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Need of Distributed Abstractions
● Core of any distributed system is a set of 

distributed algorithms 
● Implemented as a middleware between network 

(OS) and the application 
● Reliable applications need underlying services 

stronger than network protocols (e.g. TCP, 
UDP)
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Need of Distributed Abstractions
● Core of any distributed system is a set of distributed 

algorithms 
● Implemented as a middleware between network (OS) and the 

application

Applications
Algorithms in 
Middleware

Channels in OS

Applications
Algorithms in 
Middleware

Channels in OS
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Need of Distributed Abstractions
● Network protocols aren’t 

enough 
● Communication 

● Reliability guarantees (e.g. TCP) 
only offered for one-to-one 
communication (client-server) 

● How to do group communication?

Reliable broadcast 
Causal order broadcast 
Total order broadcast

Abstractions in this 
course 
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Need of Distributed Abstractions

● Network protocols aren’t 
enough 
● High-level services 

● Sometimes many-to-many 
communication isn’t enough 

● Need reliable high-level services

Shared memory 
Consensus 

Atomic commit 
Replicated state machine

Abstractions in this 
course 
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Reliable distributed abstractions

● Example 1: reliable broadcast 
● Ensure that a message sent to a group of 

processes  is received (delivered) by all or none 
● Example 2: atomic commit 
● Ensure that the processes reach the same 

decision on whether to commit or abort a 
transaction

6
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Distributed Computing Model
● Set of processes and a network (communication links) 
● Each process runs a local algorithm (program) 
● Each process makes computation steps 

● The network makes computation steps  
● to store a message sent by a process 
● to deliver a message to a process   

● Message delivery triggers a computation step at the 
receiving process
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The Distributed Computing Model
● Computation step at a process  

● Receives a message  (external, input) 
● Performs local computation 
● Sends one or more messages to some other processes (external, 

output)  

● Communication step:  
● Depends on the network abstraction 
● Receives a message from a process, or 
● Delivers a message to a process
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Inside a Process
● A process consists of a set of components (automata) 
● Components are concurrent 
● Each component  receives messages through an input 

FIFO buffer  
● Sends messages to other components 
● Events are messages between components in the same 

process 
● Events are handled by procedures (actions) called Event 

Handlers
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Inside a Process 
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Event-based Programming
● Process executes program 
● Each program consists of a set of modules 

or component specifications 
● At runtime these are deployed as 

components  
● The components in general form a 

software stack 
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Event-based Programming
● Process executes program 
● Components interact via events (with attributes): 
● Handled by Event Handlers

on event <coi Event1, attr1, attr2,...> do   
 // local computation 
 trigger <coj Event2, attr3, attr4,...>
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Event-based Programming
● Events can be almost anything 

● Messages (most of the time) 
● Timers (internal event) 
● Conditions (e.g. x==5 & y<9) 

● Two types of events 
● Requests  

● (flows downward) Inputs  
● Indications  

● (like responses/acks flows upward) Outputs

14
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Components in a Process

● Stack of components in a single process

Applications

Algorithms

Channels

commit_component

database_component

reliable_bcast_comp consensus

perfect_link_comp

request

request

request

request

indication

indication indication

indication

Local events 
delivered in FIFO 

order
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Channels as Modules

● Channels represented by modules (too) 
● Request event: 

● Send to destination some message (with data) 

● Indication event: 
● Deliver from source some message (with data)

trigger <send | dest, [data1, data2, …] >

upon event <deliver | src, [data1,data2, …]> do  

16
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Example
● Application uses a Broadcast component 
● which uses channel component to broadcast

Applications

Channels

bcast

app

channel

<sendBcast|m>

bcast

app

channel

app

channel

bcast

app

<send|p2,m> <send|p3,m>

Algorithms

<delBcast|p1,m> <delBcast|p1,m>

<deliver|p1,m> <deliver|p1,m>

p1 p2 p3
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Specification of a Service
● How to specify a distributed service (abstract)? 

● Interface (aka Contract, API) 
● Requests 
● Responses 

● Correctness Properties 
● Safety 
● Liveness 

● Model 
● Assumptions on failures 
● Assumptions on timing (amount of synchrony) 

● Implementation 
● Composed of other services  
● Adheres to interface and satisfies correctness 
● Has internal events

declarative 
specification 

“what” 
aka problem

imperative,  
many possible 

“how”
19
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Simple Example: Job Handler  
● Module: 

● Name: JobHandler, instance jh 
● Events: 

● Request:  〈jh, Submit | job〉 : Requests a job to be processed 
● Indication: 〈jh, Confirm | job〉 : Confirms that the given job has 

been (or will be) processed 
● Properties: 

● Guaranteed response: Every submitted job is eventually 
confirmed
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Implementation Example
● Synchronous Job Handler 
● Implements: 

● JobHandler, instance jh 
● upon event  〈jh, Submit | job〉  do 

● process(job) 
● trigger 〈jh, Confirm | job〉

22
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Another implementation: Asynchronous Job Handler  

● Implements: 
● JobHandler, instance jh 

● upon event 〈jh, Init〉  do 
● buffer := ∅ 

● upon event 〈jh, Submit | job〉  do 
● buffer := buffer ∪ {job} 
● trigger 〈jh, Confirm | job〉  

● upon  buffer  ≠ ∅  do 
● job := selectjob (buffer) 
● process(job) 
● buffer := buffer \ {job}

〈..Init〉 automatically 
generated upon component 

creation

23
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Component Composition

24

JobHandler  
(jh) 

TransformationHandler 
(th)

⟨th submit …⟩ 

⟨jh submit …⟩ ⟨jh Confirm …⟩ 

⟨th Confirm …⟩ 
⟨th Error⟩
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Specification of a Service
● How to specify a distributed service (abstract)? 

● Interface (aka Contract, API) 
● Requests 
● Responses 

● Correctness Properties 
● Safety 
● Liveness 

● Model 
● Assumptions on failures 
● Assumptions on timing (amount of synchrony) 

● Implementation 
● Composed of other services  
● Adheres to interface and satisfies correctness 
● Has internal events

declarative 
specification 

“what” 
aka problem

imperative,  
many possible 

“how”
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Correctness
● Always expressed in terms of 
● Safety and liveness 

● Safety 
● Properties that state that nothing bad ever 

happens 
● Liveness 
● Properties that state that something good 

eventually happens
27
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Correctness Example
● Correctness of You in ID2203x 
● Safety 

● You should never fail the exam  
 (marking exams costs money) 

● Liveness 
● You should eventually take the exam 
 (university gets money when you pass)
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Correctness Example (2)

● Correctness of traffic lights at 
intersection 
● Safety 

● Only one direction should have a 
green light 

● Liveness 
● Every direction should eventually 

get a green light
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Execution and Traces (reminder)
● An execution fragment of A is sequence of alternating 

states and events 
● s0,  ε1, s1, ε2, …, sr, εr, ...  
● (sk, εk+1, sk+1) transition of A for k≥0 

● An execution is execution fragment where s0 is an initial 
state 

● A trace of an execution E, trace(E) 
● The subsequence of E consisting of all external events 
● ε1, ε2, …, εr, ... 
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Safety & Liveness All That Matters

● A trace property P is a function that takes a 
trace and returns true/false 
● i.e. P is a predicate 

● Any trace property can be expressed as the 
conjunction of a safety property and a liveness 
property”
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Safety Formally Defined

● The prefix of an trace T  is the first k  (for k ≥ 0)  
events of T 
● I.e. cut off the tail of T 
● I.e. finite beginning of T 

● An extension of a prefix P is any trace that has P as a prefix

32
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Safety Defined

● Informally, property P is a safety property if 
● Every trace T violating P has a bad event, s.t. every 

execution starting like T and behaving like T up to the 
bad event (including), will violate P regardless of what 
it does afterwards

33
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Safety Defined

● Formally, a property P is a safety property if 
● Given any execution E such that P(trace(E)) = false,  
● There exists a prefix of E, s.t. every extension of that 

prefix gives an execution F s.t. P(trace(F))=false
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Safety Example

● Point-to-point message communication 
● Safety P: 

● A message sent is delivered at most once

35
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Safety Example
● Point-to-point message communication 

● Safety P: 
● A message sent is delivered at most once 

● Take an execution where a message is delivered more 
than once 
● Cut-off the tail after the second delivery 
● Any continuation (extension) will give an execution which also 

violates the required property
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Liveness Formally Defined

● A property P is a liveness property if 
● Given any prefix F of an execution E,   
● There exists an extension of trace(F) for which P 

is true 

● “As long as there is life there is hope”
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Liveness Example
● Point-to-point message communication 

● Liveness P: 
● A message sent is delivered at least once

38
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Liveness Example
● Point-to-point message communication 

● Liveness P: 
● A message sent is delivered at least once 

● Take the prefix of any execution 
● If prefix contains delivery, any extension satisfies P 
● If prefix doesn’t contain the delivery, extend it so that it contains 

a delivery, the prefix + extended part will satisfy P

39
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More on Safety 
● Safety can only be 

● satisfied in infinite time (you’re never safe) 
● violated in finite time (when the bad happens) 

● Often involves the word “never”, “at most”, 
“cannot”,… 

● Sometimes called “partial correctness”

40



S. Haridi, KTHx ID2203.1x

More on Liveness
● Liveness can only be 

● satisfied in finite time (when the good happens) 
● violated in infinite time (there’s always hope) 

● Often involves the words eventually, or must 
● Eventually means at some (often unknown) point in 

“future” 
● Liveness is often just “termination”

41
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Formal Definitions Visually

● Safety can always be 
made false in finite time 

● Safety is false for an 
execution E if there exists 
a prefix such that all 
extensions are false 

● Liveness can always be 
made true in finite time 

● Liveness is true for an 
execution E if for all 
prefixes there exists an 
extension that is true

∃ prefix
false

∀ extensions

∀ prefixes
true

∃ extension

Trace T

Execution E
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Pondering Safety and Liveness

● Is really every property either liveness or safety? 
● Every message should be delivered exactly 1 time [d] 

● Every message is delivered at most once and 
● Every message is delivered at least once

43
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Specification of a Service
● How to specify a distributed service (abstract)? 

● Interface (aka Contract, API) 
● Requests 
● Responses 

● Correctness Properties 
● Safety 
● Liveness 

● Model 
● Assumptions on failures 
● Assumptions on timing (amount of synchrony) 

● Implementation 
● Composed of other services  
● Adheres to interface and satisfies correctness 
● Has internal events

declarative 
specification 

“what” 
aka problem

imperative,  
many possible 

“how”
45
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Model/Assumptions

● Specification needs to specify the distributed 
computing model 
● Assumptions needed for the algorithm to be correct 

● Model includes assumptions on 
● Failure behavior of processes & channels 
● Timing behavior of processes & channel

46
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Process failures

● Processes may fail in four ways: 
● Crash-stop 
● Omissions 
● Crash-recovery 
● Byzantine/Arbitrary 

● Processes that don’t fail in an execution are 
correct

47



S. Haridi, KTHx ID2203.1x 48

Crash-stop failures
● Crash-stop failure 
● Process stops taking steps 

● Not sending messages 
● Nor receiving messages 

● Default failure model is crash-stop 
● Hence, do not recover 
● But processes are not allowed to recover? [d]
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Omission failures

● Process omits sending or receiving messages 
● Some differentiate between 

● Send omission 
▪ Not sending messages the process has to send 

according to its algorithm 
● Receive omission 
▪ Not receiving messages that have been sent to the 

process 
● For us, omission failure covers both types
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Crash-recovery Failures 
● The process might crash 

● It stops taking steps, not receiving and sending messages 
● It may recover after crashing 

● Special <Recovery> event automatically generated 
● Restarting in some initial recovery state  

● Has access to stable storage 
● May read/write (expensive) to permanent storage device 
● Storage survives crashes 
● E.g., save state to storage, crash, recover, read saved 

state
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Crash-recovery Failures
● Failure is different in crash-recovery model 
● A process is faulty in an execution if 

● It crashes and never recovers, or 
● It crashes and recovers infinitely often (unstable) 

● Hence, a correct process may crash and recover 
● As long as it is a finite number of time
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Byzantine failures
● Byzantine/Arbitrary failures 
● A process may behave arbitrarily 

● Sending messages not specified by its algorithm 
● Updating its state as not specified by its algorithm 

● May behave maliciously, attacking the system 
● Several malicious processes might collude
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Fault-tolerance Hierarchy 

● Is there a hierarchy among the failure types 
● Which one is a special case of which? [d] 
● An algorithm that works correctly under a general form 

of failure, works correctly under a special form of 
failure 

● Crash special case of Omission 
● Omission restricted to omitting everything after a 

certain event
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Fault-tolerance Hierarchy 
● In Crash-recovery 

● Under assumption that processes use stable storage 
as their main memory 

● Crash-recovery is identical to omission 
● Crashing, recovering, and reading last state from 

storage 
● Just same as omitting send/receiving while being 

crashed
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Fault-tolerance Hierarchy
● In crash-recovery it is possible to use volatile 

memory 
● Then recovered nodes might not be able to 

restore all of state 
● Thus crash-recovery extends omission with 

amnesia 
● Omission is special case of Crash-recovery 

● Crash-recovery , not allowing for amnesia
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Byzantine Crash-recovery

Fault-tolerance Hierarchy 
● Crash-recovery special case of Byzantine 

● Since Byzantine allows anything 
● Byzantine tolerance → crash-recovery tolerance 

● Crash-recovery → omission, omission → crash-stop

Omission Crash
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Specification of a Service
● How to specify a distributed service (abstract)? 

● Interface (aka Contract, API) 
● Requests 
● Responses 

● Correctness Properties 
● Safety 
● Liveness 

● Model 
● Assumptions on failures 
● Assumptions on timing (amount of synchrony) 

● Implementation 
● Composed of other services  
● Adheres to interface and satisfies correctness 
● Has internal events

declarative 
specification 

“what” 
aka problem

imperative,  
many possible 

“how”
59
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Channel failure modes
● Fair-Loss Links 

● Channels delivers any message sent with non-zero 
probability (no network partitions) 

● Stubborn Links 
● Channels delivers any message sent infinitely many 

times  
● Perfect Links 

● Channels that delivers any message sent exactly once
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61

Channel failure modes

● Logged  Perfect Links 
● Channels delivers any message into a receiver’s  

persistent store (message log) 

● Authenticated Perfect Links 
● Channels delivers any message m sent from process 

p to process q, that guarantees the m is actually 
sent from p to q



Fair Loss Links
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Channel failure modes

● Fair-Loss Links 
● Channels delivers any message sent with non-zero 

probability (no network partitions)
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Fair Loss Links (fll)

pi pj

〈fll Send | pj, m〉 〈fll Deliver | pi, m〉

fll
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Fair-loss links: Interfaces
● Module: 

● Name: FairLossPointToPointLink instance fll 
● Events: 

● Request: 〈fll, Send | dest, m〉 
● Request transmission of message m to process dest 

● Indication:〈fll, Deliver | src, m〉 
● Deliver message m sent by process src 

● Properties: 
● FL1, FL2, FL3. 
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Fair-loss links
● Properties 

● FL1. Fair-loss: If m is sent infinitely often by pi to pj, and 
neither crash, then m is delivered infinitely often by pj 

● FL2. Finite duplication: If a m is sent a finite number of 
times by pi to pj, then it is  delivered at most a finite number 
of times by pj 
● I.e. a message cannot be duplicated infinitely many times 

● FL3. No creation: No message is delivered unless it was 
sent



Stubborn Link
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Channel failure modes

● Stubborn Links 
● Channels delivers any message sent infinitely many 

times 
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Stubborn links: interface
● Module: 

● Name: StubbornPointToPointLink instance sl 
● Events: 

● Request: 〈sl, Send | dest, m〉 
● Request the transmission of message m to process dest 

● Indication:〈sl, Deliver src, m〉 
● deliver message m sent by process src 

● Properties: 
● SL1, SL2 
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70

Stubborn Links: interface
● Module: 

● Name: StubbornPointToPointLink 
instance sl 

● Events: 
● Request: 〈sl, Send | dest, m〉 

● Request the transmission of message 
m to process dest 

● Indication:〈sl, Deliver src, m〉 
● deliver message m sent by process src 

● Properties: 
● SL1, SL2 
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Stubborn Links
● Properties 
● SL1. Stubborn delivery:  if a correct process pi 

sends a message m to a correct process pj, then pj 
delivers m an infinite number of times  

● SL2. No creation: if a message m is delivered by 
some process pj, then m was previously sent by 
some process pi
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Implementing Stubborn Links
● Implementation 

● Use the Lossy link 
● Sender stores every message it 

sends in sent 
● It periodically resends all 

messages in sent
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Algorithm (sl)
Implements:  StubbornLinks instance sl 
Uses:  FairLossLinks, instance all 
● upon event 〈sl, Init〉 do 

●  sent := ∅ 
●  startTimer(TimeDelay) 

● upon event 〈Timeout〉 do 
● forall (dest, m) ∈ sent do 

●  trigger 〈fl, Send | dest, m〉 
● startTimer(TimeDelay)

upon event 〈sl, Send | dest, m〉 do  
• trigger 〈fll, Send | src, m〉 
• sent := sent ∪ { (dest, m) } 

upon event 〈fll, Deliver | src, m〉 do  
•  trigger 〈sl Deliver | src, m〉
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Implementing Stubborn Links
● Implementation 

● Use the Lossy link 
● Sender stores every message it sends in sent 
● It periodically resends all messages in sent 

● Correctness 
● SL1. Stubborn delivery 

● If process doesn’t crash, it will send every message infinitely 
many times. Messages will be delivered infinitely many times. 
Lossy link may only drop a (large) fraction.  

● SL2. No creation 
● Guaranteed by the Lossy link



Perfect Links
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Channel failure modes

● Perfect Links 
● Channels that delivers any message sent exactly 

once

76
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Perfect links: interface
● Module: 

● Name: PerfectPointToPointLink, instance pl 
● Events: 

● Request: 〈pl, Send | dest, m〉 
● Request the transmission of message m to node dest 

● Indication: 〈pl, Deliver | src, m〉 
● deliver message m sent by node src 

● Properties: 
● PL1, PL2, PL3

77
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Perfect links (Reliable links)
● Properties 

● PL1. Reliable Delivery: If pi and pj are correct, 
then every message sent by pi to pj is eventually 
delivered by pj 

● PL2. No duplication: Every message is delivered 
at most once 

● PL3. No creation: No message is delivered unless 
it was sent

78
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Perfect links (Reliable links)
● Which one is safety/liveness/neither 
● PL1. Reliable Delivery: If neither pi nor pj crashes, then every 

message sent by pi to pj is eventually delivered by pj 

● PL2. No duplication: Every message is delivered at most 
once 

● PL3. No creation: No message is delivered unless it was sent

(liveness)

(safety)

(safety)
79
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Perfect Link Implementation
● Implementation 

● Use Stubborn links 
● Receiver keeps log of all received messages in 

Delivered 
● Only deliver (perfect link Deliver) messages that weren’t 

delivered before 
● Correctness 

● PL1. Reliable Delivery 
● Guaranteed by Stubborn link. In fact the Stubborn link will 

deliver it infinite number of times 
● PL2. No duplication 

● Guaranteed by our log mechanism 
● PL3. No creation 

● Guaranteed by Stubborn link (and its lossy link? [D])
80
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FIFO Perfect links (Reliable links)
● Properties 
● PL1. Reliable Delivery:  
● PL2. No duplication:  
● PL3. No creation: No message is delivered 

unless it was sent 
● FFPL. Ordered Delivery: if m1 is sent before m2 

by pi to pj and m2 is delivered by pj then m1 is 
delivered by pj before m2

81
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Internet TCP vs. FIFO Perfect Links
● TCP provides reliable delivery of packets 
● TCP reliability is so called “session based” 
● Uses sequence numbers 

● ACK: “I have received everything up to byte X” 
● Implementing Perfect Link abstraction on TCP requires 

reconciling messages between the sender and receiver 
when reestablishing connection after a session break
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Default Assumptions in Course
● We assume perfect links (aka reliable) most of time in the course 

(unless specified otherwise) 
● Roughly, reliable links ensure messages exchanged between correct 

are delivered exactly once 
● NB. Messages are uniquely identified and  

● the message identifier includes the sender’s identifier 
● i.e. if “same” message sent twice, it’s considered as two different 

messages 

● Many algorithm for crash-recovery process model assume either a 
Stubborn link, or Logged perfect link

83
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Specification of a Service
● How to specify a distributed service (abstract)? 

● Interface (aka Contract, API) 
● Requests 
● Responses 

● Correctness Properties 
● Safety 
● Liveness 

● Model 
● Assumptions on failures 
● Assumptions on timing (amount of synchrony) 

● Implementation 
● Composed of other services  
● Adheres to interface and satisfies correctness 
● Has internal events

declarative 
specification 

“what” 
aka problem

imperative,  
many possible 

“how”
85
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Timing Assumptions
● Timing assumptions 

● Processes 
● bounds on time to make a computation step 

● Network 
● Bounds on time to transmit a message between a 

sender and a receiver  
● Clocks: 

● Lower and upper bounds on clock rate-drift and 
clock skew w.r.t.  real time



Asynchronous Model 
and Causality 
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Asynchronous Systems
● No timing assumption on processes and channels 

● Processing time varies arbitrarily 
● No bound on transmission time 
● Clocks of different processes are not synchronized 

● Reasoning in this model is based on which events may 
cause other events 
● Causality 

● Total order of event not observable locally, no access to 
global clocks
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Causal Order (happen before) 
● The relation ➝β on the events of an execution (or trace 
β), called also causal order, is defined as follows 
● If a occurs before b on the same process, then a ➝β b 
● If a is a send(m) and b deliver(m), then a ➝β b 
●  a ➝β b  is transitive 

● i.e. If a➝β  b  and b ➝β  c then a ➝β  c 

● Two events, a and b, are concurrent if not a ➝β b and not b ➝β a 
● a||b
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Causal Order (happen before) 
● The relation ➝

β
 on the 

events of an execution (or 
trace β), called also causal 
order, is defined as follows 
● If a occurs before b on 

the same process, then a 
➝
β 

b 
● If a is a send(m) and b 

deliver(m), then a ➝
β 

b 
●  a ➝

β 
b  is transitive 

● i.e. If a➝
β  

b  and b ➝
β  

c 
then a ➝

β  
c 

● Two events, a and b, are 
concurrent if not a ➝

β 
b and 

not b ➝
β 

a 
● a||b

e1 e2
p1

p2

p3

e1

e2

p1

p2

p3

e1

e’ e”

e2

p1

p2

p3
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Example of Causally Related events

Time-space diagram

p1

p2

p3

time

Causally Related Events

Concurrent Events Causally Related Events
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Similarity of executions
● The view of pi in E, denoted E|pi, is 
● the subsequence of execution E restricted to 

events and state of pi 

● Two executions E and F are similar w.r.t pi if 

● E|pi = F|pi  
● Two executions E and F are similar if 
● E and F are similar w.r.t every process
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Equivalence of Executions
● Computation Theorem: 

● Let E be an execution (c0,e1,c1,e2,c2,…), and V the 
trace of events (e1,e2,e3,…)  

● Let P be a permutation of V, preserving causal order 
● P=(f1, f2, f3…) preserves the causal order of V when for 

every pair of events fi ➝V fj implies fi is before fj in P 

● Then E is similar to the execution starting in c0 

with trace P
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Equivalence of executions

● If two executions F and E have the same 
collection of events, and their causal order is 
preserved, F and E are said to be similar 
executions, written F~E 
● F and E could have different permutation of events 

as long as causality is preserved!
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Computations
● Similar executions form equivalence classes where every execution in a 

class is similar to the other executions in the same class 

● I.e. the following always holds for executions: 
● ~ is reflexive  

● I.e. a~ a for any execution 
● ~ is symmetric 

● I.e. If a~b then b~a for any executions a and b 
● ~ is transitive 

● If a~b and b~c, then a~c, for any executions a, b, c 

● Equivalence classes are called computations of executions
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Example of similar executions

p1
p2
p3

time

p1
p2
p3

time

p1
p2
p3

time

Same color ~ Causally related

● All three executions are part 
of the same computation, as 
causality is preserved
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Two important results (1)

● Computation theorem gives two important results 

● Result 1: There is no algorithm in the asynchronous 
system model that can observe the order of the sequence 
of events (that can “see” the time-space diagram, or the 
trace) for all executions 
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Two important results (1)

● Proof:  
● Assume such an algorithm exists. Assume p knows the 

order in the final (repeated) configuration  
● Take two distinct similar executions of algorithm 

preserving causality 
● Computation theorem says their final repeated 

configurations are the same, then the algorithm cannot 
have observed the actual order of events as they differ 
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Two important results (2)

● Result 2: The computation theorem does not hold if the 
model is extended such that each process can read a local 
hardware clock 

● Proof:  
● Similarly, assume a distributed algorithm in which each process reads 

the local clock each time a local event occurs 
● The final (repeated) configuration of different causality preserving 

executions will have different clock values, which would contradict the 
computation theorem
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Synchronous Systems
● Model assumes 

● Synchronous computation 
● Known upper bound on how long it takes to perform computation 

● Synchronous communication 
● Known upper bound on message transmission delay 

● Synchronous physical clocks  
● Nodes have local physical clock 
● Known upper bound clock-drift rate and clock skew 

● Why study synchronous systems? [d]
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Partial Synchrony
● Asynchronous system 

● Which eventually becomes synchronous 
● Cannot know when, but in every execution, some bounds eventually 

will hold 
● It’s just a way to formalize the following 

● Your algorithm will have a long enough time window, where 
everything behaves nicely (synchrony), so that it can achieve its 
goal 

● Are there such systems? [d]
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Partial Synchrony 
● Your algorithm will have a long enough time window, 

where everything behaves nicely (synchrony), so that it 
can achieve its goal 
● Useful for  proving liveness properties of algorithms

system 
synchronous 
from now on

algorithm 
terminates

enough time to achieve goal

start
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Partial Synchrony 
● Notice the time at which a system behaves synchronously  is 

unknown 
● To prove safety properties we need to assume that the system 

is asynchronous 
● To prove liveness we use the partial synchrony assumption

system 
synchronous 
from now on

algorithm 
terminates

enough time to achieve goal

start
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Timed Asynchronous Systems
● No timing assumption on processes and channels 

● Processing time varies arbitrarily 
● No bound on transmission time 

● Bounds on Clocks drift-rate and clock skews 
● Interval clocks 
● At real-time t, clock of process P is in interval (t-𝜌, t+𝜌) 
● 𝜌 depends on P

104
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Logical Clocks
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Logical Clocks

● A clock is function t from the events to a 
totally order set such that for events a and b 
● if a ➝ b then t(a) < t(b) 

● We are interested in ➝ being the happen-
before relation

106
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Causal Order (happen before) 

● The relation ➝β on the events of an execution (or trace 
β), called also causal order, is defined as follows 
● If a occurs before b on the same process, then a ➝β b 
● If a is a send(m) and b deliver(m), then a ➝β b 
●  a ➝β b  is transitive 

● i.e. If a➝β  b  and b ➝β  c then a ➝β  c 

● Two events, a and b, are concurrent if not a ➝β b and not b ➝β a 
● a||b
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Causal Order (happen before) 
e1 e2

p1

p2

p3

e1

e2

p1

p2

p3

e1

e’ e”

e2

p1

p2

p3
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Observing Causality

● So causality is all that matters… 

● …how to locally tell if two events are causally 
related?
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Lamport Clocks at process p

● Each process has a local logical clock, kept in variable tp, 
initially tp = 0 
● A process p piggybacks (tp, p) on every message sent 

● On internal event a: 
● tp := tp + 1  ; perform internal event a 

● On send event message m: 
● tp := tp + 1  ; send(m, (tp, p)) 

● On delivery event a of m with timestamp (tq, q) from q: 
● tp := max(tp, tq) + 1 ; perform delivery event a   
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Lamport Clocks (2)

● Observe the timestamp (t, p) is unique 
● Comparing two timestamps (tp,p) and (tq,q) 
● (tp,p)<(tq,q) iff (tp<tq or (tp=tq and p<q)) 
● i.e. break ties using process identifiers 
● e.g. (5,p5) < (7,p2), (4,p2) < (4,p3) 
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Lamport Clocks (2)
● Lamport logical clocks guarantee that: 
● If a ➝𝛽 b, then t(a) < t(b), 
● where t(a) is Lamport clock of event a 

● events a and b are on the same process p, tp is strictly increasing, so if a is 
before b, then t(a) < t(b) 

● a is a send event with tq and b is deliver event, t(b) is at least one larger than 
tq  (t(a) ) 

● transitivity of t(a) < t(b) < t(c)  implies the transitivity condition of the happen 
before relation
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Lamport logical clocks
p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

● Lamport logical clocks guarantee that: 
● If a ➝𝛽 b, then t(a) < t(b), 
● if t(a) ≥ t(b), then not (a ➝𝛽 b)
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Vector  Clocks
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Vector clocks
● The happen-before relation is a partial order 
● In contrast logical clocks are total 

● Information about non-causality is lost 
● We cannot tell by looking to the timestamps of event a and b whether  

there is a causal relation between the events, or they are concurrent 
● Vector clocks guarantee that: 

● if v(a) < v(b) then a ➝𝛽 b, in addition to 

● if a ➝𝛽 b then  v(a) < v(b)  

● where v(a) is a vector clock of event a 
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Non-causality and Concurrent events 
● Two events a and b are concurrent  (a ||𝛽 b) in 

an execution E (trace(E) = 𝛽) if  
● not a ➝𝛽 b and not b ➝𝛽 a 

● Computation theorem implies that if (a ||𝛽 b) in 𝛽 then 
there are two executions (with traces 𝛽1 and 𝛽2) that 
are similar where a occurs before b in 𝛽1, b occurs 
before a in 𝛽2

116
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Non-causality and Concurrent events 

117

p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

p1

p2

p3

time

1 3

4

1

4

5

6

20

0

0

a

b

a

b
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Vector clock definition
● Vector clock for an event a 

● v(a) = (𝑥1,…,𝑥n) 
● 𝑥i is the number of events at pi that happens-before a 
● for each such event e: e ➝ a

118

p1

p2

p3

time

a
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Vector Timestamps
● Processes p1, …, pn 
● Each process pi has local vector v of size n (number of 

processes) 
● v[i] = 0 for all i in 1…n 
● Piggyback v on every sent message 

● For each transition (on each event) update local v at pi: 
● v[i] := v[i] + 1   (internal, send or deliver) 
● v[j] := max( v[j], vq[j] ), for all j ≠ i (deliver) 

● where vq is clock in message received from process q
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Comparing Vector Clocks
● v

p 
≤ v

q
 iff 

● v
p
[i]≤v

q
[i] for all i 

● v
p 
< v

q
 iff 

● v
p 
≤ v

q 
and for some i, v

p
[i] < v

q
[i] 

● v
p
 and v

q
 are concurrent (v

p
 || v

q
) iff 

● not v
p
<v

q
, and not v

q
<v

p
 

● Vector clocks guarantee 
● If v(a)

 
< v(b) then a ➝

 
b, and 

● If a ➝
 
b, then v(a)

 
< v(b) 

● where v(a) is the vector clock of 
event a 

(3,0,0) ≤ (3,1,0)

[3,0,0] < [3,1,0]

[3,1,0] <> [4,0,0]
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Example of Vector Timestamps

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

b

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

b

v(a) < v(b) implies a ➝ b

v(a) <> v(b) implies a || b
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Vector Timestamps

● For any events a and b, and trace 𝛽 :  
● v(a) and v(b) are incomparable if and only if a||b 
● v(a) < v(b) if and only if a ➝ b

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

a

bc
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Example of Vector Timestamps

p1

p2

p3

time

[1,0,0] [3,0,0]

[3,1,0]

[0,0,1]

[4,0,0]

[3,2,0]

[3,2,2]

[2,0,0][0,0,0]

[0,0,0]

[0,0,0]

Great! But cannot be done with smaller 
vectors than size n, for n nodes
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Partial and Total Orders
● Only a partial order or a total order? [d] 

● the relation ➝β on events in executions 
● Partial: ➝β doesn’t order concurrent events 

● the relation < on Lamport logical clocks 
● Total: any two distinct clock values are ordered (adding pid) 

● the relation < on vector timestamps 
● Partial: timestamp of concurrent events not ordered
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Logical clock vs. Vector clock
● Logical clock 

● If a ➝β b then t(a) < t(b)  (1) 

● Vector clock 
● If a ➝β  b then v(a) < v(b)   (1) 
● If v(a) < v(b) then a ➝β b             (2) 

● Which of (1) and (2) is more useful? [d] 

● What extra information do vector clocks give? [d]


