint Control (I)

$$
\begin{aligned}
& \theta_{s} \quad \tau_{l} \\
& \text { S } \\
& \begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & \left.=-\frac{k}{J_{l}} x_{1}-\frac{B_{l}}{J_{l}} x_{2}+\frac{k}{J_{l}} x_{3} \quad \mathbf{A}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\dot{x}_{3} & =x_{4}
\end{array}\right] \begin{array}{cc}
\frac{k}{J_{L}} & -\frac{B_{l}}{J_{L}} \\
0 & \frac{k}{J_{L}} \\
0 & 0 \\
\frac{k}{J_{m}} & 0 \\
0 & -\frac{k}{J_{m}} \\
\frac{B_{m}}{J_{m}}
\end{array}\right], ~
\end{aligned} \\
& \dot{x}_{4}=\frac{k}{J_{m}} x_{1}-\frac{k}{J_{m}} x_{3}+\frac{B_{m}}{J_{m}} x_{4}+\frac{1}{J_{m}} u \quad \mathbf{B}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{1}{J_{m}}
\end{array}\right]
\end{aligned}
$$

Example - Robot Joint Control (2)

$$
\dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k}{J_{L}} & -\frac{B_{l}}{J_{L}} & \frac{k}{J_{L}} & 0 \\
0 & 0 & 0 & 1 \\
\frac{k}{J_{m}} & 0 & -\frac{k}{J_{m}} & \frac{B_{m}}{J_{m}}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{1}{J_{m}}
\end{array}\right] \mathbf{u}
$$

With $y=\mathbf{C} \quad \mathbf{x}=\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right] \mathbf{x}=x_{1}$
Note:
I. Only θ_{m} is can be measured
2. $\mathbf{u}=-\mathbf{K x}$ requires $\theta_{\text {I }}$

Observers

- State estimators
- Use system model and measured output to estimate the full state

$$
\left.\begin{array}{l}
\left.\dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k}{J_{L}} & -\frac{B_{L}}{J_{L}} & \frac{k}{J_{L}} & 0 \\
0 & 0 & 0 & 1 \\
\frac{k}{J_{m}} & 0 & -\frac{k}{J_{m}} & \frac{B_{m}}{J_{m}}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{1}{J_{m}}
\end{array}\right] \mathbf{u}\right\} \hat{\mathbf{x}}(t) \\
y=\mathbf{C} \mathbf{x}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \mathbf{x}=x_{1}
\end{array}\right\}
$$

- Also a dynamical system $\dot{\hat{\mathbf{x}}}(t)=\mathbf{A} \hat{\mathbf{x}}(t)+\mathbf{B u}(t)$

$$
\mathbf{y}(t)=\mathbf{C} \hat{\mathbf{x}}(t)+\mathbf{D u}(t)
$$

Obtaining $\hat{\mathbf{x}}(t)$

Let $\quad \dot{\hat{\mathbf{x}}}(t)=\mathbf{A} \hat{\mathbf{x}}+\mathbf{B u}+\mathbf{L}(\mathbf{y}-\mathbf{C} \hat{\mathbf{x}})$

Error between plant

- A, B, C are known \& estimate output
- Solve for $\hat{\mathbf{x}}(t)$ from any initial condition
- Use $\hat{\mathbf{x}}(t)$ in feedback law $\mathbf{u}=-\mathbf{K} \hat{\mathbf{x}}$
- Pick L s.t. $\hat{\mathbf{x}} \rightarrow \mathbf{x}$ as $t \rightarrow \infty$

4nd
 Penn Engineering
 ONLINE LEARNING

Video 6.5
Vijay Kumar and Ani Hsieh

Performance of the Estimator

Let $\mathbf{e}(t)=\mathbf{x}-\hat{\mathbf{x}} \quad$ be the estimation error
Then, $\quad \dot{\mathbf{e}}=(\mathbf{A}-\mathbf{L} \mathbf{C}) \mathbf{e}$
I. Dynamics determined by $\lambda(\mathbf{A}-\mathbf{L} \mathbf{C})$
2. Pick Ls.t. $\mathbf{e} \rightarrow \mathbf{0}$ as $t \rightarrow \infty$

Eigenvalues of ($\mathbf{A}-\mathbf{L C}$) can be arbitrarily set if and only if system is observable.

Observability

A linear system is observable if every $\mathbf{x}(0)=\mathbf{x}_{0}$ can be exactly determined from $\mathbf{y}(t)$ and $\mathbf{u}(t)$ in a finite time interval $t_{0} \leq t \leq t_{f}$.

The pair $(\mathbf{A}, \mathbf{C}) \quad$ is observable if and only if

Example - Robot Joint Control (3)

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{k}{J_{L}} & -\frac{B_{l}}{J_{L}} & \frac{k}{J_{L}} & 0 \\
0 & 0 & 0 & 1 \\
\frac{k}{J_{m}} & 0 & -\frac{k}{J_{m}} & \frac{B_{m}}{J_{m}}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{1}{J_{m}}
\end{array}\right] \mathbf{u} \\
& y=\mathbf{C}^{T} \mathbf{x}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \mathbf{x}=x_{1}
\end{aligned}
$$

With $\mathbf{u}=-\mathbf{K} \hat{\mathbf{x}}$

$$
\left[\begin{array}{c}
\dot{\mathrm{x}} \\
\dot{\mathrm{e}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}-\mathbf{B K} & \mathbf{B K} \\
0 & \mathbf{A}-\mathbf{L C}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{e}
\end{array}\right]
$$

Separation Principle: Allows us to separately design the feedback control and the state estimator

For nonlinear systems

In general, given

$$
\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x}, \mathbf{u})
$$

where \mathbf{f} is a nonlinear function in \mathbf{x}, possibly \mathbf{u}
What if ...
I. We want to analyze system behavior around $\mathbf{x}=\mathbf{x}_{e} \quad$?
2. We want to control system behavior around $\mathbf{x}=\mathbf{x}_{e} \quad$?

Linearization

Given $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})$ and $\mathbf{x}=\mathbf{x}_{e}, \mathbf{u}=\mathbf{u}_{e}$

- Let $\overline{\mathbf{x}}=\mathbf{x}-\mathbf{x}_{e} \quad$ and $\overline{\mathbf{u}}=\mathbf{u}-\mathbf{u}_{e}$, substitute into $\mathbf{f}(\mathbf{x}, \mathbf{u})$

$$
\dot{\overline{\mathbf{x}}}=\mathbf{f}(\overline{\mathbf{x}}, \overline{\mathbf{u}})
$$

- Apply Taylor series expansion about $\left(\mathbf{x}_{e}, \mathbf{u}_{e}\right)$

$$
\dot{\overline{\mathbf{x}}} \approx \mathbf{f}\left(\mathbf{x}_{e}, \mathbf{u}_{e}\right)+\left.\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}} \overline{\mathbf{x}}+\left.\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}} \overline{\mathbf{u}}
$$

Then $\left.\left.\quad A \triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}} \quad B \triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}}$

Linearization

$$
\begin{aligned}
& \qquad \begin{array}{c}
\dot{\mathbf{x}} \approx \mathbf{f}\left(\mathbf{x}_{e}, \mathbf{u}_{e}\right)+\left.\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}} \overline{\mathbf{x}}+\left.\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}} \overline{\mathbf{u}} \\
\text { Let }\left.A \triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}} \quad \text { and }\left.B \triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right|_{\overline{\mathbf{x}}, \overline{\mathbf{u}}} \\
\dot{\overline{\mathbf{x}}}=\mathbf{A} \overline{\mathbf{x}}+\mathbf{B} \overline{\mathbf{u}}
\end{array} .
\end{aligned}
$$

Proceed ...

