
 
Introduction to Basic Abstractions

Seif Haridi
haridi@kth.se

S. Haridi, KTHx ID2203.1x

Need of Distributed Abstractions
● Core of any distributed system is a set of

distributed algorithms
● Implemented as a middleware between network

(OS) and the application
● Reliable applications need underlying services

stronger than network protocols (e.g. TCP,
UDP)

2

S. Haridi, KTHx ID2203.1x

Need of Distributed Abstractions
● Core of any distributed system is a set of distributed

algorithms
● Implemented as a middleware between network (OS) and the

application

Applications
Algorithms in
Middleware

Channels in OS

Applications
Algorithms in
Middleware

Channels in OS

3

S. Haridi, KTHx ID2203.1x

Need of Distributed Abstractions
● Network protocols aren’t

enough
● Communication

● Reliability guarantees (e.g. TCP)
only offered for one-to-one
communication (client-server)

● How to do group communication?

Reliable broadcast
Causal order broadcast
Total order broadcast

Abstractions in this
course

4

S. Haridi, KTHx ID2203.1x

Need of Distributed Abstractions

● Network protocols aren’t
enough
● High-level services

● Sometimes many-to-many
communication isn’t enough

● Need reliable high-level services

Shared memory
Consensus

Atomic commit
Replicated state machine

Abstractions in this
course

5

S. Haridi, KTHx ID2203.1x

Reliable distributed abstractions

● Example 1: reliable broadcast
● Ensure that a message sent to a group of

processes is received (delivered) by all or none
● Example 2: atomic commit
● Ensure that the processes reach the same

decision on whether to commit or abort a
transaction

6

Event-based
Component Model

S. Haridi, KTHx ID2203.1x

Distributed Computing Model
● Set of processes and a network (communication links)
● Each process runs a local algorithm (program)
● Each process makes computation steps

● The network makes computation steps
● to store a message sent by a process
● to deliver a message to a process

● Message delivery triggers a computation step at the
receiving process

8

S. Haridi, KTHx ID2203.1x

The Distributed Computing Model
● Computation step at a process

● Receives a message (external, input)
● Performs local computation
● Sends one or more messages to some other processes (external,

output)

● Communication step:
● Depends on the network abstraction
● Receives a message from a process, or
● Delivers a message to a process

9

S. Haridi, KTHx ID2203.1x

Inside a Process
● A process consists of a set of components (automata)
● Components are concurrent
● Each component receives messages through an input

FIFO buffer
● Sends messages to other components
● Events are messages between components in the same

process
● Events are handled by procedures (actions) called Event

Handlers

10

S. Haridi, KTHx ID2203.1x

Inside a Process

11

S. Haridi, KTHx ID2203.1x

Event-based Programming
● Process executes program
● Each program consists of a set of modules

or component specifications
● At runtime these are deployed as

components
● The components in general form a

software stack

12

S. Haridi, KTHx ID2203.1x

Event-based Programming
● Process executes program
● Components interact via events (with attributes):
● Handled by Event Handlers

on event <coi Event1, attr1, attr2,...> do
 // local computation
 trigger <coj Event2, attr3, attr4,...>

13

S. Haridi, KTHx ID2203.1x

Event-based Programming
● Events can be almost anything

● Messages (most of the time)
● Timers (internal event)
● Conditions (e.g. x==5 & y<9)

● Two types of events
● Requests

● (flows downward) Inputs
● Indications

● (like responses/acks flows upward) Outputs

14

S. Haridi, KTHx ID2203.1x

Components in a Process

● Stack of components in a single process

Applications

Algorithms

Channels

commit_component

database_component

reliable_bcast_comp consensus

perfect_link_comp

request

request

request

request

indication

indication indication

indication

Local events
delivered in FIFO

order

15

S. Haridi, KTHx ID2203.1x

Channels as Modules

● Channels represented by modules (too)
● Request event:

● Send to destination some message (with data)

● Indication event:
● Deliver from source some message (with data)

trigger <send | dest, [data1, data2, …] >

upon event <deliver | src, [data1,data2, …]> do

16

S. Haridi, KTHx ID2203.1x

Example
● Application uses a Broadcast component
● which uses channel component to broadcast

Applications

Channels

bcast

app

channel

<sendBcast|m>

bcast

app

channel

app

channel

bcast

app

<send|p2,m> <send|p3,m>

Algorithms

<delBcast|p1,m> <delBcast|p1,m>

<deliver|p1,m> <deliver|p1,m>

p1 p2 p3

17

Specification

S. Haridi, KTHx ID2203.1x

Specification of a Service
● How to specify a distributed service (abstract)?

● Interface (aka Contract, API)
● Requests
● Responses

● Correctness Properties
● Safety
● Liveness

● Model
● Assumptions on failures
● Assumptions on timing (amount of synchrony)

● Implementation
● Composed of other services
● Adheres to interface and satisfies correctness
● Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”
19

S. Haridi, KTHx ID2203.1x

Simple Example: Job Handler
● Module:

● Name: JobHandler, instance jh
● Events:

● Request: 〈jh, Submit | job〉 : Requests a job to be processed
● Indication: 〈jh, Confirm | job〉 : Confirms that the given job has

been (or will be) processed
● Properties:

● Guaranteed response: Every submitted job is eventually
confirmed

20

S. Haridi, KTHx ID2203.1x 21

S. Haridi, KTHx ID2203.1x

Implementation Example
● Synchronous Job Handler
● Implements:

● JobHandler, instance jh
● upon event 〈jh, Submit | job〉 do

● process(job)
● trigger 〈jh, Confirm | job〉

22

S. Haridi, KTHx ID2203.1x

Another implementation: Asynchronous Job Handler

● Implements:
● JobHandler, instance jh

● upon event 〈jh, Init〉 do
● buffer := ∅

● upon event 〈jh, Submit | job〉 do
● buffer := buffer ∪ {job}
● trigger 〈jh, Confirm | job〉

● upon buffer ≠ ∅ do
● job := selectjob (buffer)
● process(job)
● buffer := buffer \ {job}

〈..Init〉 automatically
generated upon component

creation

23

S. Haridi, KTHx ID2203.1x

Component Composition

24

JobHandler
(jh)

TransformationHandler
(th)

⟨th submit …⟩

⟨jh submit …⟩ ⟨jh Confirm …⟩

⟨th Confirm …⟩
⟨th Error⟩

Properties  
Safety and Liveness

S. Haridi, KTHx ID2203.1x

Specification of a Service
● How to specify a distributed service (abstract)?

● Interface (aka Contract, API)
● Requests
● Responses

● Correctness Properties
● Safety
● Liveness

● Model
● Assumptions on failures
● Assumptions on timing (amount of synchrony)

● Implementation
● Composed of other services
● Adheres to interface and satisfies correctness
● Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”
26

S. Haridi, KTHx ID2203.1x

Correctness
● Always expressed in terms of
● Safety and liveness

● Safety
● Properties that state that nothing bad ever

happens
● Liveness
● Properties that state that something good

eventually happens
27

S. Haridi, KTHx ID2203.1x

Correctness Example
● Correctness of You in ID2203x
● Safety

● You should never fail the exam
 (marking exams costs money)

● Liveness
● You should eventually take the exam
 (university gets money when you pass)

28

S. Haridi, KTHx ID2203.1x

Correctness Example (2)

● Correctness of traffic lights at
intersection
● Safety

● Only one direction should have a
green light

● Liveness
● Every direction should eventually

get a green light

29

S. Haridi, KTHx ID2203.1x

Execution and Traces (reminder)
● An execution fragment of A is sequence of alternating

states and events
● s0, ε1, s1, ε2, …, sr, εr, ...
● (sk, εk+1, sk+1) transition of A for k≥0

● An execution is execution fragment where s0 is an initial
state

● A trace of an execution E, trace(E)
● The subsequence of E consisting of all external events
● ε1, ε2, …, εr, ...

30

S. Haridi, KTHx ID2203.1x

Safety & Liveness All That Matters

● A trace property P is a function that takes a
trace and returns true/false
● i.e. P is a predicate

● Any trace property can be expressed as the
conjunction of a safety property and a liveness
property”

31

S. Haridi, KTHx ID2203.1x

Safety Formally Defined

● The prefix of an trace T is the first k (for k ≥ 0)  
events of T
● I.e. cut off the tail of T
● I.e. finite beginning of T

● An extension of a prefix P is any trace that has P as a prefix

32

S. Haridi, KTHx ID2203.1x

Safety Defined

● Informally, property P is a safety property if
● Every trace T violating P has a bad event, s.t. every

execution starting like T and behaving like T up to the
bad event (including), will violate P regardless of what
it does afterwards

33

S. Haridi, KTHx ID2203.1x

Safety Defined

● Formally, a property P is a safety property if
● Given any execution E such that P(trace(E)) = false,
● There exists a prefix of E, s.t. every extension of that

prefix gives an execution F s.t. P(trace(F))=false

34

S. Haridi, KTHx ID2203.1x

Safety Example

● Point-to-point message communication
● Safety P:

● A message sent is delivered at most once

35

S. Haridi, KTHx ID2203.1x

Safety Example
● Point-to-point message communication

● Safety P:
● A message sent is delivered at most once

● Take an execution where a message is delivered more
than once
● Cut-off the tail after the second delivery
● Any continuation (extension) will give an execution which also

violates the required property

36

S. Haridi, KTHx ID2203.1x

Liveness Formally Defined

● A property P is a liveness property if
● Given any prefix F of an execution E,
● There exists an extension of trace(F) for which P

is true

● “As long as there is life there is hope”

37

S. Haridi, KTHx ID2203.1x

Liveness Example
● Point-to-point message communication

● Liveness P:
● A message sent is delivered at least once

38

S. Haridi, KTHx ID2203.1x

Liveness Example
● Point-to-point message communication

● Liveness P:
● A message sent is delivered at least once

● Take the prefix of any execution
● If prefix contains delivery, any extension satisfies P
● If prefix doesn’t contain the delivery, extend it so that it contains

a delivery, the prefix + extended part will satisfy P

39

S. Haridi, KTHx ID2203.1x

More on Safety
● Safety can only be

● satisfied in infinite time (you’re never safe)
● violated in finite time (when the bad happens)

● Often involves the word “never”, “at most”,
“cannot”,…

● Sometimes called “partial correctness”

40

S. Haridi, KTHx ID2203.1x

More on Liveness
● Liveness can only be

● satisfied in finite time (when the good happens)
● violated in infinite time (there’s always hope)

● Often involves the words eventually, or must
● Eventually means at some (often unknown) point in

“future”
● Liveness is often just “termination”

41

S. Haridi, KTHx ID2203.1x

Formal Definitions Visually

● Safety can always be
made false in finite time

● Safety is false for an
execution E if there exists
a prefix such that all
extensions are false

● Liveness can always be
made true in finite time

● Liveness is true for an
execution E if for all
prefixes there exists an
extension that is true

∃ prefix
false

∀ extensions

∀ prefixes
true

∃ extension

Trace T

Execution E

42

S. Haridi, KTHx ID2203.1x

Pondering Safety and Liveness

● Is really every property either liveness or safety?
● Every message should be delivered exactly 1 time [d]

● Every message is delivered at most once and
● Every message is delivered at least once

43

Process Failure Model

S. Haridi, KTHx ID2203.1x

Specification of a Service
● How to specify a distributed service (abstract)?

● Interface (aka Contract, API)
● Requests
● Responses

● Correctness Properties
● Safety
● Liveness

● Model
● Assumptions on failures
● Assumptions on timing (amount of synchrony)

● Implementation
● Composed of other services
● Adheres to interface and satisfies correctness
● Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”
45

S. Haridi, KTHx ID2203.1x

Model/Assumptions

● Specification needs to specify the distributed
computing model
● Assumptions needed for the algorithm to be correct

● Model includes assumptions on
● Failure behavior of processes & channels
● Timing behavior of processes & channel

46

S. Haridi, KTHx ID2203.1x

Process failures

● Processes may fail in four ways:
● Crash-stop
● Omissions
● Crash-recovery
● Byzantine/Arbitrary

● Processes that don’t fail in an execution are
correct

47

S. Haridi, KTHx ID2203.1x 48

Crash-stop failures
● Crash-stop failure
● Process stops taking steps

● Not sending messages
● Nor receiving messages

● Default failure model is crash-stop
● Hence, do not recover
● But processes are not allowed to recover? [d]

S. Haridi, KTHx ID2203.1x 49

Omission failures

● Process omits sending or receiving messages
● Some differentiate between

● Send omission
▪ Not sending messages the process has to send

according to its algorithm
● Receive omission
▪ Not receiving messages that have been sent to the

process
● For us, omission failure covers both types

S. Haridi, KTHx ID2203.1x 50

Crash-recovery Failures
● The process might crash

● It stops taking steps, not receiving and sending messages
● It may recover after crashing

● Special <Recovery> event automatically generated
● Restarting in some initial recovery state

● Has access to stable storage
● May read/write (expensive) to permanent storage device
● Storage survives crashes
● E.g., save state to storage, crash, recover, read saved

state

S. Haridi, KTHx ID2203.1x 51

Crash-recovery Failures
● Failure is different in crash-recovery model
● A process is faulty in an execution if

● It crashes and never recovers, or
● It crashes and recovers infinitely often (unstable)

● Hence, a correct process may crash and recover
● As long as it is a finite number of time

S. Haridi, KTHx ID2203.1x 52

Byzantine failures
● Byzantine/Arbitrary failures
● A process may behave arbitrarily

● Sending messages not specified by its algorithm
● Updating its state as not specified by its algorithm

● May behave maliciously, attacking the system
● Several malicious processes might collude

Fault-tolerance Hierarchy

S. Haridi, KTHx ID2203.1x 54

Fault-tolerance Hierarchy

● Is there a hierarchy among the failure types
● Which one is a special case of which? [d]
● An algorithm that works correctly under a general form

of failure, works correctly under a special form of
failure

● Crash special case of Omission
● Omission restricted to omitting everything after a

certain event

S. Haridi, KTHx ID2203.1x 55

Fault-tolerance Hierarchy
● In Crash-recovery

● Under assumption that processes use stable storage
as their main memory

● Crash-recovery is identical to omission
● Crashing, recovering, and reading last state from

storage
● Just same as omitting send/receiving while being

crashed

S. Haridi, KTHx ID2203.1x 56

Fault-tolerance Hierarchy
● In crash-recovery it is possible to use volatile

memory
● Then recovered nodes might not be able to

restore all of state
● Thus crash-recovery extends omission with

amnesia
● Omission is special case of Crash-recovery

● Crash-recovery , not allowing for amnesia

S. Haridi, KTHx ID2203.1x 57

Byzantine Crash-recovery

Fault-tolerance Hierarchy
● Crash-recovery special case of Byzantine

● Since Byzantine allows anything
● Byzantine tolerance → crash-recovery tolerance

● Crash-recovery → omission, omission → crash-stop

Omission Crash

Channel Behavior
(failures)

S. Haridi, KTHx ID2203.1x

Specification of a Service
● How to specify a distributed service (abstract)?

● Interface (aka Contract, API)
● Requests
● Responses

● Correctness Properties
● Safety
● Liveness

● Model
● Assumptions on failures
● Assumptions on timing (amount of synchrony)

● Implementation
● Composed of other services
● Adheres to interface and satisfies correctness
● Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”
59

S. Haridi, KTHx ID2203.1x 60

Channel failure modes
● Fair-Loss Links

● Channels delivers any message sent with non-zero
probability (no network partitions)

● Stubborn Links
● Channels delivers any message sent infinitely many

times
● Perfect Links

● Channels that delivers any message sent exactly once

S. Haridi, KTHx ID2203.1x

61

Channel failure modes

● Logged Perfect Links
● Channels delivers any message into a receiver’s

persistent store (message log)

● Authenticated Perfect Links
● Channels delivers any message m sent from process

p to process q, that guarantees the m is actually
sent from p to q

Fair Loss Links

S. Haridi, KTHx ID2203.1x 63

Channel failure modes

● Fair-Loss Links
● Channels delivers any message sent with non-zero

probability (no network partitions)

S. Haridi, KTHx ID2203.1x 64

Fair Loss Links (fll)

pi pj

〈fll Send | pj, m〉 〈fll Deliver | pi, m〉

fll

S. Haridi, KTHx ID2203.1x 65

Fair-loss links: Interfaces
● Module:

● Name: FairLossPointToPointLink instance fll
● Events:

● Request: 〈fll, Send | dest, m〉
● Request transmission of message m to process dest

● Indication:〈fll, Deliver | src, m〉
● Deliver message m sent by process src

● Properties:
● FL1, FL2, FL3.

S. Haridi, KTHx ID2203.1x 66

Fair-loss links
● Properties

● FL1. Fair-loss: If m is sent infinitely often by pi to pj, and
neither crash, then m is delivered infinitely often by pj

● FL2. Finite duplication: If a m is sent a finite number of
times by pi to pj, then it is delivered at most a finite number
of times by pj
● I.e. a message cannot be duplicated infinitely many times

● FL3. No creation: No message is delivered unless it was
sent

Stubborn Link

S. Haridi, KTHx ID2203.1x

68

Channel failure modes

● Stubborn Links
● Channels delivers any message sent infinitely many

times

S. Haridi, KTHx ID2203.1x

69

Stubborn links: interface
● Module:

● Name: StubbornPointToPointLink instance sl
● Events:

● Request: 〈sl, Send | dest, m〉
● Request the transmission of message m to process dest

● Indication:〈sl, Deliver src, m〉
● deliver message m sent by process src

● Properties:
● SL1, SL2

S. Haridi, KTHx ID2203.1x

70

Stubborn Links: interface
● Module:

● Name: StubbornPointToPointLink
instance sl

● Events:
● Request: 〈sl, Send | dest, m〉

● Request the transmission of message
m to process dest

● Indication:〈sl, Deliver src, m〉
● deliver message m sent by process src

● Properties:
● SL1, SL2

S. Haridi, KTHx ID2203.1x

71

Stubborn Links
● Properties
● SL1. Stubborn delivery: if a correct process pi

sends a message m to a correct process pj, then pj
delivers m an infinite number of times

● SL2. No creation: if a message m is delivered by
some process pj, then m was previously sent by
some process pi

S. Haridi, KTHx ID2203.1x

72

Implementing Stubborn Links
● Implementation

● Use the Lossy link
● Sender stores every message it

sends in sent
● It periodically resends all

messages in sent

S. Haridi, KTHx ID2203.1x 73

Algorithm (sl)
Implements: StubbornLinks instance sl
Uses: FairLossLinks, instance all
● upon event 〈sl, Init〉 do

● sent := ∅
● startTimer(TimeDelay)

● upon event 〈Timeout〉 do
● forall (dest, m) ∈ sent do

● trigger 〈fl, Send | dest, m〉
● startTimer(TimeDelay)

upon event 〈sl, Send | dest, m〉 do
• trigger 〈fll, Send | src, m〉
• sent := sent ∪ { (dest, m) }

upon event 〈fll, Deliver | src, m〉 do
• trigger 〈sl Deliver | src, m〉

S. Haridi, KTHx ID2203.1x 74

Implementing Stubborn Links
● Implementation

● Use the Lossy link
● Sender stores every message it sends in sent
● It periodically resends all messages in sent

● Correctness
● SL1. Stubborn delivery

● If process doesn’t crash, it will send every message infinitely
many times. Messages will be delivered infinitely many times.
Lossy link may only drop a (large) fraction.

● SL2. No creation
● Guaranteed by the Lossy link

Perfect Links

S. Haridi, KTHx ID2203.1x

Channel failure modes

● Perfect Links
● Channels that delivers any message sent exactly

once

76

S. Haridi, KTHx ID2203.1x

Perfect links: interface
● Module:

● Name: PerfectPointToPointLink, instance pl
● Events:

● Request: 〈pl, Send | dest, m〉
● Request the transmission of message m to node dest

● Indication: 〈pl, Deliver | src, m〉
● deliver message m sent by node src

● Properties:
● PL1, PL2, PL3

77

S. Haridi, KTHx ID2203.1x

Perfect links (Reliable links)
● Properties

● PL1. Reliable Delivery: If pi and pj are correct,
then every message sent by pi to pj is eventually
delivered by pj

● PL2. No duplication: Every message is delivered
at most once

● PL3. No creation: No message is delivered unless
it was sent

78

S. Haridi, KTHx ID2203.1x

Perfect links (Reliable links)
● Which one is safety/liveness/neither
● PL1. Reliable Delivery: If neither pi nor pj crashes, then every

message sent by pi to pj is eventually delivered by pj

● PL2. No duplication: Every message is delivered at most
once

● PL3. No creation: No message is delivered unless it was sent

(liveness)

(safety)

(safety)
79

S. Haridi, KTHx ID2203.1x

Perfect Link Implementation
● Implementation

● Use Stubborn links
● Receiver keeps log of all received messages in

Delivered
● Only deliver (perfect link Deliver) messages that weren’t

delivered before
● Correctness

● PL1. Reliable Delivery
● Guaranteed by Stubborn link. In fact the Stubborn link will

deliver it infinite number of times
● PL2. No duplication

● Guaranteed by our log mechanism
● PL3. No creation

● Guaranteed by Stubborn link (and its lossy link? [D])
80

S. Haridi, KTHx ID2203.1x

FIFO Perfect links (Reliable links)
● Properties
● PL1. Reliable Delivery:
● PL2. No duplication:
● PL3. No creation: No message is delivered

unless it was sent
● FFPL. Ordered Delivery: if m1 is sent before m2

by pi to pj and m2 is delivered by pj then m1 is
delivered by pj before m2

81

S. Haridi, KTHx ID2203.1x

Internet TCP vs. FIFO Perfect Links
● TCP provides reliable delivery of packets
● TCP reliability is so called “session based”
● Uses sequence numbers

● ACK: “I have received everything up to byte X”
● Implementing Perfect Link abstraction on TCP requires

reconciling messages between the sender and receiver
when reestablishing connection after a session break

82

S. Haridi, KTHx ID2203.1x

Default Assumptions in Course
● We assume perfect links (aka reliable) most of time in the course

(unless specified otherwise)
● Roughly, reliable links ensure messages exchanged between correct

are delivered exactly once
● NB. Messages are uniquely identified and

● the message identifier includes the sender’s identifier
● i.e. if “same” message sent twice, it’s considered as two different

messages

● Many algorithm for crash-recovery process model assume either a
Stubborn link, or Logged perfect link

83

Timing Assumptions

S. Haridi, KTHx ID2203.1x

Specification of a Service
● How to specify a distributed service (abstract)?

● Interface (aka Contract, API)
● Requests
● Responses

● Correctness Properties
● Safety
● Liveness

● Model
● Assumptions on failures
● Assumptions on timing (amount of synchrony)

● Implementation
● Composed of other services
● Adheres to interface and satisfies correctness
● Has internal events

declarative
specification

“what”
aka problem

imperative,
many possible

“how”
85

S. Haridi, KTHx ID2203.1x 86

Timing Assumptions
● Timing assumptions

● Processes
● bounds on time to make a computation step

● Network
● Bounds on time to transmit a message between a

sender and a receiver
● Clocks:

● Lower and upper bounds on clock rate-drift and
clock skew w.r.t. real time

Asynchronous Model
and Causality

S. Haridi, KTHx ID2203.1x 88

Asynchronous Systems
● No timing assumption on processes and channels

● Processing time varies arbitrarily
● No bound on transmission time
● Clocks of different processes are not synchronized

● Reasoning in this model is based on which events may
cause other events
● Causality

● Total order of event not observable locally, no access to
global clocks

S. Haridi, KTHx ID2203.1x 89

Causal Order (happen before)
● The relation ➝β on the events of an execution (or trace
β), called also causal order, is defined as follows
● If a occurs before b on the same process, then a ➝β b
● If a is a send(m) and b deliver(m), then a ➝β b
● a ➝β b is transitive

● i.e. If a➝β b and b ➝β c then a ➝β c

● Two events, a and b, are concurrent if not a ➝β b and not b ➝β a
● a||b

S. Haridi, KTHx ID2203.1x 90

Causal Order (happen before)
● The relation ➝

β
 on the

events of an execution (or
trace β), called also causal
order, is defined as follows
● If a occurs before b on

the same process, then a
➝
β

b
● If a is a send(m) and b

deliver(m), then a ➝
β

b
● a ➝

β
b is transitive

● i.e. If a➝
β

b and b ➝
β

c
then a ➝

β
c

● Two events, a and b, are
concurrent if not a ➝

β
b and

not b ➝
β

a
● a||b

e1 e2
p1

p2

p3

e1

e2

p1

p2

p3

e1

e’ e”

e2

p1

p2

p3

S. Haridi, KTHx ID2203.1x 91

Example of Causally Related events

Time-space diagram

p1

p2

p3

time

Causally Related Events

Concurrent Events Causally Related Events

S. Haridi, KTHx ID2203.1x 92

Similarity of executions
● The view of pi in E, denoted E|pi, is
● the subsequence of execution E restricted to

events and state of pi

● Two executions E and F are similar w.r.t pi if

● E|pi = F|pi
● Two executions E and F are similar if
● E and F are similar w.r.t every process

S. Haridi, KTHx ID2203.1x 93

Equivalence of Executions
● Computation Theorem:

● Let E be an execution (c0,e1,c1,e2,c2,…), and V the
trace of events (e1,e2,e3,…)

● Let P be a permutation of V, preserving causal order
● P=(f1, f2, f3…) preserves the causal order of V when for

every pair of events fi ➝V fj implies fi is before fj in P

● Then E is similar to the execution starting in c0

with trace P

S. Haridi, KTHx ID2203.1xID2203- Seif Haridi, KTH/SICS 94

Equivalence of executions

● If two executions F and E have the same
collection of events, and their causal order is
preserved, F and E are said to be similar
executions, written F~E
● F and E could have different permutation of events

as long as causality is preserved!

S. Haridi, KTHx ID2203.1xID2203- Seif Haridi, KTH/SICS 95

Computations
● Similar executions form equivalence classes where every execution in a

class is similar to the other executions in the same class

● I.e. the following always holds for executions:
● ~ is reflexive

● I.e. a~ a for any execution
● ~ is symmetric

● I.e. If a~b then b~a for any executions a and b
● ~ is transitive

● If a~b and b~c, then a~c, for any executions a, b, c

● Equivalence classes are called computations of executions

S. Haridi, KTHx ID2203.1xID2203- Seif Haridi, KTH/SICS 96

Example of similar executions

p1
p2
p3

time

p1
p2
p3

time

p1
p2
p3

time

Same color ~ Causally related

● All three executions are part
of the same computation, as
causality is preserved

S. Haridi, KTHx ID2203.1xID2203- Seif Haridi, KTH/SICS 97

Two important results (1)

● Computation theorem gives two important results

● Result 1: There is no algorithm in the asynchronous
system model that can observe the order of the sequence
of events (that can “see” the time-space diagram, or the
trace) for all executions

S. Haridi, KTHx ID2203.1xID2203- Seif Haridi, KTH/SICS 98

Two important results (1)

● Proof:
● Assume such an algorithm exists. Assume p knows the

order in the final (repeated) configuration
● Take two distinct similar executions of algorithm

preserving causality
● Computation theorem says their final repeated

configurations are the same, then the algorithm cannot
have observed the actual order of events as they differ

S. Haridi, KTHx ID2203.1xID2203- Seif Haridi, KTH/SICS 99

Two important results (2)

● Result 2: The computation theorem does not hold if the
model is extended such that each process can read a local
hardware clock

● Proof:
● Similarly, assume a distributed algorithm in which each process reads

the local clock each time a local event occurs
● The final (repeated) configuration of different causality preserving

executions will have different clock values, which would contradict the
computation theorem

S. Haridi, KTHx ID2203.1x 100

Synchronous Systems
● Model assumes

● Synchronous computation
● Known upper bound on how long it takes to perform computation

● Synchronous communication
● Known upper bound on message transmission delay

● Synchronous physical clocks
● Nodes have local physical clock
● Known upper bound clock-drift rate and clock skew

● Why study synchronous systems? [d]

S. Haridi, KTHx ID2203.1x 101

Partial Synchrony
● Asynchronous system

● Which eventually becomes synchronous
● Cannot know when, but in every execution, some bounds eventually

will hold
● It’s just a way to formalize the following

● Your algorithm will have a long enough time window, where
everything behaves nicely (synchrony), so that it can achieve its
goal

● Are there such systems? [d]

S. Haridi, KTHx ID2203.1x

102

Partial Synchrony
● Your algorithm will have a long enough time window,

where everything behaves nicely (synchrony), so that it
can achieve its goal
● Useful for proving liveness properties of algorithms

system
synchronous
from now on

algorithm
terminates

enough time to achieve goal

start

S. Haridi, KTHx ID2203.1x

103

Partial Synchrony
● Notice the time at which a system behaves synchronously is

unknown
● To prove safety properties we need to assume that the system

is asynchronous
● To prove liveness we use the partial synchrony assumption

system
synchronous
from now on

algorithm
terminates

enough time to achieve goal

start

S. Haridi, KTHx ID2203.1x

Timed Asynchronous Systems
● No timing assumption on processes and channels

● Processing time varies arbitrarily
● No bound on transmission time

● Bounds on Clocks drift-rate and clock skews
● Interval clocks
● At real-time t, clock of process P is in interval (t-𝜌, t+𝜌)
● 𝜌 depends on P

104

105

Logical Clocks

S. Haridi, KTHx ID2203.1x

Logical Clocks

● A clock is function t from the events to a
totally order set such that for events a and b
● if a ➝ b then t(a) < t(b)

● We are interested in ➝ being the happen-
before relation

106

S. Haridi, KTHx ID2203.1x 107

Causal Order (happen before)

● The relation ➝β on the events of an execution (or trace
β), called also causal order, is defined as follows
● If a occurs before b on the same process, then a ➝β b
● If a is a send(m) and b deliver(m), then a ➝β b
● a ➝β b is transitive

● i.e. If a➝β b and b ➝β c then a ➝β c

● Two events, a and b, are concurrent if not a ➝β b and not b ➝β a
● a||b

S. Haridi, KTHx ID2203.1x 108

Causal Order (happen before)
e1 e2

p1

p2

p3

e1

e2

p1

p2

p3

e1

e’ e”

e2

p1

p2

p3

S. Haridi, KTHx ID2203.1x 109

Observing Causality

● So causality is all that matters…

● …how to locally tell if two events are causally
related?

S. Haridi, KTHx ID2203.1x 110

Lamport Clocks at process p

● Each process has a local logical clock, kept in variable tp,
initially tp = 0
● A process p piggybacks (tp, p) on every message sent

● On internal event a:
● tp := tp + 1 ; perform internal event a

● On send event message m:
● tp := tp + 1 ; send(m, (tp, p))

● On delivery event a of m with timestamp (tq, q) from q:
● tp := max(tp, tq) + 1 ; perform delivery event a

S. Haridi, KTHx ID2203.1xID2203- Seif Haridi, KTH/SICS 111

Lamport Clocks (2)

● Observe the timestamp (t, p) is unique
● Comparing two timestamps (tp,p) and (tq,q)
● (tp,p)<(tq,q) iff (tp<tq or (tp=tq and p<q))
● i.e. break ties using process identifiers
● e.g. (5,p5) < (7,p2), (4,p2) < (4,p3)

S. Haridi, KTHx ID2203.1x 112

Lamport Clocks (2)
● Lamport logical clocks guarantee that:
● If a ➝𝛽 b, then t(a) < t(b),
● where t(a) is Lamport clock of event a

● events a and b are on the same process p, tp is strictly increasing, so if a is
before b, then t(a) < t(b)

● a is a send event with tq and b is deliver event, t(b) is at least one larger than
tq (t(a))

● transitivity of t(a) < t(b) < t(c) implies the transitivity condition of the happen
before relation

S. Haridi, KTHx ID2203.1x 113

Lamport logical clocks
p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

● Lamport logical clocks guarantee that:
● If a ➝𝛽 b, then t(a) < t(b),
● if t(a) ≥ t(b), then not (a ➝𝛽 b)

114

Vector Clocks

S. Haridi, KTHx ID2203.1x

Vector clocks
● The happen-before relation is a partial order
● In contrast logical clocks are total

● Information about non-causality is lost
● We cannot tell by looking to the timestamps of event a and b whether

there is a causal relation between the events, or they are concurrent
● Vector clocks guarantee that:

● if v(a) < v(b) then a ➝𝛽 b, in addition to

● if a ➝𝛽 b then v(a) < v(b)

● where v(a) is a vector clock of event a

115

S. Haridi, KTHx ID2203.1x

Non-causality and Concurrent events
● Two events a and b are concurrent (a ||𝛽 b) in

an execution E (trace(E) = 𝛽) if
● not a ➝𝛽 b and not b ➝𝛽 a

● Computation theorem implies that if (a ||𝛽 b) in 𝛽 then
there are two executions (with traces 𝛽1 and 𝛽2) that
are similar where a occurs before b in 𝛽1, b occurs
before a in 𝛽2

116

S. Haridi, KTHx ID2203.1x

Non-causality and Concurrent events

117

p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

a

b

a

b

S. Haridi, KTHx ID2203.1x

Vector clock definition
● Vector clock for an event a

● v(a) = (𝑥1,…,𝑥n)
● 𝑥i is the number of events at pi that happens-before a
● for each such event e: e ➝ a

118

p1

p2

p3

time

a

S. Haridi, KTHx ID2203.1x 119

Vector Timestamps
● Processes p1, …, pn
● Each process pi has local vector v of size n (number of

processes)
● v[i] = 0 for all i in 1…n
● Piggyback v on every sent message

● For each transition (on each event) update local v at pi:
● v[i] := v[i] + 1 (internal, send or deliver)
● v[j] := max(v[j], vq[j]), for all j ≠ i (deliver)

● where vq is clock in message received from process q

S. Haridi, KTHx ID2203.1x 120

Comparing Vector Clocks
● v

p
≤ v

q
 iff

● v
p
[i]≤v

q
[i] for all i

● v
p
< v

q
 iff

● v
p
≤ v

q
and for some i, v

p
[i] < v

q
[i]

● v
p
 and v

q
 are concurrent (v

p
 || v

q
) iff

● not v
p
<v

q
, and not v

q
<v

p

● Vector clocks guarantee
● If v(a)

< v(b) then a ➝

b, and

● If a ➝

b, then v(a)

< v(b)

● where v(a) is the vector clock of
event a

(3,0,0) ≤ (3,1,0)

[3,0,0] < [3,1,0]

[3,1,0] <> [4,0,0]

S. Haridi, KTHx ID2203.1x 121

Example of Vector Timestamps

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

b

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

b

v(a) < v(b) implies a ➝ b

v(a) <> v(b) implies a || b

S. Haridi, KTHx ID2203.1x 122

Vector Timestamps

● For any events a and b, and trace 𝛽 :
● v(a) and v(b) are incomparable if and only if a||b
● v(a) < v(b) if and only if a ➝ b

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

bc

S. Haridi, KTHx ID2203.1x 123

Example of Vector Timestamps

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

Great! But cannot be done with smaller
vectors than size n, for n nodes

S. Haridi, KTHx ID2203.1x 124

Partial and Total Orders
● Only a partial order or a total order? [d]

● the relation ➝β on events in executions
● Partial: ➝β doesn’t order concurrent events

● the relation < on Lamport logical clocks
● Total: any two distinct clock values are ordered (adding pid)

● the relation < on vector timestamps
● Partial: timestamp of concurrent events not ordered

S. Haridi, KTHx ID2203.1x 125

Logical clock vs. Vector clock
● Logical clock

● If a ➝β b then t(a) < t(b) (1)

● Vector clock
● If a ➝β b then v(a) < v(b) (1)
● If v(a) < v(b) then a ➝β b (2)

● Which of (1) and (2) is more useful? [d]

● What extra information do vector clocks give? [d]

