

Video 6.1 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.6 I

In General

Learning Objectives for this Week

- State Space Notation
 - Modeling in the time domain
 - Solutions in the time domain
- From Frequency Domain to Time Domain and Back
- Design in the Time Domain
- Linearization

State-Space Representation

 Converts N-th order differential equation into N simultaneous FIRST-ORDER differential equations

$$a_n \frac{d^n c(t)}{dt^n} + a_{n-1} \frac{d^{n-1} c(t)}{dt^{n-1}} + \ldots + a_0 c(t) = b_m \frac{d^m r(t)}{dt^m} + b_{m-1} \frac{d^{m-1} r(t)}{dt^{m-1}} + \ldots + b_0 r(t)$$

- Allows for multiple inputs and/or outputs
- Versatility our initial conditions DO NOT have to be 0

State Variables

Smallest set of *linearly independent* system variables s.t. state_variables(t_0) + known input (or forcing) functions *completely* determines the system.

of state variables = Dimension of the State Space

of state variables = order of the original diff eqn

Example

$$f(t) = M\frac{d^2x}{dt^2} + f_v\frac{dx}{dt} + kx(t)$$

Another Example (I)

 $d_{11}\ddot{q}_1 + d_{12}\ddot{q}_2 + c_{121}\dot{q}_1\dot{q}_2 + c_{211}\dot{q}_2\dot{q}_1 + c_{221}\dot{q}_2^2 + g_1 =$ au_1 $d_{21}\ddot{q}_2 + d_{22}\ddot{q}_2 + c_{112}\dot{q}_1^2 + g_2 =$ au_2 y_1 \mathbf{X}_1 \mathbf{q}_2 y_2 y_0 X_2 $\mathbf{X}_{\mathbf{0}}$

Another Example (2)

$d_{11}\ddot{q}_1 + d_{12}\ddot{q}_2 + c_{121}\dot{q}_1\dot{q}_2 + c_{211}\dot{q}_2\dot{q}_1 + c_{221}\dot{q}_2^2 + g_1 = \tau_1$ $d_{21}\ddot{q}_2 + d_{22}\ddot{q}_2 + c_{112}\dot{q}_1^2 + g_2 = \tau_2$

Video 6.2 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.6 9

Transfer Function → **State Space (I)**

Given
$$\frac{C(s)}{R(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$$

Transfer Function \rightarrow **State Space (2)**

Given
$$\frac{C(s)}{R(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$$

Transfer Function \rightarrow **State Space (3)**

Given
$$\frac{C(s)}{R(s)} = \frac{24}{s^3 + 9s^2 + 26s + 24}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -24 & -26 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 24 \end{bmatrix} r$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

State Space → Transfer Function (I)

Given $\dot{x} = Ax + Bu$ y = Cx + Du

State Space → **Transfer Function (2)**

Given $\dot{x} = Ax + Bu$ y = Cx + Du

$$T(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.6 14

Solutions in the Time Domain

Given
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
 $\mathbf{x}(\theta) = \mathbf{x}_0$
 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$
 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$
 $(\dot{\mathbf{x}} - \mathbf{A}\mathbf{x}) = \mathbf{B}\mathbf{u}$
 $e^{-\mathbf{A}t}(\dot{\mathbf{x}} - \mathbf{A}\mathbf{x}) = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}$
 $\frac{d}{dt}(e^{-\mathbf{A}t}\mathbf{x}(t)) = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}$
 $\int_0^t \frac{d}{dt}(e^{-\mathbf{A}t}\mathbf{x}(t)) dt = \int_0^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$

Time Domain Solution (2)

$$e^{-\mathbf{A}t}\mathbf{x}|_{0}^{t} = \int_{0}^{t} e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

$$e^{-\mathbf{A}t}\mathbf{x}(t) - \mathbf{x}_{0} = \int_{0}^{t} e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

$$e^{-\mathbf{A}t}\mathbf{x}(t) = \mathbf{x}_{0} + \int_{0}^{t} e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_{0} + e^{\mathbf{A}t}\int_{0}^{t} e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau$$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_{0} + \int_{0}^{t} e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Output of the System

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

NaturalParticularResponseResponse

Thus, output of the system is given by

$$\mathbf{y}(t) = \mathbf{C} \left(e^{\mathbf{A}t} \mathbf{x}_0 + \int_0^t e^{\mathbf{A}(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau \right) + \mathbf{D} \mathbf{u}$$

Video 6.3 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.6 18

The Matrix Exponential

$$e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t + \frac{\mathbf{A}^2 t^2}{2!} + \frac{\mathbf{A}^3 t^3}{3!} + \dots$$

Properties of $e^{\mathbf{A}t}$

•
$$e^{\mathbf{A}t}\mathbf{A} = \mathbf{A}e^{\mathbf{A}t}$$

• If
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda}$$
 then $e^{\mathbf{A}t} = \mathbf{P}e^{\mathbf{\Lambda}t}\mathbf{P}^{-1}$

Characterizing System Response

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_{0} + \int_{0}^{t} e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$
Since $e^{\mathbf{A}t} = \mathbf{P}e^{\mathbf{\Lambda}t}\mathbf{P}^{-1}$, for constant \mathbf{A} , then $\mathbf{\Lambda} = \mathbf{I}\lambda(\mathbf{A})$ w/ constant \mathbf{P} and \mathbf{P}^{-1}
Then, $\begin{bmatrix} e^{\lambda_{1}t} & 0 & \dots & 0 \end{bmatrix}$

$$\mathbf{h}, \qquad e^{\mathbf{\Lambda}t} = \begin{bmatrix} e^{\lambda_{1}t} & 0 & \dots & 0\\ 0 & e^{\lambda_{2}t} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & e^{\lambda_{n}t} \end{bmatrix}$$

Steady-State Performance

$$\begin{aligned} \mathbf{x}(t) &= e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau \\ \text{Since } \underline{e^{\mathbf{A}t}} = \mathbf{P} \begin{bmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \ddots & 0 & \dots & 0 \\ 0 & 0 & \dots & e^{\lambda_n t} \end{bmatrix} \mathbf{P}^{-1} \\ \text{System is stable if and only if} \\ Re(\lambda_i(\mathbf{A})) < 0 \quad \forall i = 1, \dots, n \end{aligned}$$

Transient Performance

What about complex eigenvalues?

Recall $e^{j\theta} = \cos \theta + j \sin \theta e^{\lambda_i t}$, then with $\lambda_i = \sigma_i + j\omega_i$ $e^{\lambda_i t} = e^{\sigma_i t} e^{j\omega_i t} = e^{\sigma_i t} (\cos(\omega_i t) + j \sin(\omega_i t))$ $j \sin(\omega_i t)$ Complex eigenvalues come in pairs,

terms will cancel out.

Example (I)

Given
$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 2 \\ -2 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-2t} \quad \mathbf{w/} \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

 $\mathbf{y} = \begin{bmatrix} 2 & 1 \end{bmatrix} \mathbf{x}$

Eigenvalues and eigenvectors of
$$\begin{bmatrix} 0 & 2 \\ -2 & -5 \end{bmatrix}$$
are $\lambda_{1,2} = -1, -4$ **and** $\mathbf{p}_{1,2} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

Example (2)

$$\int_0^t \Phi(t-\tau) \mathbf{Bu}(\tau) d\tau = \begin{bmatrix} \frac{2}{3}e^{-t} + \frac{1}{3}e^{-4t} - e^{-2t} \\ \frac{-1}{3}e^{-t} - \frac{2}{3}e^{-4t} + e^{-2t} \end{bmatrix}$$

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.6 24

enn

$$\begin{aligned} \mathbf{x}(t) &= e^{\mathbf{A}t} \begin{bmatrix} 1\\2 \end{bmatrix} + \int_0^t \Phi(t-\tau) \mathbf{B} \mathbf{u}(\tau) d\tau \\ &= \begin{bmatrix} \frac{10}{3}e^{-t} + \frac{4}{3}e^{-4t} - e^{-2t} \\ \frac{-5}{3}e^{-t} + \frac{8}{3}e^{-4t} + e^{-2t} \end{bmatrix} \end{aligned}$$
Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.6 25

State Space Design

Given
$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \quad \mathbf{w} / \mathbf{x}(0) = \mathbf{x}_0$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

Linear State Feedback Control Law

$$\mathbf{u} = -\mathbf{K}\mathbf{x} + \mathbf{r}$$

Closed-loop system
$$\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}$$

 $\mathbf{y} = (\mathbf{C} - \mathbf{D}\mathbf{K})\mathbf{x}$

Choose **K** such that CL response is stable.

Advantages of State Space Design

- Given $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \quad \mathbf{w} / \mathbf{x}(0) = \mathbf{x}_0$ $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$
- with \mathbf{u} = $-\mathbf{K}\mathbf{x}+\mathbf{r}$
 - I. Not restricted to 2nd order approximations
 - 2. Access to a larger range of closed-loop poles
 - 3. Allows for full state feedback

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Video 6.4 Vijay Kumar and Ani Hsieh

A Caveat – Controllability

A linear system is controllable if for each $\mathbf{x}(0) = \mathbf{x}_0$ and $\mathbf{x}(t_f) = \mathbf{x}_f$, there exists a $\mathbf{u}(t)$ that can get the system from \mathbf{x}_0 to \mathbf{x}_f at time t_f .

Such a linear system is controllable if and only if

$$det\left(\begin{bmatrix} | & | & | \\ \mathbf{B} & \mathbf{AB} & \mathbf{A}^{2}\mathbf{B} & \dots & \mathbf{A}^{n-1}\mathbf{B} \\ | & | & | & | & | \end{bmatrix}\right) \neq 0$$

Controllability Matrix

Feedback Law and Controllability

Let
$$\alpha(s) = s^n + \alpha_n s^{n-1} + \ldots + \alpha_2 s + \alpha_1$$

s.t.

 α_i are real coefficients. Then there exists $\mathbf{u} = -\mathbf{K}\mathbf{x}$ such that $det(s\mathbf{I} - \mathbf{A} + \mathbf{B}\mathbf{K}) = \alpha(s)$ if and only if $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ is controllable.

State feedback enables any controllable linear system to have arbitrary closed-loop poles!

Linear Quadratic (LQ) Control

Find optimal feedback control strategy that

$$\min_{\mathbf{u}(t),\mathbf{x}(t)} J = \int_{0}^{\infty} \left(\mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{u}^{T} \mathbf{R} \mathbf{u} \right) dt \quad \begin{array}{c} \text{Cost} \\ \text{Function} \\ \text{Subject to} \quad \dot{\mathbf{x}} = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u} \\ \mathbf{x}(0) = \mathbf{x}_{0} \end{array} \quad \begin{array}{c} \text{Cost} \\ \text{Function} \\ \text{Cost} \\ \text{Function} \\ \end{array}$$

Constrained Optimization Problem

Optimal Control

Optimal LQ Controller

$$\min_{\mathbf{u}(t),\mathbf{x}(t)} J = \int_0^\infty \left(\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{u}^T \mathbf{R} \mathbf{u} \right) dt$$

subject to $\mathbf{\dot{x}} = \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{u}$
 $\mathbf{x}(0) = \mathbf{x}_0$

w/ symmetric, positive definite matrix ${\boldsymbol Q}$ and ${\boldsymbol R}$

$$\mathbf{u}_* = -\mathbf{K}_* \mathbf{x} \quad \mathbf{w}/\mathbf{K}_* = \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P}$$

where $\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} - \mathbf{R}^{-1} \mathbf{B} \mathbf{B}^T \mathbf{P} + \mathbf{Q} = 0$

A Few More Words

The Algebraic Riccati Equation

$$\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} - \mathbf{R}^{-1} \mathbf{B} \mathbf{B}^T \mathbf{P} + \mathbf{Q} = 0$$

- **P** is n x n matrix
- **P** is unique

Engineering

- **P** is symmetric and positive definite
- $\mathbf{u}_* = -\mathbf{K}_* \mathbf{x}$ w/ $\mathbf{K}_* = \mathbf{R}^{-1} \mathbf{B}^T \mathbf{P}$ is optimal

w.r.t. the cost function J

Caveat for the Caveat – Observability

Recall: If $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ is controllable, then **K** can be chosen s.t. $\dot{\mathbf{x}} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}$ achieves arbitrary CL poles.

Assumption: $\mathbf{u} = -\mathbf{K}\mathbf{x}$

Example – Robot Joint Control (I)

Example – Robot Joint Control (2)

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k}{J_L} & -\frac{B_l}{J_L} & \frac{k}{J_L} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k}{J_m} & 0 & -\frac{k}{J_m} & \frac{B_m}{J_m} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{J_m} \end{bmatrix} \mathbf{u}$$

With
$$y = \mathbf{C} \ \mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} = x_1$$

Note:

1. Only θ_m is can be measured 2. $\mathbf{u} = -\mathbf{K}\mathbf{x}$ requires θ_l

Observers

- State estimators
- Use system model and measured output to estimate the full state

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k}{J_L} & -\frac{B_l}{J_L} & \frac{k}{J_L} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k}{J_m} & 0 & -\frac{k}{J_m} & \frac{B_m}{J_m} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{J_m} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \mathbf{C} \mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} = x_1$$

• Also a dynamical system $\mathbf{\dot{\hat{x}}}(t) = \mathbf{A}\mathbf{\hat{x}}(t) + \mathbf{B}\mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C}\mathbf{\hat{x}}(t) + \mathbf{D}\mathbf{u}(t)$

Obtaining $\mathbf{\hat{x}}(t)$

Let
$$\mathbf{\dot{\hat{x}}}(t) = \mathbf{A}\mathbf{\hat{x}} + \mathbf{B}\mathbf{u} + \mathbf{L}(\mathbf{y} - \mathbf{C} \mathbf{\hat{x}})$$

Error between plant

- A, B, C are known & estimate output
- Solve for $\hat{\mathbf{x}}(t)$ from any initial condition
- Use $\hat{\mathbf{x}}(t)$ in feedback law $\mathbf{u} = -\mathbf{K}\hat{\mathbf{x}}$
- Pick L s.t. $\hat{\mathbf{x}} \to \mathbf{x}$ as $t \to \infty$

Video 6.5 Vijay Kumar and Ani Hsieh

Property of Penn Engineering, Vijay Kumar and Ani Hsieh

Robo3x-1.6 39

Performance of the Estimator

Let $\mathbf{e}(t) = \mathbf{x} - \mathbf{\hat{x}}$ be the estimation error

Then, $\dot{\mathbf{e}} = (\mathbf{A} - \mathbf{L}\mathbf{C})\mathbf{e}$

I. Dynamics determined by $\lambda(\mathbf{A} - \mathbf{L}\mathbf{C})$

2. Pick L s. t.
$$e \rightarrow 0$$
 as $t \rightarrow \infty$

Eigenvalues of $(\mathbf{A} - \mathbf{L}\mathbf{C})$ can be arbitrarily set if and only if system is *observable*.

Observability

A linear system is observable if every $\mathbf{x}(0) = \mathbf{x}_0$ can be exactly determined from $\mathbf{y}(t)$ and $\mathbf{u}(t)$ in a finite time interval $t_0 \le t \le t_f$.

The pair
$$(\mathbf{A}, \mathbf{C})$$
 is observable if and only if

$$det(\begin{bmatrix} \mathbf{C} \\ \mathbf{A}^T \mathbf{C} \\ \mathbf{A}^{T^2} \mathbf{C} \\ \vdots \\ \mathbf{A}^{T^{n-1}} \mathbf{C} \end{bmatrix}) \neq 0$$
Observability
Matrix

Example – Robot Joint Control (3)

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k}{J_L} & -\frac{B_l}{J_L} & \frac{k}{J_L} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k}{J_m} & 0 & -\frac{k}{J_m} & \frac{B_m}{J_m} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{J_m} \end{bmatrix} \mathbf{u}$$
$$y = \mathbf{C}^T \mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{x} = x_1$$

With
$$\mathbf{u} = -\mathbf{K}\hat{\mathbf{x}}$$

 $\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{K} & \mathbf{B}\mathbf{K} \\ \mathbf{0} & \mathbf{A} - \mathbf{L}\mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix}$

Separation Principle: Allows us to separately design the feedback control and the state estimator

For nonlinear systems

In general, given

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

where **f** is a nonlinear function in **x**, possibly **u** What if ...

- I. We want to analyze system behavior around $\mathbf{x} = \mathbf{x}_e$?
- 2. We want to control system behavior around $\mathbf{x} = \mathbf{x}_e$?

Linearization

Given $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$ and $\mathbf{x} = \mathbf{x}_e$, $\mathbf{u} = \mathbf{u}_e$

• Let
$$\bar{\mathbf{x}} = \mathbf{x} - \mathbf{x}_e$$
 and $\bar{\mathbf{u}} = \mathbf{u} - \mathbf{u}_e$,
substitute into $\mathbf{f}(\mathbf{x}, \mathbf{u})$
 $\dot{\bar{\mathbf{x}}} = \mathbf{f}(\bar{\mathbf{x}}, \bar{\mathbf{u}})$

• Apply Taylor series expansion $about(\mathbf{x}_e, \mathbf{u}_e)$

$$\mathbf{\dot{\bar{x}}} \approx \mathbf{f}(\mathbf{x}_e, \mathbf{u}_e) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}|_{\mathbf{\bar{x}}, \mathbf{\bar{u}}} \mathbf{\bar{x}} + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}|_{\mathbf{\bar{x}}, \mathbf{\bar{u}}} \mathbf{\bar{u}}$$

Then
$$A \triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{x}}|_{\bar{\mathbf{x}},\bar{\mathbf{u}}} \quad B \triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{u}}|_{\bar{\mathbf{x}},\bar{\mathbf{u}}}$$

Linearization

$$\begin{split} \mathbf{\dot{\bar{x}}} &\approx \mathbf{f}(\mathbf{x}_{e}, \mathbf{u}_{e}) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}|_{\mathbf{\bar{x}}, \mathbf{\bar{u}}} \mathbf{\bar{x}} + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}|_{\mathbf{\bar{x}}, \mathbf{\bar{u}}} \mathbf{\bar{u}} \\ \\ \mathsf{Let} \ A &\triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{x}}|_{\mathbf{\bar{x}}, \mathbf{\bar{u}}} \quad \text{ and } B \triangleq \frac{\partial \mathbf{f}}{\partial \mathbf{u}}|_{\mathbf{\bar{x}}, \mathbf{\bar{u}}} \\ \\ \mathbf{\dot{\bar{x}}} &= \mathbf{A}\mathbf{\bar{x}} + \mathbf{B}\mathbf{\bar{u}} \end{split}$$

Proceed ...

