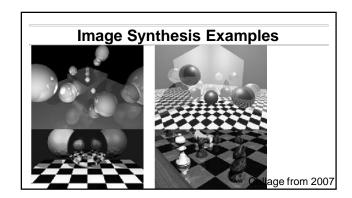
Computer Graphics

Online Lecture 1: Overview and History Motivation: Why do we study 3D Graphics?

> http://www.cs.ucsd.edu/~ravir Ravi Ramamoorthi


Instructor

Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir

- PhD Stanford, 2002. PhD thesis developed
 <u>"Spherical Harmonic Lighting</u>" widely used in games (e.g. Halo series), movies (e.g. Avatar), etc. (Adobe, ...)
- At Columbia 2002-2008, UC Berkeley 2009-2014
- At UCSD since Jul 2014: Director, Center for Visual Computing
 Awards for research: White House PECASE (2008),
- SIGGRAPH Significant New Researcher (2007)
- https://www.youtube.com/watch?v=qpyCXqXGe71
- Have taught Computer Graphics 10+ times

Goals

- Systems: Write complex 3D graphics programs (real-time scene viewer in OpenGL, offline raytracer)
- Theory: Mathematical aspects and algorithms underlying modern 3D graphics systems
- This course is *not* about the specifics of 3D graphics programs like Maya, Alias, DirectX but about the concepts underlying them. You will write programs in OpenGL/GLSL

Why Study 3D Computer Graphics?

- Applications (discussed next)
- Fundamental Intellectual Challenges

Applications

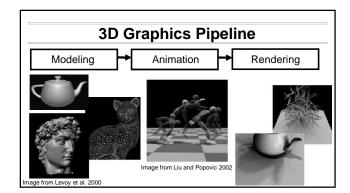
- Movies
- Games
- Computer Aided Design (CAD)
- Lighting Simulation (Interiors, Automobiles, ...)
- Visualization (Scientific, Medical)
- Virtual Reality

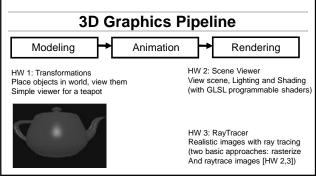
Digital Visual Media

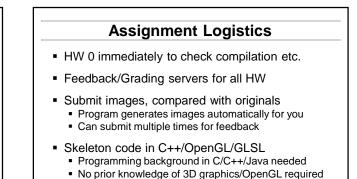
- From text to images to video (to 3D?)
- Image and video processing and photography
- Flickr, YouTube, WebGL
- Real, Virtual Worlds (Google Earth, Second Life)
- Electronic publishing
- Online gaming
- 3D printers and fabrication

Why Study 3D Computer Graphics?

- Fundamental Intellectual Challenges
 - Create and interact with realistic virtual world
 - Requires understanding of all aspects of physical world
 - New computing methods, displays, technologies


Technical Challenges


- Math of (perspective) projections, curves, surfaces
- Physics of lighting and shading
- 3D graphics software programming, hardware



Online Lecture 1: Overview and History Course Outline and Logistics

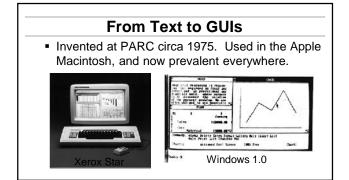
Ravi Ramamoorthi

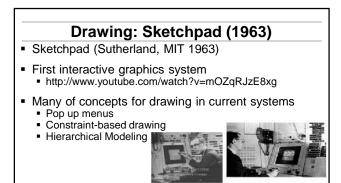
Workload

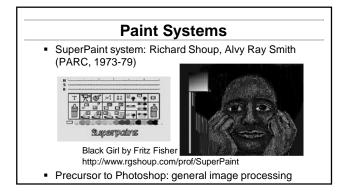
- Lots of fun, rewarding but may involve significant work
- 3 programming projects; almost all are time-consuming
- Course will involve understanding of mathematical, geometrical concepts taught (tested on final)
- Prerequisites: Solid C/C++/Java programming.
- Linear algebra (review next lecture) and basic math skills

A Note on GPU Programming

- Modern 3D Graphics Programming with GPUs
- GLSL + Programmable Shaders in HW 0,1,2
- Should be very portable, but need to set up your environment, compilation framework (HW 0)




Online Lecture 1: Overview and History Brief History of Computer Graphics


Ravi Ramamoorthi

The term Computer Graphics was coined by William Fetter of Boeing in 1960 First graphic system in mid 1950s USAF SAGE radar data (developed MIT)

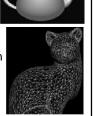
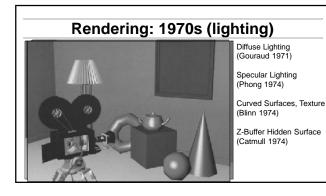


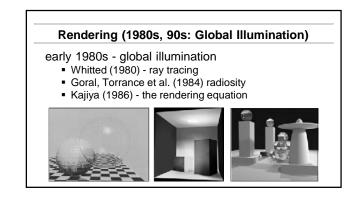
Image Processing

- Digitally alter images, crop, scale, composite
- Add or remove objects
- Sports broadcasts for TV (combine 2D and 3D processing)

Modeling

- Spline curves, surfaces: 70^s 80^s
- Utah teapot: Famous 3D model
- More recently: Triangle meshes often acquired from real objects




Rendering: 1960s (visibility)

Hidden Line Algorithms: Roberts (63), Appel (67) Hidden Surface Algorithms: Warnock (69), Watkins (70)

> Visibility = Sorting Sutherland (74)

Images from FvDFH, Pixar's Shutterbug: Slide ideas for history of Rendering courtesy Marc Levo

History of Computer Animation

- 10 min clip from video on history of animation
- http://www.youtube.com/watch?v=LzZwiLUVaKg
- Covers sketchpad, animation, basic modeling, rendering
- A synopsis of what this course is about