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When do they exist?

When does Eulerian path exist?

I Undirected graph:
I The graph is connected
I There are at most two vertices with odd degree

I Directed graph:
I The graph is connected (when directions are removed)
I At most one vertex u has deg+(u)− deg−(u) = +1
I At most one vertex v has deg+(v)− deg−(v) = −1
I All other vertices have deg+(x) = deg−(x)

When does Eulerian tour exist?
I Undirected graph:

I The graph is connected
I All vertex degrees are even

I Directed graph:
I The graph is strongly connected
I All vertices have deg+(x) = deg−(x)

3 / 6
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How to prove these existence theorems?

I Induction: assume that your graph has |E | edges,
and the theorem was proven for all e < |E | numbers of edges

I Pick a vertex
I Random when you don’t have “special” vertices
I A “special” vertex if you have one

I The one with deg+(v) > deg−(v) if the graph is directed

I Traverse the graph and remove the traversed edges
I If you cannot do this anymore, what happens?

I Either there are no more edges → path/tour is found
I Some edges remain

I There are (maybe several) connected subgraphs
I Find the paths/tours in them (can do this by induction)
I Connect them with the path/tour constructed from removed edges

I That’s what Depth First Search can do!
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DFS modification to solve Eulerian paths

G = 〈V ,E 〉
A(v) = {u | (v , u) ∈ E}
R ← [ ]
procedure DFS(v)

for u ∈ A(v) do
Remove u from A(v)
if graph is undirected then

Remove v from A(u)
end if
DFS(u)

end for
R ← [v ] + R

end procedure
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Example: DFS finds Eulerian path
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Example: DFS finds Eulerian path
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