ITMO UNIVERSITY

How to Win Coding Competitions: Secrets of Champions

Week 4: Algorithms on Graphs
Lecture 6: Eulerian paths and Eulerian tours

Maxim Buzdalov
Saint Petersburg 2016

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once
FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

An Eulerian path is a path in a graph that contains each edge of the graph exactly once

FBCEDFGCADBAE

An Eulerian tour is a Eulerian path which starts and ends on the same vertex

FEABGCEDBCADF

When does Eulerian path exist?

When does Eulerian path exist?

- Undirected graph:
- The graph is connected
- There are at most two vertices with odd degree

When does Eulerian path exist?

- Undirected graph:
- The graph is connected
- There are at most two vertices with odd degree
- Directed graph:
- The graph is connected (when directions are removed)
- At most one vertex u has $\operatorname{deg}^{+}(u)-\operatorname{deg}^{-}(u)=+1$
- At most one vertex v has $\operatorname{deg}^{+}(v)-\operatorname{deg}^{-}(v)=-1$
- All other vertices have $\operatorname{deg}^{+}(x)=\operatorname{deg}^{-}(x)$

When does Eulerian path exist?

- Undirected graph:
- The graph is connected
- There are at most two vertices with odd degree
- Directed graph:
- The graph is connected (when directions are removed)
- At most one vertex u has $\operatorname{deg}^{+}(u)-\operatorname{deg}^{-}(u)=+1$
- At most one vertex v has $\operatorname{deg}^{+}(v)-\operatorname{deg}^{-}(v)=-1$
- All other vertices have $\operatorname{deg}^{+}(x)=\operatorname{deg}^{-}(x)$

When does Eulerian tour exist?

When does Eulerian path exist?

- Undirected graph:
- The graph is connected
- There are at most two vertices with odd degree
- Directed graph:
- The graph is connected (when directions are removed)
- At most one vertex u has $\operatorname{deg}^{+}(u)-\operatorname{deg}^{-}(u)=+1$
- At most one vertex v has $\operatorname{deg}^{+}(v)-\operatorname{deg}^{-}(v)=-1$
- All other vertices have $\operatorname{deg}^{+}(x)=\operatorname{deg}^{-}(x)$

When does Eulerian tour exist?

- Undirected graph:
- The graph is connected
- All vertex degrees are even

When does Eulerian path exist?

- Undirected graph:
- The graph is connected
- There are at most two vertices with odd degree
- Directed graph:
- The graph is connected (when directions are removed)
- At most one vertex u has $\operatorname{deg}^{+}(u)-\operatorname{deg}^{-}(u)=+1$
- At most one vertex v has $\operatorname{deg}^{+}(v)-\operatorname{deg}^{-}(v)=-1$
- All other vertices have $\operatorname{deg}^{+}(x)=\operatorname{deg}^{-}(x)$

When does Eulerian tour exist?

- Undirected graph:
- The graph is connected
- All vertex degrees are even
- Directed graph:
- The graph is strongly connected
- All vertices have $\mathrm{deg}^{+}(x)=\mathrm{deg}^{-}(x)$
- Induction: assume that your graph has $|E|$ edges, and the theorem was proven for all $e<|E|$ numbers of edges
- Induction: assume that your graph has $|E|$ edges, and the theorem was proven for all $e<|E|$ numbers of edges
- Pick a vertex
- Random when you don't have "special" vertices
- A "special" vertex if you have one
- The one with $\operatorname{deg}^{+}(v)>\operatorname{deg}^{-}(v)$ if the graph is directed
- Induction: assume that your graph has $|E|$ edges, and the theorem was proven for all $e<|E|$ numbers of edges
- Pick a vertex
- Random when you don't have "special" vertices
- A "special" vertex if you have one
- The one with $\operatorname{deg}^{+}(v)>\operatorname{deg}^{-}(v)$ if the graph is directed
- Traverse the graph and remove the traversed edges
- Induction: assume that your graph has $|E|$ edges, and the theorem was proven for all $e<|E|$ numbers of edges
- Pick a vertex
- Random when you don't have "special" vertices
- A "special" vertex if you have one
- The one with $\operatorname{deg}^{+}(v)>\operatorname{deg}^{-}(v)$ if the graph is directed
- Traverse the graph and remove the traversed edges
- If you cannot do this anymore, what happens?
- Either there are no more edges \rightarrow path/tour is found
- Some edges remain
- There are (maybe several) connected subgraphs
- Find the paths/tours in them (can do this by induction)
- Connect them with the path/tour constructed from removed edges
- Induction: assume that your graph has $|E|$ edges, and the theorem was proven for all $e<|E|$ numbers of edges
- Pick a vertex
- Random when you don't have "special" vertices
- A "special" vertex if you have one
- The one with $\operatorname{deg}^{+}(v)>\operatorname{deg}^{-}(v)$ if the graph is directed
- Traverse the graph and remove the traversed edges
- If you cannot do this anymore, what happens?
- Either there are no more edges \rightarrow path/tour is found
- Some edges remain
- There are (maybe several) connected subgraphs
- Find the paths/tours in them (can do this by induction)
- Connect them with the path/tour constructed from removed edges
- That's what Depth First Search can do!

```
G=\langleV,E\rangle
A(v)={u|(v,u)\inE}
R\leftarrow[]
procedure DFS(v)
    for }u\inA(v)\mathrm{ do
        Remove u from A(v)
        if graph is undirected then
            Remove v from A(u)
        end if
        DFS(u)
    end for
    R\leftarrow[v]+R
end procedure
```

$G=\langle V, E\rangle$
$A(v)=\{u \mid(v, u) \in E\} \quad \triangleright$ No U set is used: can visit a vertex more than once! $R \leftarrow[]$
procedure $\operatorname{DFS}(v)$
for $u \in A(v)$ do
Remove u from $A(v)$
if graph is undirected then
Remove v from $A(u)$
end if DFS(u)
end for
$R \leftarrow[v]+R$
end procedure
$G=\langle V, E\rangle$
$A(v)=\{u \mid(v, u) \in E\}$
\triangleright No U set is used: can visit a vertex more than once!
$R \leftarrow[]$
\triangleright The result storage
procedure $\operatorname{DFS}(v)$
for $u \in A(v)$ do
Remove u from $A(v)$
if graph is undirected then
Remove v from $A(u)$
end if
DFS(u)
end for
$R \leftarrow[v]+R$
end procedure
$G=\langle V, E\rangle$
$A(v)=\{u \mid(v, u) \in E\}$
$R \leftarrow[]$
procedure $\operatorname{DFS}(v)$
for $u \in A(v)$ do
Remove u from $A(v)$
if graph is undirected then
Remove v from $A(u)$
end if
DFS(u)
end for
$R \leftarrow[v]+R$
end procedure
$G=\langle V, E\rangle$
$A(v)=\{u \mid(v, u) \in E\}$
$R \leftarrow[]$
procedure $\operatorname{DFS}(v)$
for $u \in A(v)$ do
Remove u from $A(v)$
if graph is undirected then
Remove v from $A(u)$
end if
DFS(u)
end for
$R \leftarrow[v]+R$
end procedure
$G=\langle V, E\rangle$
$A(v)=\{u \mid(v, u) \in E\}$ $R \leftarrow[]$
procedure $\operatorname{DFS}(v)$
for $u \in A(v)$ do
Remove u from $A(v)$ if graph is undirected then Remove v from $A(u)$ end if
end for
end procedure

$$
\operatorname{DFS}(u)
$$

$$
R \leftarrow[v]+R
$$

\triangleright No U set is used: can visit a vertex more than once! \triangleright The result storage
\triangleright Should be called on a non-regular vertex, if any
\triangleright Will never follow the (v, u) edge anymore
\triangleright If undirected, the anti-edge must be removed
$G=\langle V, E\rangle$
$A(v)=\{u \mid(v, u) \in E\} \quad \triangleright$ No U set is used: can visit a vertex more than once! $R \leftarrow[]$
procedure $\operatorname{DFS}(v)$
for $u \in A(v)$ do
Remove u from $A(v)$ if graph is undirected then Remove v from $A(u)$ end if DFS(u)
end for
$R \leftarrow[v]+R$
end procedure
\triangleright The result storage
\triangleright Should be called on a non-regular vertex, if any
\triangleright Will never follow the (v, u) edge anymore
\triangleright If undirected, the anti-edge must be removed

E

E

E

E

E

E

CE

CE

BCE

BCE

DBCE

DBCE

ADBCE

ADBCE

CADBCE

CADBCE

GCADBCE

GCADBCE

FGCADBCE

FGCADBCE

DFGCADBCE

DFGCADBCE

EDFGCADBCE

EDFGCADBCE

AEDFGCADBCE

AEDFGCADBCE

BAEDFGCADBCE

BAEDFGCADBCE

FBAEDFGCADBCE

FBAEDFGCADBCE

