Time and Clocks in Distributed Systems

Seif Haridi KTH

Outline

• Motivation for using physical clocks

- Two algorithms:
 - Time-based leader leases

Shared memory using clocks

Motivation

- Consider a slightly stronger system model:
 - Computation
 - No bounds on time to take a step
 - Communication
 - No bounds on latency
 - So far, this is the asynchronous system model
 - Clocks
 - Lower and upper bounds on clock rate

• This is a fairly weak model in practice

 "Our machine statistics show that bad CPUs are 6 times more likely than bad clocks. That is, clock issues are extremely infrequent, relative to much more serious hardware problems." – Google

- Why consider algorithms that use clocks?
 - By making stronger assumptions about the system we can get better efficiency/performance
 - In this slightly stronger model we cannot still solve problems that are harder than what can be solved in the asynchronous model
 - i.e. the FLP impossibility still holds
 - But we can define some abstractions will better properties

Time-based Leader Leases

Outline – Leader Leases

• The optimization opportunity by using clocks

• The proposed algorithm

• An argument why correctness is maintained

- We implement a key-value store using RSM
- Supporting the following commands:
 - Read(k), Write(k, v), CAS(k, v_{exp}, v_{new})
 - CAS:
 - writes v_{new} if old value is v_{exp}; returns old value
 - Needs RSM to do CAS (Shared Mem. is too weak)
- Service runs on leader-based Sequence Paxos
 - N=3 replicas, $\Pi_r = \{p_1, p_2, p_3\}$
- Each acting as proposer, acceptor, learner

 p_1

 p_2

 p_3

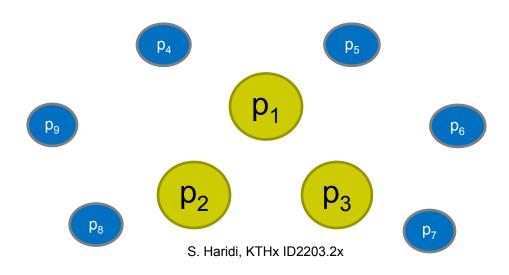
Command ordering

• Paxos guarantees that all replicas execute commands in same order

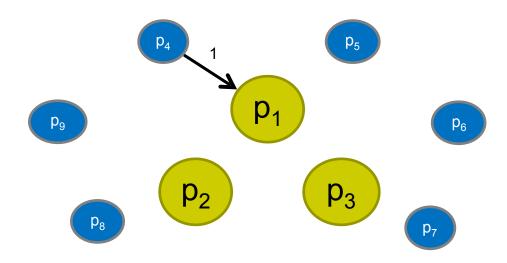
Old state	Command	Result	New state
{}	Write(x,1)	OK	{x=1}
{x=1}	Write(y,0)	OK	{x=1,y=0}
{x=1,y=0}	Read(x)	1	{x=1,y=0}
{x=1,y=0}	CAS(y,0,1)	0	{x=1,y=1}
{x=1,y=1}	CAS(y,0,1)	1	{x=1,y=1}
{x=1,y=1}	Read(y)	1	{x=1,y=1}
{x=1,y=1}	Write(y,0)	OK	{x=1,y=0}

Clients and Leader

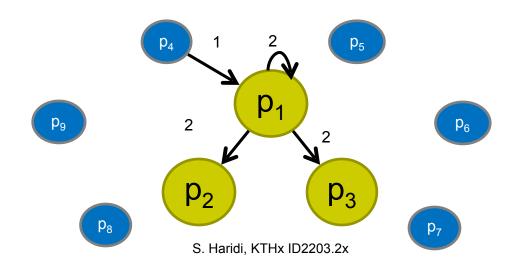
- Can have any number of clients $\Pi_c = \{p_4, ...\}$
- Assume network is stable and p₁ is leader (has started the highest round)



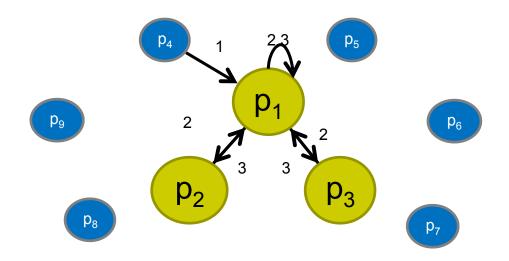
 Client p₄ that wants to execute a command sends a request (1) to leader p₁



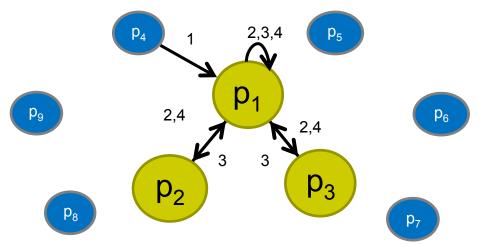
 p₁ proposes command using Paxos, which sends Accept msgs (2) to replicas (using previously prepared round number)



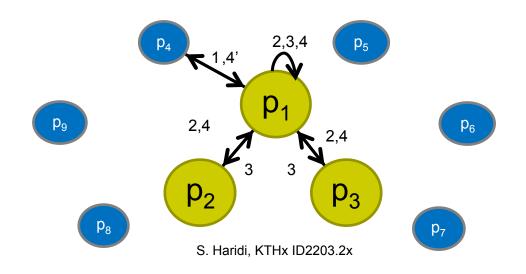
• The replicas accept and respond with AcceptAck (Accepted) messages (3)



After p₁ gets AcceptAck msgs from a majority, the command order is chosen and p₁ sends Decide msgs (4)

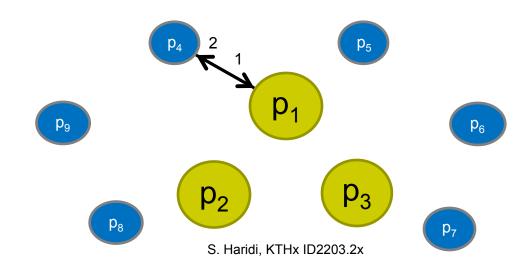


 p₁ executes the command using the state of the state machine, and sends response (4') with result of the operation to p₄



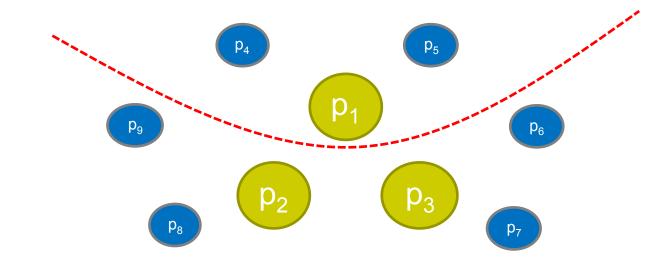
Opportunity: Faster Reads

- Assume that the operation requested by p₄ is a read operation, C=Read(x)
- p₁ stores the entire state, so can p₁ read the state variable x and respond immediately?



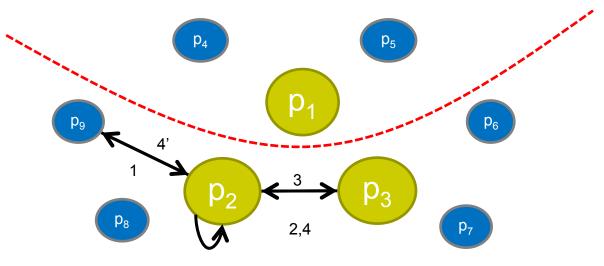
What could go wrong?

- A network split partitions p_1 away from p_2 and p_3
- p₂ is elected leader but p₁ never hears about this



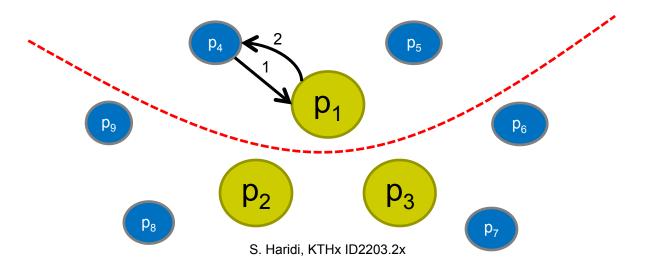
What could go wrong?

Client p₉ sends a Write(x,val_{new}) request to p₂, p₂ communicates with p₃ and then executes the write operation



What could go wrong?

- After this, p₁ gets Read(x) request from p₄
- p₁ is unaware of the split and the write operation, and responds to p₄ with the old value of x
- Linearizability is violated!

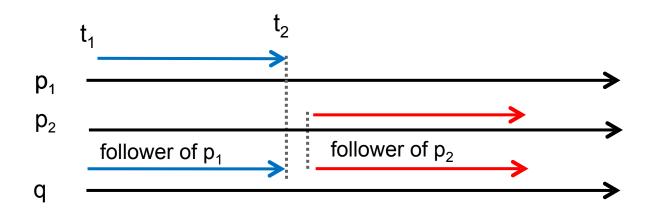


Problem summarized

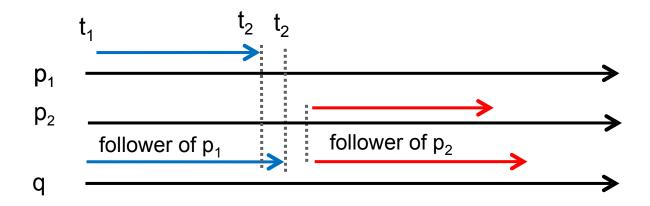
- The reason p₁ can't respond with its current state because some other replica may have assumed leadership and modified the state without p₁ knowing about it
- Is there some way to avoid this?
- False attempt:
 - p_2 must communicate with p_1 before p_2 can become leader
 - But this can't work since p₁ may be dead

Time Leases

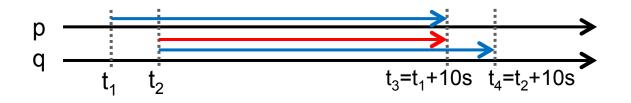
- We would like leaders to be disjoint in time
- Think of this as a Paxos group
 - Only one leader at an given point of time t
 - If q is a follower of p at time t then no other no other process can be a leader at t



- We would like leaders to be disjoint in time
- Think of this as a Paxos group
 - Only one leader at an given point of time t
 - If q is a follower of p at time t then no other no other process can be a leader at t



- A propose p to become leader: sends a request (prepare) to acceptors
 - An acceptor gives a time-based leader lease to p , lasting for 10 seconds
 - If a proposer gets leases from a majority of acceptors, then proposer holds lease on group and becomes a leader
 - In the time until the first acceptor lease expires, the proposer knows that no other proposer can hold the lease on the group
 - During this time, the leader can safely respond to reads from local state



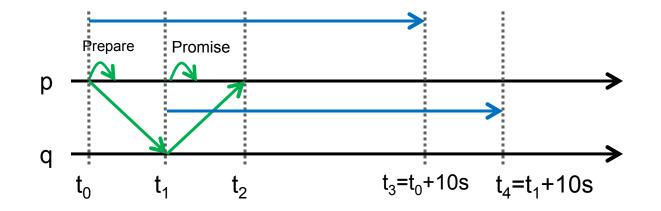
- Can be integrated with Paxos messages:
 - As before acceptor q joins round n by sending a Promise in response to a Prepare(n), and promises to not accept proposals in lower rounds
 - In addition, we require that if q joins round n at time t then q promises not to join a higher round until after time t+10s
 - If proposer p gets promises from a majority then p knows that no other proposer can get a majority of promises during next 10 seconds

- Notice that we are only taking about physical time intervals and not about absolute clock values
- We have to take two issues into account:

- Network is asynchronous
- Clocks drift

Issue 1: asynchronous network

- p can't know at what exact time q sent the Promise, only that $t_0 \le t_1 \le t_2$
 - p has to be conservative and assume that t₁=t₀
 - p holds lease until t₃=t₀+10s



Clock Drift

Issue 2: clock drift

- To understand the clock drift issue, we have to describe clocks and time more formally and in more detail
- A clock at a process p_i is a monotonically increasing function from real-time to some real value

Introduction to clocks

- Each process p_i has an associated clock C_i
- $C_i(.)$ is modelled as a function from real times to clock times
 - Real time is defined by some time standard, such as Coordinated Universal Time (UTC)
 - The unit of time in UTC is the SI second, whose definition states that:
 - "The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom."

Clock implementation

- A clock is implemented as an oscillator and a counter register that is incremented for each period of the oscillator
 - The oscillator frequency is not completely stable, varying depending on environmental conditions such as temperature, and aging
 - The oscillator's manufacturer specifies a nominal frequency and an error bound

Clock rate

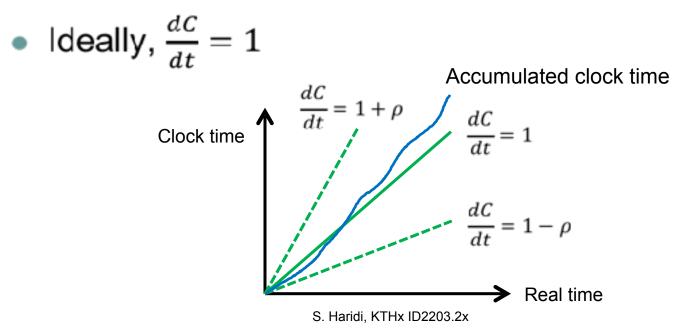
- The clock rate specifies how much the clock is incremented each second of real time
 - For example: the counter increments by nominally 1,000,000 ticks per second, with an error bounded to ±100 ticks per second
- From here on we normalize the clock rate so that 1.0 is the nominal rate, and the error is given by ρ such that

$$\frac{1}{1+\rho} \approx 1-\rho \leq \frac{dc}{dt} \leq 1+\rho$$

In our example ρ = 100/1,000,000 = 100ppm

Clock drift

Clock drift is the accumulated effect of a clock rate that differs from real time



Issue 2: clock drift at proposer

- Reason about what happens if proposer uses clock time instead of real time without any compensation?
 - Clock runs faster than real time: safety cannot be violated as proposer believes that its lease expired sooner than it actually did
 - Clock runs slower than real time: proposer believes it holds lease even after lease has expired, and proposer may respond to read, and violate safety

Issue 2: clock drift at proposer

- Proposer must compensate by assuming its clock is running as slowly as possible, $\frac{dC}{dt} = 1 \rho$, and compensate
 - $\Delta t \leq 10$, at most 10 seconds real time

•
$$\Delta C = \Delta t \times (1 - \rho) \le 10 \times (1 - \rho)$$

Issue 2: clock drift at acceptor

- What happens if acceptor uses clock time instead of real time without compensation?
 - Clock runs faster than real time: acceptor believes its promise expired too soon, and may give new lease early, violating safety
 - Clock runs slower than real time: safety cannot be violated if acceptor waits longer than necessary to give new promise

Issue 2: clock drift at acceptor

- Acceptor must assume its clock is running as fast as possible, $\frac{dC}{dt} = 1 + \rho$, and compensate
 - $\Box \Delta t \ge 10$, at least 10 seconds real time
 - $\Box \ \Delta C = \Delta t \times (1+\rho) \ge 10 \times (1+\rho)$

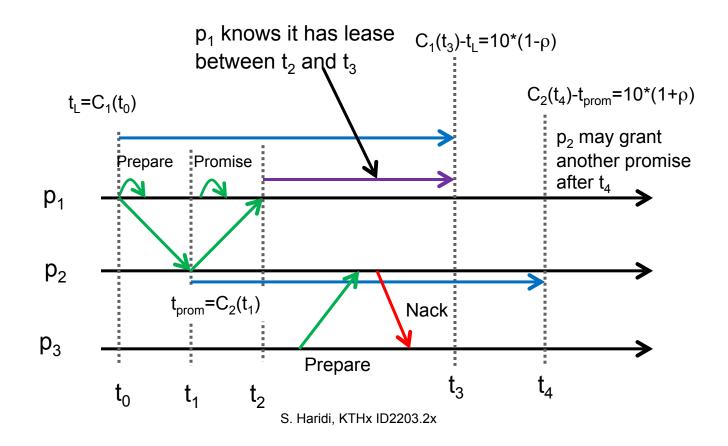
Leases at acceptor

- Acceptors have new state variable, t_{prom}
 - The clock time when gave last promise
- If acceptor p_i gets Prepare(n) at time T and
 - $n > n_{prom}$ and $C_j(T) t_{prom} > 10^*(1+\rho)$
 - then give promise to reject rounds lower than n, and not give new promises within the next 10s (set t_p = C_j(T))
 - Otherwise respond with Nack

Leases at proposer

- Proposer has new state variable t_L
- Before proposer p_i sends Prepare(n) at time T messages it sets variable t_L=C_i(T)
- If p_i gets promises from a majority, p_i knows that no other process can become leader until 10s after t_i
- As long as C_i(T) t_L <10*(1-ρ), p_i can respond to reads from its local state

Time diagram



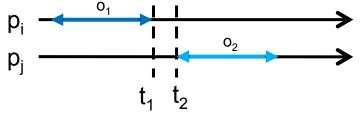
Extending a lease

- As long as p_i is alive and well it should remain the leader
- To not loose the lease, p_i can ask for an extension of the lease
 - I.e. a few seconds before the lease expires, p_i records the current clock time t and asks for an extension
 - If an extension is granted by a majority of replicas then p_i holds the lease until 10s after t
 - Each acceptor adjust its t_{prom} accordingly

Shared Memory Using Clocks

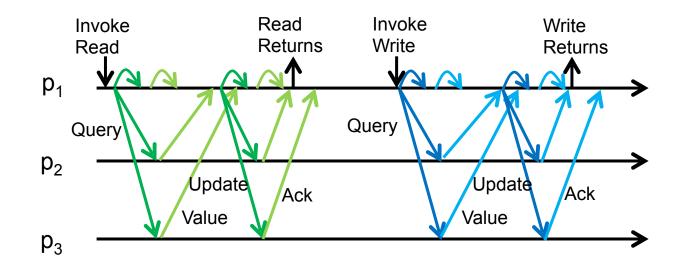
Review of shared memory

- A set of atomic registers
- Two operations:
 - Write(v): update register's value to v
 - Read(): return the register's value
- Correctness: Linearizability
 - If operation o₁ returns before operation o₂ is invoked, then o₁ must be ordered before o₂ (the linearization point of o₁ is before the linearization point of o₂)



Algorithm in course: RIWCM

 The Read-Impose Write-Consult-Majority algorithm does 2 round-trips to a majority of processes for both reads and writes



- A *phase* is one round-trip of communication to a majority of replicas
- Refer to the first phase as the *query phase* and the second phase as the *update phase*

- Process p_i invokes read operation o_r
- In the query phase, each process responds with the highest timestamp-value pair received
- p_i picks the highest timestamp-value pair received in the query phase, denoted (ts, v)
- Before returning value v, p_i performs an update phase using the pair
 - This way, any operation invoked after o_r is completed is guaranteed to see a timestamp greater than or equal to ts

Optimizing read operation

- If in the query phase all processes in a majority set respond with the same timestamp-value pair (ts, v), then the update phase can be skipped
 - This works since a majority of the processes already store a timestamp-value pair with a timestamp greater than or equal to ts
- In good conditions (network is stable, low contention) this is likely to be the case, and reads can complete in a single round-trip

- Process p_i invokes write operation o_w
- In the query phase, each process responds with the highest timestamp-value pair received
- After the query phase, p_i picks a unique timestamp higher than all timestamps received and pairs it with the value to write
- In the update phase, each process stores this timestamp-value pair if the pair is greater the timestamp than the previously stored pair's timestamp

Optimizing write operation

- If processes have access to clocks then it is possible to skip the query phase
- Process p_i invoking a write instead picks a timestamp by reading the current time and forms a timestamp ts=(C_i, i)
 - Timestamps are time-pid pairs; (t, pid)
- How well clocks are synchronized will determine if the atomicity property of the Atomic Register abstraction is satisfied

Synchronized Clocks

Optimizing write operation

- If processes have access to clocks then it is possible to skip the query phase
- Process p_i invoking a write instead picks a timestamp by reading the current time and forms a timestamp ts=(C_i, i)
 - Timestamps are time-pid pairs; (t, pid)
- How well clocks are synchronized will determine if the atomicity property of the Atomic Register abstraction is satisfied

Clock synchronization

- Clocks C_i and C_j are δ -synchronized if, for all times t, $|C_i(t)-C_j(t)| \le \delta$
 - Saying that C_i and C_j are synchronized to within 10ms means that $\delta\text{=}10\text{ms}$
- A set of clocks are *perfectly synchronized* if each pair of clocks is δ = 0-synchronized
- Loosely synchronized clocks attempts to be as closely synchronized as possible, but give no guarantees
 - In practice, can be arbitrarily out of synch

Correctness of write optimization

- If clocks are perfectly synchronized then registers satisfy linearizability
 - o_1 is read or write, o_2 is read: by the same argument as before, o_1 is ordered before o_2
 - o₁ is write, o₂ is write: as o₁ is completed before o₂ is invoked, ts(o₁)<ts(o₂), and value written by o₁ is overwritten by value of o₂
 - o₁ is read, o₂ is write: exists a write o₀ that was invoked before o₁ completed, ts(o₀)=ts(o₁)<ts(o₂)
- Writes (and often reads) take one round-trip, and correctness is guaranteed

Correctness of write optimization

- If clocks are loosely synchronized then registers don't satisfy linearizability
 - If write o_1 is complete before write o_2 is invoked then the timestamp picked by o_1 may still be greater than the timestamp picked by o_2
 - Important to remember in practice
 - Cassandra uses loosely synchronized clocks in this way, and can therefore not guarantee linearizability

Correctness – Logical clocks

- If clocks are logical clocks (Lamport clocks) then the shared memory doesn't satisfy linearizability
- Instead, the memory satisfies sequential consistency
 - We have seen the proof in part 1 of the course

- Using perfectly synchronized clocks (PSCs) guarantees linearizability, so just use PSCs and everything is good?
- No, since PSCs are **impossible** to implement
 - Any measurement contains some uncertainty
 - Synchronizing clocks across an asynchronous network adds more uncertainty
- We introduce a new kind of clocks...

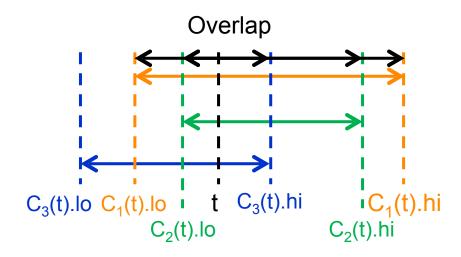
Interval Clocks

Interval clocks

- An interval clock (IC) at process p_i read at time t returns a pair C_i(t)=(lo, hi)
- Represents an interval [C_i(t).lo .. C_i(t).hi]
 - The correct time t is guaranteed to be in interval
 - $C_i(t).lo \le t \le C_i(t).hi$
- Synchronization uncertainty is exposed in width of interval
- This is the strongest guarantee that can be implemented in practice
 - Wide interval may hurt performance of algorithm using ICs, but does not affect correctness

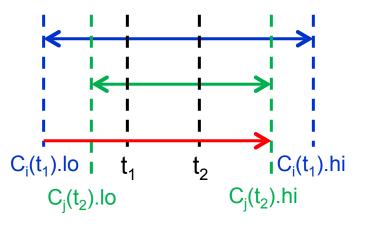
Overlapping intervals

• The interval values of a set of clocks read at the same time t are guaranteed to overlap in the correct time



Clocks read at different times

- C_i read at t_1 , C_j read at t_2 , and $t_1 < t_2$
 - $C_i(t_1).lo \le t_1 \le C_i(t_1).hi$
 - $C_j(t_2).lo \le t_2 \le C_j(t_2).hi$
 - Implies: $C_i(t_1).lo < C_j(t_2).hi$



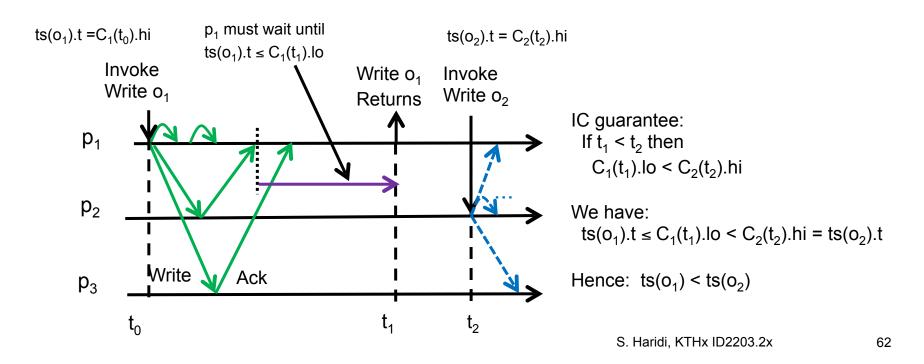
• $C_i(t_1).lo \le t_1 \le t_2 \le C_j(t_2).hi$

Using ICs to remove query phase in write operations

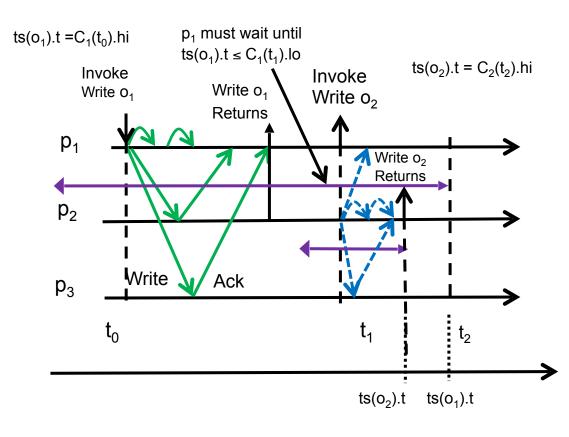
- Two changes:
 - In process p_i that is invoking a write operation, use timestamp ts = (C_i.hi, i)
 - Before an operation o (a read or a write) executed by process p_i can return it has to wait until ts(o).t < C_i.lo
 - ts(o) is the timestamp associated with the value that is read or written by operation o

Intuition why waiting is needed

 o₁ is allowed to return when ICs guarantee that later write will pick a higher timestamp



Intuition why waiting is needed



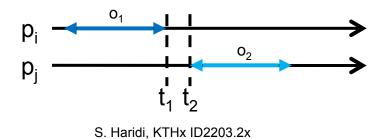
If o_1 is completed before o_2 is invoked, then o_1 must be ordered before o_2

Case: o1 does not wait o_1 completes before o_2 is issued: no guarantee that o_1 before o_2 (ts(o_1).t > ts(o_2).t)

S. Haridi, KTHx ID2203.2x

Correctness

- Algorithm with ICs satisfy linearizability:
 - o₁ is read or write, o₂ is read: by the same argument as before, o₁ is ordered before o₂
 - o_1 is read or write, o_2 is write:
 - o₁ is completed at t₁ by p_i, and o₂ is invoked at t₂ by p_i
 - $t_1 < t_2$ implies that $ts(o_1) \cdot t \le C_i(t_1) \cdot lo \le C_j(t_2) \cdot hi = ts(o_2) \cdot t$
 - Since $ts(o_1) < ts(o_2)$, the value in o_1 is overwritten by the value of o_2



On Init:

- ts := (0, 0)
- v := 0
- On ReadInvoke:
 - reading := true
 - readlist := [⊥]^N
 - send $\langle \mathbf{Read} \rangle$ to Π
- On $\langle \text{Read} \rangle$ from p_i :
 - send (Value, ts, v) to p_i
- On $\langle Value, ts', v' \rangle$ from q:
 - readlist[q] := (ts', v')
 - if #(readlist) > N/2:
 - (rts, rv) = max(readlist)
 - if all pairs in readlist are equal:
 - DoReturn()
 - else:
 - acks := 0
 - send (Write, rts, rv) to Π

- **On WriteInvoke**(v):
 - reading := false
 - rts := $(C_i.hi, i)$
 - □ acks := 0
 - send (Write, rts, v) to Π
- **On** \langle **Write**, ts', v' \rangle from p_i:
 - if ts' > ts:
 - ts := ts'
 - □ v := v'
 - $\hfill\square$ send $\langle \textbf{Ack} \rangle$ to p_i
- On (Ack):
 - acks := acks + 1
 - if acks > N/2:
 - DoReturn()
- fun DoReturn():
 - wait until rts.t < C_i.lo
 - if reading: trigger ReadReturn(rv)
 - else: trigger WriteReturn